
Lecture 10: Parallel Programming in Scala

Computer Science Department, University of Crete

Multicore Processor Programming

Based on slides by P. Haller, material by scala-lang.org

Pratikakis (CSD) Scala CS529, 2017 1 / 19



The Actor Model

A model of concurrent computation
Introduced in 1973 (Lisp, Simula)
Main idea: Everything is an Actor

▶ Similar to OO idea that Everything is an Object
An actor can:

▶ Send messages to other actors
▶ Create new actors
▶ React to messages it receives

There is no constraint on order between these
▶ Can occur in parallel accross actors, also for any actor
▶ Parallel computation and communication

Pratikakis (CSD) Scala CS529, 2017 2 / 19



Actors in Scala

send, receive constructs adopted from Erlang
send is asynchronous

▶ Incoming messages buffered in actor’s mailbox

receive picks the first message in the mailbox that
matches one of the patterns msg_pat_i
If no pattern matches, the actor suspends

Pratikakis (CSD) Scala CS529, 2017 3 / 19



Goals of Scala
Create a language with better support for component
software
Hypotheses:

▶ Programming language for component software should be
scalable

⋆ The same concepts describe small and large parts
⋆ Rather than adding lots of primitives, focus on abstraction,
composition, decomposition

▶ Language that unifies OOP and functional programming can
provide scalable support for components

// Asynchronous message send
actor ! message

// Message receive
receive {
case msg_pat_1 => action_1
...
case msg_pat_i => action_i

}

Pratikakis (CSD) Scala CS529, 2017 4 / 19



Goals of Scala
Create a language with better support for component
software
Hypotheses:

▶ Programming language for component software should be
scalable

⋆ The same concepts describe small and large parts
⋆ Rather than adding lots of primitives, focus on abstraction,
composition, decomposition

▶ Language that unifies OOP and functional programming can
provide scalable support for components

// Asynchronous message send
actor ! message

// Message receive
receive {
case msg_pat_1 => action_1
...
case msg_pat_i => action_i

}

Partial Function of type
PartialFunction[Msg,
Action]

Pratikakis (CSD) Scala CS529, 2017 4 / 19



A Simple Actor

val summer = actor {
var sum = 0
loop {
receive {
case ints: Array[Int] =>
sum += ints.reduceLeft((a, b) => (a+b) % 7)

case from: Actor =>
from ! sum

}
}

}

Pratikakis (CSD) Scala CS529, 2017 5 / 19



Goals of Scala Actors

Offer high scalability on mainstream platforms
Integrate well with thread-based code
Provide safe, intuitive, efficient message passing

Pratikakis (CSD) Scala CS529, 2017 6 / 19



Actor Implementation with Threads

One thread per actor
Rely on JVM to map threads to OS processes and HW cores
receive blocks the actor’s thread while waiting for a
message

Pros:
No inversion of control
Interoperability with threads

Cons:
High memory consumption
Context switching overhead

Pratikakis (CSD) Scala CS529, 2017 7 / 19



Event-Based Actors
Problem of thread-based actors

▶ Actors consume lots of resources
▶ Waiting for messages is expensive

Idea: Suspend actors, save continuation closure and
release current thread
Transparent thread pooling

def act() {
react { case Put(x) =>
react { case Get(from) =>
from ! x
act()

}
}

}

Pratikakis (CSD) Scala CS529, 2017 8 / 19



Programming with react

Invocations do not return!
▶ Must provide continuation in the body of react

No need to write code in continuation-passing style (CPS)
▶ Use control-flow combinators to enable composition

a andThen b // runs a followed by b

def loop(body: => Unit) = body andThen loop(body)

Pratikakis (CSD) Scala CS529, 2017 9 / 19



Thread-based Programming

Actors should be able to block their thread temporarily:
▶ When interacting with thread-based code
▶ When it is difficult to provide the continuation

val tasks: List[Task]
tasks foreach { task => worker ! task }
val results = tasks map { task =>
receive {
case Done(result) => result

}
}

Pratikakis (CSD) Scala CS529, 2017 10 / 19



Thread-based Programming

Actors should be able to block their thread temporarily:
▶ When interacting with thread-based code
▶ When it is difficult to provide the continuation

val tasks: List[Task]
tasks foreach { task => worker ! task }
val results = tasks map { task =>
receive {
case Done(result) => result

}
}

Blocks the current thread if
the actor has to wait for a
message

Pratikakis (CSD) Scala CS529, 2017 10 / 19



Example: Thread-based Actors (1)

Any object can be a message
▶ Including Actor objects

// use singleton objects for messages
case object Ping
case object Pong
case object Stop

// import actors
import scala.actors.Actor
import scala.actors.Actor._

Pratikakis (CSD) Scala CS529, 2017 11 / 19



Example: Thread-based Actors (2)
Actor objects inherit from Actor class

class Ping(count: Int, pong: Actor) extends Actor {
def act() {
var pingsLeft = count -1
pong ! Ping
while (true) {
receive {
case Pong =>
if (pingsLeft % 1000 == 0)
Console.println(”Ping: pong”)

if (pingsLeft > 0) {
pong ! Ping
pingsLeft -= 1

} else {
Console.println(”Ping: stop”)
pong ! Stop
exit()

}
}

}
}

}
Pratikakis (CSD) Scala CS529, 2017 12 / 19



Example: Thread-based Actors (3)

class Pong extends Actor {
def act() {
var pongCount = 0
while (true) {
receive {
case Ping =>
if (pongCount % 1000 == 0)
Console.println(”Pong: ping ”+pongCount)

sender ! Pong
pongCount = pongCount + 1

case Stop =>
Console.println(”Pong: stop”)
exit()

}
}

}
}

Pratikakis (CSD) Scala CS529, 2017 13 / 19



Example: Thread-based Actors (3)

class Pong extends Actor {
def act() {
var pongCount = 0
while (true) {
receive {
case Ping =>
if (pongCount % 1000 == 0)
Console.println(”Pong: ping ”+pongCount)

sender ! Pong
pongCount = pongCount + 1

case Stop =>
Console.println(”Pong: stop”)
exit()

}
}

}
}

Method of the Actor class,
returns reference to sender
of message

Pratikakis (CSD) Scala CS529, 2017 13 / 19



Example: Thread-based Actors (4)

object pingpong extends App {
val pong = new Pong
val ping = new Ping(100000, pong)
ping.start
pong.start

}

Pratikakis (CSD) Scala CS529, 2017 14 / 19



Example: Thread-based Actors (4)

object pingpong extends App {
val pong = new Pong
val ping = new Ping(100000, pong)
ping.start
pong.start

}

Method of the Actor class,
returns reference to sender
of message

Pratikakis (CSD) Scala CS529, 2017 14 / 19



Example: Event-based Actors

class Pong extends Actor {
def act() {
var pongCount = 0
loop {
react {
case Ping =>
if (pongCount % 1000 == 0)
Console.println(”Pong: ping ”+pongCount)

sender ! Pong
pongCount = pongCount + 1

case Stop =>
Console.println(”Pong: stop”)
exit()

}
}

}
}

Pratikakis (CSD) Scala CS529, 2017 15 / 19



Example: Producers (1)

class PreOrder(n: Tree) extends Producer[int] {
def produceValues = traverse(n)
def traverse(n: Tree) {
if (n != null) {
produce(n.elem)
traverse(n.left)
traverse(n.right)

}
}

}

Pratikakis (CSD) Scala CS529, 2017 16 / 19



Example: Producers (2)

abstract class Producer[T] {
protected def produceValues: Unit

protected def produce(x: T) {
coordinator ! Some(x)
receive { case Next => }

}

private val producer: Actor = actor {
receive {
case Next =>
produceValues
coordinator ! None

}
}
...

}

Pratikakis (CSD) Scala CS529, 2017 17 / 19



Example: Producers (3)

private val coordinator: Actor = actor {
loop {
react {
case Next =>
producer ! Next
reply {
receive { case x: Option[_] => x }

}
case Stop => exit(’stop)

}
}

}

Pratikakis (CSD) Scala CS529, 2017 18 / 19



Example: Producers (4)

def iterator = new Iterator[T] {
private var current: Any = Undefined
private def lookAhead = {
if (current == Undefined) current = coordinator !? Next
current

}

def hasNext: Boolean = lookAhead match {
case Some(x) => true
case None => { coordinator ! Stop; false }

}

def next: T = lookAhead match {
case Some(x) => current = Undefined; x.asInstanceOf[T]

}
}

Pratikakis (CSD) Scala CS529, 2017 19 / 19


