
Lecture 06: Java Threads

Computer Science Department, University of Crete

Multicore Processor Programming

Based on slides by J. Foster, M. Hicks, D. Holmes, and D. Lea

Pratikakis (CSD) Java Threads CS529, 2017 1 / 61



What is a thread?

Intutively/conceptually:
▶ One of possibly many parallel computations occuring within
a process

Implementation:
▶ It is a program counter and a stack
▶ Heap and static areas are shared among all threads in a
process

All programs have at least one thread (main())

Pratikakis (CSD) Java Threads CS529, 2017 2 / 61



Thread Implementation

A program counter and a stack
▶ Stack pointer and program counter saved in memory when
thread is not running

▶ Contained in hardware registers (esp, eip) of a core while
the thread is running

Pratikakis (CSD) Java Threads CS529, 2017 3 / 61



Tradeoffs involved

Threads can increase performance
▶ Create parallelism on multiprocessors
▶ Intuitive way to get concurrent I/O and computation

Natural fit for some programming paradigms
▶ Event processing
▶ Simulations

Tradeoff: increased complexity
▶ Need to think about safety, liveness, composability
▶ Shared heap, complex interleavings

Higher resource usage
▶ Oversubscription

Pratikakis (CSD) Java Threads CS529, 2017 4 / 61



Thread Programming Model

Threads exist in many languages
▶ C, C++, C#, Java, Smalltalk, Objective Caml, F#, . . .

In many languages (e.g., C, C++) threads a an add-on
library

▶ Not a part of the language specification
▶ See also related paper: “Threads Cannot be Implemented
as a Library” posted on website

Java threads are part of the language specification
▶ For more, read paper “The Java Memory Model” for Monday

Pratikakis (CSD) Java Threads CS529, 2017 5 / 61



Java Threads

Every application has at least one thread, main
▶ Started by the JVM to run the application’s main() method

main() thread can create more threads
▶ Explicitly: using the Thread class
▶ Implicitly: calling libraries that use threads

⋆ RMI, Applets, Swing/AWT, . . .

Pratikakis (CSD) Java Threads CS529, 2017 6 / 61



Java Threads as Objects

Java is Object Oriented
▶ Uses OO model to express threads too
▶ Most OO languages

To create a Java Thread:
▶ Instantiate a Thread object

⋆ An object of class Thread or any subclass of Thread
▶ Invoke the object’s start() method

⋆ That will create a new execution thread
⋆ The new thread will start executing the object’s run()
method

⋆ Execution will proceed concurrently with the “parent” thread
▶ The new thread terminates when it’s run() method
completes

Pratikakis (CSD) Java Threads CS529, 2017 7 / 61



Running Example: Alarms

Goal: let’s set alarms to be triggered in the future
▶ Input: time t in seconds, a message m to be printed
▶ Result: will see message m printed after t seconds

Pratikakis (CSD) Java Threads CS529, 2017 8 / 61



Example: Synchronous Alarms

...
while (true) {
System.out.print(”Alarm> ”);

// read user input
String line = b.readLine();
parseInput(line); // sets timeout

// wait (seconds)
try {
Thread.sleep(timeout * 1000);

} catch (InterruptedException e) { }
System.out.println(”(” + timeout + ”) ” + msg);

}
...

Pratikakis (CSD) Java Threads CS529, 2017 9 / 61



Make it threaded (1)

public class AlarmThread extends Thread {
private String msg = null;
private int timeout = 0;

public AlarmThread(String msg, int time) {
this.msg = msg;
this.timeout = time;

}

public void run() {
try {
Thread.sleep(timeout * 1000);

} catch (InterruptedException e) { }
System.out.println(”(” + timeout + ”) ” + msg);

}
}

Pratikakis (CSD) Java Threads CS529, 2017 10 / 61



Make it threaded (2)

...
while (true) {
System.out.print(”Alarm> ”);

// read user input
String line = b.readLine();
parseInput(line); // sets timeout

if (m != null) {
// start alarm thread
Thread t = new AlarmThread(msg, timeout);
t.start();

}
}
...

Pratikakis (CSD) Java Threads CS529, 2017 11 / 61



Alternative: The Runnable Interface

Extending Thread prohibits a different parent
Instead, implement interface Runnable

▶ Declares that the class has a void run() method
Construct a Thread from a Runnable

▶ Constructor Thread(Runnable target)
▶ Constructor Thread(Runnable target, String name)

Pratikakis (CSD) Java Threads CS529, 2017 12 / 61



Example, revisited (1)

public class AlarmRunnable implements Runnable {
private String msg = null;
private int timeout = 0;

public AlarmRunnable(String msg, int time) {
this.msg = msg;
this.timeout = time;

}

public void run() {
try {
Thread.sleep(timeout * 1000);

} catch (InterruptedException e) { }
System.out.println(”(” + timeout + ”) ” + msg);

}
}

Pratikakis (CSD) Java Threads CS529, 2017 13 / 61



Example, revisited (2)

...
while (true) {
System.out.print(”Alarm> ”);

// read user input
String line = b.readLine();
parseInput(line); // sets timeout

if (m != null) {
// start alarm thread
Thread t = new Thread(new AlarmRunnable(msg, timeout));
t.start();

}
}
...

Pratikakis (CSD) Java Threads CS529, 2017 14 / 61



Passing parameters

run() does not take parameters
To “pass parameters” to the new thread store them as
private fields

▶ In the extended class
▶ In the Runnable object
▶ E.g., the timeout and msg private fields of the AlarmThread
class

Pratikakis (CSD) Java Threads CS529, 2017 15 / 61



Concurrency

A concurrent program is one that has multiple threads
active at the same time

▶ It may run on one CPU
⋆ The CPU alternates between threads
⋆ Thread scheduler decides details
⋆ Context-switching may happen at any time

▶ It may be run in parallel on a multicore machine
⋆ Each CPU core runs a thread
⋆ May run more than one thread per CPU core
⋆ Threads may resume on the same or on different CPU core
⋆ Scheduling policy may differ by JVM

Pratikakis (CSD) Java Threads CS529, 2017 16 / 61



Concurrency and Shared Data

Concurrency is easy if threads do not interact
▶ Each thread does its own thing, uses its own objects
▶ Typically, threads need to communicate with each other

Communication by sharing data
▶ Many threads can access the heap simultaneously
▶ Communication via writing and reading the same objects
▶ Writes and reads may interleave arbitrarily

⋆ Hardware may reorder instructions, messages
⋆ Scheduler may interleave threads
⋆ Compiler may reorder code
⋆ May get problems if we are not careful!

Pratikakis (CSD) Java Threads CS529, 2017 17 / 61



Data Race Example

public class Example extends Thread {
private static int counter = 0; // shared state

public void run() {
int y = counter;
counter = y + 1;

}

public static void main(String args[]) {
Thread t1 = new Example();
Thread t2 = new Example();
t1.start();
t2.start();

}
}

Pratikakis (CSD) Java Threads CS529, 2017 18 / 61



What happens?

Different schedules lead to different results
▶ This is a Data Race or Race Condition

A thread is preempted in the middle of an operation
Or, parallel instructions from the other thread run in
between its instructions
Reading and writing counter was supposed to be atomic

▶ Atomic (conceptually): to appear instantaneous
▶ To happen with no interference from other threads
▶ In atomic code, thread t1 should “see” no values written by
thread t2 and vice versa

These bugs can be extremely hard to reproduce
So, hard to debug
Depends on timing of scheduler, or hardware

Pratikakis (CSD) Java Threads CS529, 2017 19 / 61



Question

If, instead of

int y = counter;
counter = y + 1;

we had written

counter++;

Would the result be different?
Answer: NO
Do not trust your intuition on whether an instruction is
atomic or not
May be on some machines, not on others

Pratikakis (CSD) Java Threads CS529, 2017 20 / 61



Synchronization

Refers to mechanisms that control the execution order of
operations accross threads
Conceptually:

▶ Threads produce executions with all possible interleavings,
timings

▶ Some such executions are correct, some are incorrect
▶ Synchronization mechanisms remove incorrect executions
by restricting interleavings

Different languages use different mechanisms to
synchronize threads
Java has several such mechanisms
We will look at locks first

Pratikakis (CSD) Java Threads CS529, 2017 21 / 61



Java Locks

interface Lock {
void lock();
void unlock();
...

}

class ReentrantLock implements Lock { ... }

Only one thread can hold a lock at any time
▶ Other threads that try to acquire the same lock will block
(or become suspended) until the lock becomes available

Reentrant lock: can be re-acquired by the same thread
▶ As many times as desired
▶ No other thread may acquire the lock until it has been
released the same number of times it was acquired

▶ Hence, re-entry (needs re-exit)

Pratikakis (CSD) Java Threads CS529, 2017 22 / 61



Avoiding Interference: Synchronization

public class Example extends Thread {
private static int counter = 0;
static Lock lock = new ReentrantLock();

public void run() {
lock.lock();
int y = counter;
counter = y + 1;
lock.unlock();

}

...
}

Pratikakis (CSD) Java Threads CS529, 2017 23 / 61



Different locks do not interact

static int counter = 0;
static Lock l = new ReentrantLock();
static Lock m = new ReentrantLock();

public void inc1() {
l .lock();
counter++;
l .unlock();

}

public void inc2() {
m.lock();
counter++;
m.unlock();

}

This program has a race condition
Threads only block if they try to acquire a lock held by
another thread
Pratikakis (CSD) Java Threads CS529, 2017 24 / 61



Question

static int counter = 0;
static int x = 0;

Thread 1

while (x != 0) ;
x = 1;
counter++;
x = 0;

Thread 2

while (x != 0) ;
x = 1;
counter++;
x = 0;

Threads may be interrupted after the while but before
writing to x
Both would think they hold the lock!
This is busy waiting: consumes lots of processor cycles

Pratikakis (CSD) Java Threads CS529, 2017 25 / 61



Question

static int counter = 0;
static int x = 0;

Thread 1

while (x != 0) ;
x = 1;
counter++;
x = 0;

Thread 2

while (x != 0) ;
x = 1;
counter++;
x = 0;

Threads may be interrupted after the while but before
writing to x
Both would think they hold the lock!
This is busy waiting: consumes lots of processor cycles

Pratikakis (CSD) Java Threads CS529, 2017 25 / 61



Reentrant Lock Example

static int c = 0;
static Lock l =

new ReentrantLock();

void inc() {
l .lock();
c++;
l .unlock();

}

void returnAndInc() {
int temp;

l .lock();
temp = c;
inc();
l .unlock();

}

Reentrancy is useful because each method can
acquire/release locks as it needs

▶ No need to worry about whether callers already hold locks
▶ Keeps code simpler, readable

Pratikakis (CSD) Java Threads CS529, 2017 26 / 61



Deadlock
Deadlock occurs when no thread can run because all
threads are waiting for a lock
No thread runs, so no thread can release any lock to
enable another to run

Lock l = new ReentrantLock();
Lock m = new ReentrantLock();

Thread 1

l .lock();
m.lock();
...
m.unlock();
l .unlock();

Thread 2

m.lock();
l .lock();
...
l .unlock();
m.unlock();

Pratikakis (CSD) Java Threads CS529, 2017 27 / 61



Deadlock, cont.

Some schedules work fine
▶ Thread 1 runs to completion, then thread 2

What if...
▶ Thread 1 acquires l
▶ Thread 2 acquires m

Deadlock:
▶ Thread 1 is trying to acquire m
▶ Thread 2 is trying to acquire l
▶ Neither can, because the other thread has it

Pratikakis (CSD) Java Threads CS529, 2017 28 / 61



The wait graph

The wait graph
▶ Each thread is a node
▶ Each lock is a node
▶ Draw edge l to Thread1 if it has the lock
▶ Draw edge Thread1 to m when it tries to acquire the lock
▶ The wait graph captures a single point in the execution

Deadlock occurs when there is a cycle
Program has deadlock if any execution can produce a cycle
Difficult to reproduce, difficult to debug

Pratikakis (CSD) Java Threads CS529, 2017 29 / 61



Another Deadlock Example

static Lock l = new ReentrantLock();

void f() throws Exception {
l .lock();
FileInputStream f = new FileInputStream(”file.txt”);
// do something with f
f .close();
l .unlock();

}

Lock l not released along all possible execution paths
File exception may leave lock acquired by the thread

▶ Likely to cause deadlock later
▶ Even more difficult to debug, deadlock will appear in
possibly unrelated point in the execution

Pratikakis (CSD) Java Threads CS529, 2017 30 / 61



Solution: use “finally”

static Lock l = new ReentrantLock();

void f() throws Exception {
l .lock();
try {
FileInputStream f = new FileInputStream(”file.txt”);
// do something with f
f .close();

}
finally {
// this code is executed always,
// regardless of how we exit the try block
l .unlock();

}
}

Pratikakis (CSD) Java Threads CS529, 2017 31 / 61



Synchronized blocks

This pattern is very common
▶ Acquire a lock, do something, release the lock under any
circumstances (e.g., finally)

Java has a special language construct for this pattern
▶ synchronized (obj) { body }

⋆ Every Java object has an implicit associated lock
▶ Obtain the lock associated with obj
▶ Execute body
▶ Release the lock when the syntactic scope is exited

⋆ Even in the case of exception or explicit return

Pratikakis (CSD) Java Threads CS529, 2017 32 / 61



Example

static Object o = new Object();

void f() throws Exception {
synchronized (o) {
FileInputStream f = new FileInputStream(”file.txt”);
// do something with f
f .close();

}
}

Lock associated with object o acquired before body is
executed

▶ Released when exiting the block scope, even when
exception is thrown

Pratikakis (CSD) Java Threads CS529, 2017 33 / 61



Object locks

An object and its associated lock are different!
Holding the lock does not stop anyone else from accessing
that object, calling methods, etc.

Pratikakis (CSD) Java Threads CS529, 2017 34 / 61



Example (1)

class C {
int counter;

void inc() {
synchronized (this) {
counter++;

}
}

}
...
C c = new C();

Thread 1

c.inc();

Thread 2

c.inc();

Does this program have a data race?

▶ No, both threads acquire locks on the same object before
accessing the shared data

Pratikakis (CSD) Java Threads CS529, 2017 35 / 61



Example (1)

class C {
int counter;

void inc() {
synchronized (this) {
counter++;

}
}

}
...
C c = new C();

Thread 1

c.inc();

Thread 2

c.inc();

Does this program have a data race?
▶ No, both threads acquire locks on the same object before
accessing the shared data

Pratikakis (CSD) Java Threads CS529, 2017 35 / 61



Example (2)

class C {
int counter;

void inc() {
synchronized (this) {
counter++;

}
}

void dec() {
synchronized (this) {
counter--;

}
}

}
...
C c = new C();

Thread 1

c.inc();

Thread 2

c.dec();

Does this program have a data race?

▶ No, both threads acquire locks on the same object before
accessing the shared data

Pratikakis (CSD) Java Threads CS529, 2017 36 / 61



Example (2)

class C {
int counter;

void inc() {
synchronized (this) {
counter++;

}
}

void dec() {
synchronized (this) {
counter--;

}
}

}
...
C c = new C();

Thread 1

c.inc();

Thread 2

c.dec();

Does this program have a data race?
▶ No, both threads acquire locks on the same object before
accessing the shared data

Pratikakis (CSD) Java Threads CS529, 2017 36 / 61



Example (3)

class C {
int counter;

void inc() {
synchronized (this) {
counter++;

}
}

}
...
C c1 = new C();
C c2 = new C();

Thread 1

c1.inc();

Thread 2

c2.inc();

Does this program have a data race?

▶ No, threads acquire different locks, but they write to
different objects

Pratikakis (CSD) Java Threads CS529, 2017 37 / 61



Example (3)

class C {
int counter;

void inc() {
synchronized (this) {
counter++;

}
}

}
...
C c1 = new C();
C c2 = new C();

Thread 1

c1.inc();

Thread 2

c2.inc();

Does this program have a data race?
▶ No, threads acquire different locks, but they write to
different objects

Pratikakis (CSD) Java Threads CS529, 2017 37 / 61



Synchronized Methods

Mark a method as synchronized
▶ The same as synchronizing on this in the body of the
method

▶ Easier way to express the same pattern
The following programs are the same:

class C {
int counter;

void inc() {
synchronized (this) {
counter++;

}
}

class C {
int counter;

synchronized void inc() {
counter++;

}
}

Pratikakis (CSD) Java Threads CS529, 2017 38 / 61



Synchronized methods: Example

class C {
int counter;

void inc() {
synchronized (this) {
counter++;

}
}

synchronized void dec() {
counter--;

}
}
...
C c = new C();

Thread 1

c.inc();

Thread 2

c.dec();

Pratikakis (CSD) Java Threads CS529, 2017 39 / 61



Synchronized static methods

Warning: Static methods lock class object!
▶ There is no this to lock

class C {
int counter;

synchronized void inc() {
counter++;

}

static synchronized void dec() {
counter--;

}
}
...
C c = new C();

Thread 1

c.inc();

Thread 2

c.dec();

Pratikakis (CSD) Java Threads CS529, 2017 40 / 61



Thread Scheduling

When multiple threads share a CPU core
▶ When should the current thread stop running?
▶ What thread should run next?

A thread can voluntarily yield() the CPU core
▶ Call to yield() may be ignored

Preemptive schedulers
▶ Can de-schedule a running thread at any time
▶ Not all JVMs use pre-emptive schedulers
▶ A thread stuck in a loop may never yield automatically
▶ Sometimes good to yield() manually inside loops

Threads are de-scheduled when they block

Lock, I/O, etc.

Pratikakis (CSD) Java Threads CS529, 2017 41 / 61



Thread Lifecycle

Running thread goes through several different phases
▶ New: Created but not yet started
▶ Runnable: Currently running or able to run on a free CPU
core

▶ Blocked: Waiting for I/O, lock, or other synchronization
operation

▶ Sleeping: Paused for a user-specified interval
▶ Terminated: Completed, not running

Pratikakis (CSD) Java Threads CS529, 2017 42 / 61



Which Thread Runs Next?

Look at all runnable threads
▶ Any thread just became unblocked?

⋆ A lock was released
⋆ I/O became available
⋆ Finished sleeping

Pick a thread and run it
▶ Can try to influence priority with setPriority(int)
▶ Higher priority value gets preference
▶ Probably no need to set priority

Pratikakis (CSD) Java Threads CS529, 2017 43 / 61



Interesting Thread Methods

void join() throws InterruptedException
▶ Waits for a thread to finish

static void yield()
▶ Current thread gives up the CPU core

static void sleep(long milliseconds) throws
InterruptedException

▶ Current thread sleeps for the given time
static Thread currentThread()

▶ Returns the Thread object of the currently executing thread

Pratikakis (CSD) Java Threads CS529, 2017 44 / 61



Example: Alarm

...
while (true) {
System.out.print(”Alarm> ”);

// read user input
String line = b.readLine();
parseInput(line); // sets timeout

// wait (seconds) asynchronously
if (msg != null) {
// start alarm thread
Thread t = new AlarmThread(msg, timeout);
t.start();
// wait for the thread to complete
t.join();

}
}
...

Pratikakis (CSD) Java Threads CS529, 2017 45 / 61



Daemon Threads

void setDaemon(boolean on)
▶ Marks thread as a daemon thread
▶ Must be set before thread started

By default, each new thread acquires the status of the
thread that spawned it
Program execution terminates when no threads left
running

▶ Except daemon threads

Pratikakis (CSD) Java Threads CS529, 2017 46 / 61



Key Ideas

Multiple threads running simultaneously
▶ Either truly in multiple CPU cores
▶ Or scheduled on a single processor

⋆ A running thread can be pre-empted at any time
▶ Or a combination of these

Threads can share data
▶ In Java, only fields can be shared
▶ Need to prevent interference

⋆ Good practice 1: Hold a lock when accessing shared data
⋆ Good practice 2: Do not release the lock until shared data is
in a valid state

▶ Overuse of synchronization can create deadlocks
⋆ Rule of thumb: No deadlock if only one lock acquired at a time

Pratikakis (CSD) Java Threads CS529, 2017 47 / 61



Producer – Consumer Design Pattern

Suppose two threads communicate with a shared variable
▶ E.g., some kind of buffer holding messages
▶ One thread produces input to the buffer
▶ One thread consumes data from the buffer
▶ How do we implement this?

⋆ Use condition variables

Pratikakis (CSD) Java Threads CS529, 2017 48 / 61



Conditions

interface Lock { Condition newCondition(); ... }
interface Condition {
void await();
void signalAll();
...

}

Condition created using a Lock object
await() called with lock acquired

▶ Releases the lock
⋆ But not any other locks held by this thread

▶ Adds this thread to wait set for the lock
▶ Blocks the thread

signalAll() called with lock acquired
▶ Resumes all threads on lock’s wait set
▶ Those threads try to reacquire lock before continuing

⋆ Only one will succeed
⋆ If acquiring thread had blocked in await() it continues with
lock acquired

Pratikakis (CSD) Java Threads CS529, 2017 49 / 61



Example: Producer – Consumer

Lock lock = ReentrantLock();
Condition ready = lock.newCondition();
boolean valueReady = false;
Object value;

Thread 1

void produce(Object o) {
lock.lock();
while (valueReady)
ready.await();

value = o;
valueReady = true;
ready.signalAll();
lock.unlock();

}

Thread 2

Object consume() {
lock.lock();
while (!valueReady)
ready.await();

Object o = value;
valueReady = false;
ready.signalAll();
lock.unlock();

}

Pratikakis (CSD) Java Threads CS529, 2017 50 / 61



Prefer this design pattern

This is the right solution to the problem
▶ It may be tempting to try to use locks directly
▶ Very hard to get right
▶ Problems with other implementations often very subtle

⋆ E.g., double-checked locking is broken

Pratikakis (CSD) Java Threads CS529, 2017 51 / 61



Example: BROKEN code (1)

Lock lock = new ReentrantLock();
boolean valueReady = false;
Object value;

Thread 1

void produce(Object o) {
lock.lock();
while (valueReady);
value = o;
valueReady = true;
lock.unlock();

}

Thread 2

Object consume() {
lock.lock();
while (!valueReady);
Object o = value;
valueReady = false;
lock.unlock();

}

This code is broken
Deadlock: threads wait while holding the lock, no progress

Pratikakis (CSD) Java Threads CS529, 2017 52 / 61



Example: BROKEN code (2)

Lock lock = new ReentrantLock();
boolean valueReady = false;
Object value;

Thread 1

void produce(Object o) {
while (valueReady);
lock.lock();
value = o;
valueReady = true;
lock.unlock();

}

Thread 2

Object consume() {
while (!valueReady);
lock.lock();
Object o = value;
valueReady = false;
lock.unlock();

}

This code is broken, too
Data Race: valueReady accessed without holding the lock

Pratikakis (CSD) Java Threads CS529, 2017 53 / 61



Example: BROKEN code (3)

Lock lock = new ReentrantLock();
Condition ready = lock.newCondition();
boolean valueReady = false;
Object value;

Thread 1

void produce(Object o) {
lock.lock();
if (valueReady) ready.await();
value = o;
valueReady = true;
ready.signalAll();
lock.unlock();

}

Thread 2

Object consume() {
lock.lock();
if (!valueReady) ready.await();
Object o = value;
valueReady = false;
ready.signalAll();
lock.unlock();

}

This code is broken, too!
Correctness: What if there are multiple producers and
consumers?
Pratikakis (CSD) Java Threads CS529, 2017 54 / 61



The Condition Interface

interface Condition {
void await();
boolean await(long time, TimeUnit unit);
void signal();
void signalAll();
...

}

await(t, u) waits for time t and then gives up
▶ Boolean result: false if the waiting time detectably elapsed
before return from the method, else true

signal() wakes up only one waiting thread
▶ Tricky to get right

⋆ Have all waiting threads be equal, handle exceptions
correctly

▶ Highly recommended to use signalAll()

Pratikakis (CSD) Java Threads CS529, 2017 55 / 61



Issues with await and signalAll

await() must be in a loop
▶ Do not assume that when it returns, the condition holds
▶ Maybe many threads “consume” the condition

Avoid holding other locks when waiting
▶ await() only gives up locks on the object you wait on

Cannot have a Condition object on two locks
Can have two Condition objects on the same lock

Pratikakis (CSD) Java Threads CS529, 2017 56 / 61



Blocking Queues
Interface for Producer–Consumer pattern

interface Queue<E> extends Collection<E> {
boolean offer(E x); // produce
// waits for queue to have capacity

E remove(); // consume
// waits for queue to become non-empty
...

}

Two useful implementations
▶ LinkedBlockingQueue (FIFO, may be bounded)
▶ ArrayBlockingQueue (FIFO, bounded)
▶ A few more, look up in documentation

Pratikakis (CSD) Java Threads CS529, 2017 57 / 61



Wait and NotifyAll (1)

Old synchronization (Java 1.4)
In Java 1.4, use synchronized keyword on an object to
acquire lock

▶ Objects have an associated lock
▶ Objects have an associated wait set

Pratikakis (CSD) Java Threads CS529, 2017 58 / 61



Wait and NotifyAll (2)

o.wait()
▶ Must hold the lock associated with o (inside synchronized
block)

▶ Releases the lock
⋆ No other locks

▶ Adds the thread to the wait set of the lock
▶ Blocks the thread
▶ On return, the lock will again be acquired

o.notifyAll()
▶ Must hold the lock associated with o
▶ Resumes all threads in the wait set of o
▶ These threads will try to reacquire lock before continuing
(e.g., before wait() returns)

Pratikakis (CSD) Java Threads CS529, 2017 59 / 61



Producer – Consumer in Java 1.4

public class ProducerConsumer {
private boolean valueReady = false;
private Object value;

synchronized void produce(Object o) {
while (valueReady) wait();
value = o;
valueReady = true;
notifyAll();

}

synchronized Object consume() {
while (!valueReady) wait();
valueReady = false;
Object o = value;
notifyAll();
return o;

}
}

Pratikakis (CSD) Java Threads CS529, 2017 60 / 61



InterruptedException
Exception thrown if certain concurrency operations are
interrupted

▶ wait(), await(), sleep(), join(), and
lockInterruptibly()

▶ Also thrown if one of these is called with interrupt flag set
The exception is not thrown when blocked on Java 1.4 lock
or on I/O

class Object {
void wait() throws InterruptedException;
...

}
interface Lock {
void lock();
void lockInterruptibly() throws InterruptedException;
...

}
interface Condition {
void await() throws InterruptedException;
void signalAll();
...

}
Pratikakis (CSD) Java Threads CS529, 2017 61 / 61


	Threads in general
	Java Threads
	Concurrency
	Synchronization
	Data Races
	Locks
	Deadlocks
	Synchronized blocks

	Thread Scheduling
	Concurrent Patterns
	Condition variables
	Producer – Consumer
	Wait and NotifyAll


