Lecture 07: Even More Java Threads

Computer Science Department, University of Crete

Parallel Programming

Based on slides by). Foster, M. Hicks, D. Holmes, and D. Lea

Pratikakis (CSD) IEVYERLIGERS CS529, 2017 1/35

Designing Objects for Concurrency

@ Isolation
» Avoid interference by not sharing
@ Immutability
» Avoid inteference by avoiding change
@ Locking
» Dynamically guarantee exclusive access
@ Splitting Objects
» Changing representation to facilitate concurrency control

@ Containment

» Guarantee exclusive control of internal components
» Manage ownership
» Protect unhidden components

@ Alternatives to Synchronization
» volatile variables and the Java Memory Model

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 2/35

Isolation

@ Objects that are not shared cannot suffer interference

» Heap objects accessible only from current thread
» Parameters and local variables

* Applies to references, not the objects to which they refer
» java.lang.ThreadLocal
* Simplifies access from other objects running in the same
thread

» No need for any synchronization

@ Objects can be accessed by multiple threads as long as
they are isolated to one thread at any given time
» Transfer of ownership protocols

* Thread 1 uses the object, hands off to Thread 2 and then
never accesses the object again

» Transfer still requires synchronization

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 3/35

Thread Local Data

@ Suppose you want to run multiple web servers, each on
one thread, each using a different document directory
@ Could define a documentRoot field in the WebServer class

@ Or, define the document root as a variable tied to each
Thread object

» The easiest way: use java.lang.ThreadlLocal

» Equivalent to adding instance variables to all Thread
objects

» No need to define subclasses or control thread creation

@ All methods running can access thread local data when
needed

» Frequent use: package accessible statistics

@ No interference when all accesses happen within the same
thread

Pratikakis (CSD) Java Threads CS529, 2017 4/35

Example: ThreadLocal

public class WebServer {
static final ThreadLocal documentRoot = new ThreadLocal();

|.).l..|blic WebServer(int port, File root) throws IOException {

documentRoot.set(root);

}

private void processRequest(Socket sock) throws IOException {
File root = (File) documentRoot.get();

Pratikakis (CSD) Java Threads CS529, 2017 5/35

When to use ThreadLocal

@ Variables that apply per activity, not per object
» E.g., timeout value, transaction ID, current dirctory, default
parameters
@ Replacement for static variables
» When different threads should use different values

@ Tools to eliminate the need for synchronization

» Used internally in JVM to optimize memory allocation, lock
implementations, etc.
» E.g., per-thread caches, slabs

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 6/35

Stateless Objects

class StatelessAdder {
int addOne (int i) { returni + 1; }
int addTwo (inti) { returni + 2; }
}

@ There are no special concurrency concerns

» No per-instance state, therefore no storage conflicts

» No data representation, therefore no representation
invariants

» Multiple concurrent executions, therefore no liveness
problems

» No interaction with other objects, therefore no requirement
for synchronization protocol

@ Example: java.lang.Math

Pratikakis (CSD) Java Threads CS529, 2017 7/35

Immutable Objects

class ImmutableAdder {
private final int offset;
ImmutableAdder(int offset) { this.offset = offset; }
int add(int i) { return i + offset; }

)

@ Object state frozen upon initialization

» Still no safety or liveness concerns
» No interference as per-instance state never changes
» Java final fields enforce most senses of immutability

@ Immutability often suitable for closed Abstract Data Types
» E.g., String, Integer, etc.

Pratikakis (CSD) Java Threads CS529, 2017 8/35

Containment

@ Strict containment creates islands of objects
» Applies recursively

@ Allows code of “inner” objects to run faster
» Works with legacy sequential code

@ Requires inner code to be communication closed
» No unprotected calls into or out of island

@ Requires outer objects to never leak inner references
» Or uses ownership transfer protocol

@ By convention, can be difficult to enforce and check

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 9/35

Example: Containment (1)

class Statistics { // Mutable!
public long requests;
public double avgTime;
public Statistics(long requests, double avgTime) {
this.requests = requests;
this.avgTime = avgTime;
}
}

@ Fields are public and mutable
» Therefore, instances cannot be shared

@ Can be safely contained within a WebServer instance

Pratikakis (CSD) Java Threads

CS529, 2017

10/35

Example: Containment (2)

class WebServer {

private final Statistics stats = new Statistics(0, 0.0);
public synchronized Statistics getStatistics() {
return new Statistics(stats.requests, stats.avgTime);
}
private void processRequest(Socket sock) throws IOException {
synchronized(this) {
double total = stats.avgTime * stats.requests + elapsed;
stats.avgTime = total / (++stats.requests);
}
}
}

@ Cannot expose mutable state
» Instead, make copies

Pratikakis (CSD) Java Threads CS529, 2017 11/35

Hierarchical Containment Locking

@ Applies when logically contained parts are not hidden from
clients

@ Avoids deadlocks that could occur if parts were fully
synchronized

@ All parts use lock provided by the common owner
@ Can use either internal or external conventions

Pratikakis (CSD) Java Threads CS529, 2017 12/35

Internal Containment Locking (1)

class Part {
protected Container owner_; // Never null
public Container owner() { return owner_; }
private void bareAction() { /* unsafe */ }
public void m() {

synchronized (owner()) { bareAction(); }

}

)

@ Visible components protect themselves using their
owner’s locks

» Parts do not deadlock when invoking each other’s methods
» Parts must be aware that they are contained

Pratikakis (CSD) Java Threads CS529, 2017 13/35

Internal Containment Locking (2)

class Container {
class Part {

public void m() {
synchronized (Container.this) { bareAction(); }
}

}
}

@ Implemented using inner classes

@ Do not require synchronized blocks synchronization
» Shared Lock objects
» Transaction locks

» etc.
Pratikakis (CSD) Java Threads

CS529, 2017 14/35

External Containment Locking

class Client {
void f(Part p) {
synchronized (p.owner()) { p.bareAction(); }
}
}

@ External: rely on clients to provide locking (client-side)
@ Used in AWT
» java.awt.Component.getTreeLock()

@ Can sometimes avoid more locking overhead
@ ... at price of fragility
» Can manually minimize use of synchronized
» Requires all callers to obey convention
» Effectiveness depends on context
* Breaks encapsulation
* Does not work with fancy schemes that do not rely on
synchronized blocks or similar methods of locking

Pratikakis (CSD) Java Threads CS529, 2017 15/35

Subclassing Unsafe Code (1)

@ Assume a method written in native code

class HandlerHelper {
native void mountFileSystem();

}

@ Suppose our method processRequest invokes
mountFileSystem();

Pratikakis (CSD) Java Threads CS529, 2017 16 /35

Subclassing Unsafe Code (2)

@ We do not trust this class to be thread-safe

» Wrap calls in synchronized blocks (i.e., containment)
» Or, create a simple subclass that adds synchronization and
instantiate that class instead

class SafeHandlerHelper extends HandlerHelper {
synchronized void mountFileSystem() {
super.mountFileSystem();
}
}

» Localizes synchronization control where it is required

@ Subclassing is usually the most convenient way to do that

» Can also use unrelated wrapper classes and delegate
» Can generalize to “template method” schemes (later)

Pratikakis (CSD) Java Threads CS529, 2017 17/35

State Dependent Actions

@ State Dependence
@ Balking

@ Guarded Suspension
@ Optimistic Retries

@ Specifying Policies

Pratikakis (CSD) Java Threads CS529, 2017 18/35

Examples of State Dependent Actions

@ Operations on collections, streams, databases

» Remove an element from an empty queue
» Add an element to a full buffer

@ Operations on objects maintaining constrained values
» Withdraw money from an empty bank account

@ Operations requiring resources
» Print a file

@ Operations requiring particular message orderings
» Read an unopened file

@ Operations on external controllers
» Shift to reverse gear in a moving car

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 19/35

Policies for State Dependent Actions

@ Policy choices for dealing with preconditions and
postconditions

Blind action: Proceed anyway, no guarantee of outcome

Inaction: Ignore request if not in the right state

Balking: Fail via exception if not in the right state

Guarding: Suspend until in the right state

Trying: Proceed, check if successful, roll back if not

Retrying: Keep trying until successful

Timeout: Wait or retry for a while, then fail

Planning: First initiate activity that will achieve the right

state

vV VY VY VY VY VvYVvYY

@ How to convey policy in code?

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 20/35

Interfaces and Policies

public interface Buffer {
int capacity(); // Inv: capacity() > 0
int size(); // Inv: 0 < size() < capacity()
// Init: size() ==
void put(Object x); // Pre: size() < capacity()
Object take(); // Pre: size() > 0
}

@ Interfaces alone cannot convey policy
@ Can suggest policy
» E.g., should take() throw exception? What kind?
» Different methods can support different policies for same
base actions
@ Can use manual annotations

» Declarative constraints form the basis of the
implementation

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 21/35

Balking

@ Check state upon method entry

» Must not change state in course of checking state
» Relevant state must be explicitly represented

* So it can be checked on entry

@ Exit immediately if not in the right state
» Throw exception or return special value

* In these examples, throw Failure
» Client is responsible for handling failure

@ The simplest policy for synchronized objects
» Useable in both sequential and concurrent contexts
* Often used in Collection classes, e.g., Vector

» In concurrent contexts the host must always take
responsibility for entire check-act/check-fail sequence

* Clients cannot preclude state changes between check and
act, so host must control

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 22/35

Example: Balking Bounded Buffer

public Class BalkingBoundedBuffer implements Buffer {
private List data;
private final int capacity;
public BalkingBoundedBuffer(int capacity) {
data = new ArrayList(capacity);
this.capacity = capacity;

public synchronized Object take() throws Failure {
if (data.size() == 0) throw new Failure(”Buffer Empty”);
Object temp = data.get(0);
data.remove(0);
return temp;

}

public synchronized void put(Object o) throws Failure {
if (data.size() == capacity) throw new Failure(”Buffer Full”);
data.add(o);

public synchronized int size() { return data.size(); }
public int capacity() { return capacity; }
}

Pratikakis (CSD) Java Threads CS529, 2017

23/35

Guarding

@ Generalization of locking for state dependent actions
» Locked: wait until ready (not engaged in other methods)
» Guarded: Wait until an arbitrary state predicate holds

@ Check state upon entry

» If not in right state, wait
» Some other action in some other thread may eventually
cause a state change that enables resumption

@ Introduces liveness concerns
» Relies on actions of other threads to make progress

@ Useless in sequential programs
» Client must ensure correct state before calling

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 24 /35

Guarding Mechanisms: Busy wait

@ Thread continually spins until a condition holds

while(!condition) ; / spin
// use condition

» Requires multiple CPUs or timeslicing
* No way to determin this until Java 1.4

int nCPUs = Runtime.availableProcessors(); J

» But busy waiting can sometimes be useful

* When the conditions /atch: once true, they never become
false

Pratikakis (CSD) Java Threads CS529, 2017 25/35

Guarding Mechanisms: Suspension (1)

@ Thread stops execution until notified that the condition
may be true

@ Supported in Java via wait sets and locks

synchronized (obj) {
while (!condition) {
try { obj.wait(); }
catch (InterruptedExceptione) { ... }
b
// use condition

}

Pratikakis (CSD) Java Threads CS529, 2017 26/35

Guarding Mechanisms: Suspension (2)

@ Changing a condition

synchronized (obj) {
condition = true;
obj.notifyAll(); // or obj.notify()

» Or after Java 1.5, using Lock and Condition

@ Golden rule: always test a condition in a loop

» Change of state may not be what you need
» Condition may have changed again
» Break the rule only after proving it’s safe

Pratikakis (CSD) Java Threads CS529, 2017 27 /35

Wait sets and Notification (1)

@ Every Java Object has a wait set

» Can only be manipulated while the object lock is held
» Otherwise, IllegalMonitorStateException

@ Threads enter the wait set by calling wait ()

» wait() atomically releases the lock and suspends the
thread

* Including re-entrant locks held multiple times
* No other held locks are released

» Timed waiting via wait(long milliseconds)

* No direct indication that a time-out occured
* wait() and wait(0) mean wait forever
* Nanosecond version too

@ Similar for explicit Lock objects after Java 1.5

» Differences in versatility: interruption, timeout notification,
separate acquire - release, etc.

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 28/35

Wait sets and Notification (2)

@ Threads are released from the wait set when
» notifyAll() invoked on the object (signalAll() invoked
on the condition)
* Releases all threads
» notify() invoked on the object (signal() invoked on the
condition)
* Releases one thread selected at “random”
» The specified timeout has elapsed
» interrupt() method called for current thread, causes
InterruptedException
» Spurious wakeup occurs when:
* Inherited property of underlying synchronization
mechanisms: POSIX threads, Windows threads, Hardware
threads, etc.

@ Lock is always reacquired before wait () returns

» Restored lock count for re-entrant locks
» Cannot be acquired until notifying thread releases it
» All released threads contend for the lock

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 29/35

Wait sets and Notification (3)

@ Avoid notify() (and signal()), only use for optimization
when all the following hold:

» Only one thread can benefit from the change of state
» All threads are waiting for the same change of state
* or else, another notify() is done by the released thread

» And these conditions also hold for all subclasses!
@ Conditional notification is another optimization
» When you know for what state changes the other threads
wait
» Warning: subclasses may invalidate your “knowledge”
@ Use of wait(), notifyAll(), notify() are similar to
» Condition queues of classic Monitors
» Condition variables of POSIX threads
» But, with only one queue per object
* May complicate some designs and lead to nested monitor
lockouts
@ Any Java object can be used just for its wait set and lock
» After 1.5, use Lock objects

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 30/35

Example: Guarded Bounded Buffer

public class GuardedBoundedBuffer implements Buffer {
private List data;
private final int capacity;

public GuardedBoundedBuffer(int capacity) {
data = new ArrayList(capacity);
this.capacity = capacity;

public synchronized Object take() throws Failure {
while (data.size() == 0)
try { wait(); }
catch (InterruptedException e) { throw new Failure(); }
Object temp = data.get(0);
data.remove(0);
notifyAll ();
return temp;
}
public synchronized void put(Object obj) throws Failure {
while (data.size() == capacity)
try { wait(); }
catch (InterruptedException e) { throw new Failure(); }
data.add(obj);
notifyAll ();

public synchronized int size() { return data.size(); }
public int capacity() { return capacity; }

}
Pratikakis (CSD) Java Threads CS529, 2017

31/35

Timeout

@ Intermediate points between Balking and Guarding
» Can vary timeout parameter from zero to infinity

@ Useful for heuristic detection of failures
» Deadlocks, crashes, 1/O problems, network disconnections

@ But cannot be used for high-precision timing or deadlines
» Time can elapse between wait and thread resumption
» Time can elapse after checking the time!

@ Java implementation constraints

» wait(ms) does not automatically tell you if it returs
because of notification or timeout

* await(ms) does

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 32/35

Optimistic Techniques

@ Variations for recording versions of mutable data

Immutable helper classes
Version numbers
Transaction IDs

Time stamps

@ May be more efficient than guarded waiting
» When conflicts are rare and running on multiple CPUs

@ Retrying can livelock unless proven wait-free
» Analogous to deadlock in guarded waiting
» Should arrange to fail after a certain time or number of
attempts

vV vy VvYy

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 33/35

Example: Optimistic Bounded Counter

public class OptimisticBoundedCounter {
private final long MIN, MAX;
private Long count; // MIN <= count <= MAX

public OptimisticBoundedCounter(long min, long max) {
MIN = min; MAX = max;
count = new Long(MIN);

public long value() { return count().longValue(); }
public synchronized Long count() { return count; }

private synchronized boolean commit(Long oldc, Long newc) {
boolean success = (count == oldc);
if (success) count = newc;
return success;

public void inc() throws InterruptedException {
for (;;) { // retry-based
if (Thread.interrupted())
throw new InterruptedException();
Long ¢ = count();
long v = c.longValue();
if (v < MAX && commit(c, new Long(v+1)))
break;
Thread.yield(); // a good idea in spin loops
}
}

Pratikakis

(CS Java Threads CS529, 2017

34/35

Specifying Policies

@ Some policies are per-type
» Optimistic approaches require all methods to conform

@ Some policies can be specified per-call
» Balking vs. Guarding vs. Guarding with time-out
@ Options for specifying per-call policy
» Extra parameters
* void put(Object x, long timeout)
* void put(Object x, boolean balk)
» Different name for Balking or Guarding

* Balking: void tryPut(Object x)
* Guarding: void put(0Object x)

» May need different exception signatures

Pratikakis (CSD) Java Threads CS529, 2017 35/35

	Concurrent Objects
	Isolation
	Immutability
	Containment
	State Dependent Actions

