Lecture 06: Java Threads

Computer Science Department, University of Crete

Multicore Processor Programming

Based on slides by ). Foster, M. Hicks, D. Holmes, and D. Lea

Pratikakis (CSD) IEVYERLIGERS CS529, 2017 1/61



What is a thread?

@ Intutively/conceptually:
» One of possibly many parallel computations occuring within
a process
@ Implementation:

» It is a program counter and a stack
» Heap and static areas are shared among all threads in a
process

@ All programs have at least one thread (main())

Pratikakis (CSD) Java Threads CS529, 2017 2/61



Thread Implementation

@ A program counter and a stack
» Stack pointer and program counter saved in memory when
thread is not running
» Contained in hardware registers (esp, eip) of a core while
the thread is running

Pratikakis (CSD) Java Threads CS529, 2017 3/61



Tradeoffs involved

@ Threads can increase performance
» Create parallelism on multiprocessors
» Intuitive way to get concurrent I/O and computation
@ Natural fit for some programming paradigms
» Event processing
» Simulations
@ Tradeoff: increased complexity
» Need to think about safety, liveness, composability
» Shared heap, complex interleavings
@ Higher resource usage
» Oversubscription

Pratikakis (CSD) Java Threads CS529, 2017 4/61



Thread Programming Model

@ Threads exist in many languages
» C, C++, C#, Java, Smalltalk, Objective Caml, F#, ...
@ In many languages (e.g., C, C++) threads a an add-on
library

» Not a part of the language specification
» See also related paper: “Threads Cannot be Implemented
as a Library” posted on website

@ Java threads are part of the language specification
» For more, read paper “The Java Memory Model” for Monday

Pratikakis (CSD) Java Threads CS529, 2017 5/61



Java Threads

@ Every application has at least one thread, main
» Started by the JVM to run the application’s main() method

@ main() thread can create more threads

» Explicitly: using the Thread class
» Implicitly: calling libraries that use threads

* RMI, Applets, Swing/AWT, ...

Pratikakis (CSD) Java Threads CS529, 2017 6/61



Java Threads as Objects

@ Java is Object Oriented
» Uses OO model to express threads too
» Most OO languages

@ To create a Java Thread:
» Instantiate a Thread object

* An object of class Thread or any subclass of Thread
» Invoke the object’s start() method
* That will create a new execution thread

* The new thread will start executing the object’s run()
method

* Execution will proceed concurrently with the “parent” thread
» The new thread terminates when it’s run() method

completes

CS529, 2017 7/61



Running Example: Alarms

@ Goal: let’s set alarms to be triggered in the future

» Input: time t in seconds, a message m to be printed
» Result: will see message m printed after t seconds

Pratikakis (CSD) Java Threads CS529, 2017 8/61



Example: Synchronous Alarms

while (true) {
System.out.print(”Alarm> ");

// read user input
String line = b.readLine();
parselnput(line); // sets timeout

// wait (seconds)
try {
Thread.sleep(timeout * 1000);
} catch (InterruptedException e) { }
System.out.printin(”(” + timeout + ”) ” + msg);

Pratikakis (CSD) Java Threads CS529, 2017 9/61



Make it threaded (1)

public class AlarmThread extends Thread {
private String msg = null;
private int timeout = 0;

public AlarmThread(String msg, int time) {
this.msg = msg;
this.timeout = time;

}

public void run() {
try {
Thread.sleep(timeout * 1000);
} catch (InterruptedException e) { }
System.out.printin(”(” + timeout + ”) ” + msg);
h
)

Pratikakis (CSD) Java Threads CS529, 2017 10/61



Make it threaded (2)

while (true) {
System.out.print(”Alarm> ");

// read user input
String line = b.readLine();
parselnput(line); // sets timeout

if (m!= null) {
// start alarm thread
Thread t = new AlarmThread(msg, timeout);
t.start();
}
)

Pratikakis (CSD) Java Threads CS529, 2017 11/61



Alternative: The Runnable Interface

@ Extending Thread prohibits a different parent
@ Instead, implement interface Runnable
» Declares that the class has a void run() method

@ Construct a Thread from a Runnable

» Constructor Thread (Runnable target)
» Constructor Thread(Runnable target, String name)

Pratikakis (CSD) Java Threads CS529, 2017 12 /61



Example, revisited (1)

public class AlarmRunnable implements Runnable {
private String msg = null;
private int timeout = 0;

public AlarmRunnable(String msg, int time) {
this.msg = msg;
this.timeout = time;

}

public void run() {
try {
Thread.sleep(timeout * 1000);
} catch (InterruptedException e) { }
System.out.printin(”(” + timeout + ”) ” + msg);
}
)

Pratikakis (CSD) Java Threads CS529, 2017 13/61



Example, revisited (2)

while (true) {
System.out.print("Alarm> ");

// read user input
String line = b.readLine();
parselnput(line); // sets timeout

if (m!=null) {
// start alarm thread
Thread t = new Thread(new AlarmRunnable(msg, timeout));
t.start();
}
}

Pratikakis (CSD) Java Threads CS529, 2017 14 /61



Passing parameters

@ run() does not take parameters
@ To “pass parameters” to the new thread store them as
private fields
» In the extended class
» In the Runnable object
» E.g., the timeout and msg private fields of the AlarmThread
class

Pratikakis (CSD) Java Threads CS529, 2017 15/61



Concurrency

@ A concurrent program is one that has multiple threads
active at the same time

» It may run on one CPU
* The CPU alternates between threads
* Thread scheduler decides details
* Context-switching may happen at any time

» It may be run in parallel on a multicore machine
* Each CPU core runs a thread
* May run more than one thread per CPU core
* Threads may resume on the same or on different CPU core
* Scheduling policy may differ by JVM

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 16 /61



Concurrency and Shared Data

@ Concurrency is easy if threads do not interact

» Each thread does its own thing, uses its own objects
» Typically, threads need to communicate with each other

@ Communication by sharing data

» Many threads can access the heap simultaneously
» Communication via writing and reading the same objects
» Writes and reads may interleave arbitrarily

* Hardware may reorder instructions, messages

* Scheduler may interleave threads

* Compiler may reorder code

* May get problems if we are not careful!

Pratikakis (CSD) Java Threads CS529, 2017 17 /61



Data Race Example

public class Example extends Thread {
private static int counter = 0; // shared state

public void run() {
int y = counter;
counter =y + 1;

}

public static void main(String args[]) {
Thread t1 = new Example();
Thread t2 = new Example();
tl.start();
t2.start();
}
}

Pratikakis (CSD) Java Threads CS529, 2017 18 /61



What happens?

@ Different schedules lead to different results
» This is a Data Race or Race Condition
@ Athread is preempted in the middle of an operation
@ Or, parallel instructions from the other thread run in
between its instructions

@ Reading and writing counter was supposed to be atomic

» Atomic (conceptually): to appear instantaneous

» To happen with no interference from other threads

» In atomic code, thread t1 should “see” no values written by
thread t2 and vice versa

@ These bugs can be extremely hard to reproduce
@ So, hard to debug
@ Depends on timing of scheduler, or hardware

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 19/61



Question
@ If, instead of

int y = counter;
counter =y + 1;

@ we had written

counter++;

@ Would the result be different?
@ Answer: NO

@ Do not trust your intuition on whether an instruction is
atomic or not

@ May be on some machines, not on others

Pratikakis (CSD) Java Threads CS529, 2017 20/61



Synchronization

@ Refers to mechanisms that control the execution order of
operations accross threads
@ Conceptually:
» Threads produce executions with all possible interleavings,
timings
» Some such executions are correct, some are incorrect

» Synchronization mechanisms remove incorrect executions
by restricting interleavings

@ Different languages use different mechanisms to
synchronize threads

@ Java has several such mechanisms
@ We will look at locks first

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 21/61



Java Locks

interface Lock {
void lock();
void unlock();

,

class ReentrantLock implements Lock { ... }

@ Only one thread can hold a lock at any time
» Other threads that try to acquire the same lock will block
(or become suspended) until the lock becomes available
@ Reentrant lock: can be re-acquired by the same thread

» As many times as desired

» No other thread may acquire the lock until it has been
released the same number of times it was acquired

» Hence, re-entry (needs re-exit)

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 22 /61



Avoiding Interference: Synchronization

public class Example extends Thread {
private static int counter = 0O;
static Lock lock = new ReentrantLock();

public void run() {
lock.lock();
int y = counter;
counter =y + 1;
lock.unlock();

}

Pratikakis (CSD) Java Threads CS529, 2017 23/61



Different locks do not interact

static int counter = 0;
static Lock | = new ReentrantLock();
static Lock m = new ReentrantLock();

public void inc1() {
I.lock();
counter++;
|.unlock();

}

public void inc2() {
m.lock();
counter++;
m.unlock();

}

@ This program has a race condition
@ Threads only block if they try to acquire a lock held by
another thread

Pratikakis (CSD) Java Threads CS529, 2017 24 /61



Question

static int counter = 0;
static int x = 0;

Thread 1 Thread 2
while (x '=0) ; while (x !'=0) ;
x =1, x=1;
counter++; counter++;

X = 0; X =0;

Pratikakis (CSD) IEVERLIGERS



Question

static int counter = 0;
static int x = 0;

Thread 1 Thread 2
while (x != 0) ; while (x '=0) ;
Xx=1; x=1;
counter++; counter++;

X = 0; X =0;

@ Threads may be interrupted after the while but before
writing to x

@ Both would think they hold the lock!
@ This is busy waiting: consumes lots of processor cycles

Pratikakis (CSD) Java Threads CS529, 2017 25/61



Reentrant Lock Example

static int c = 0;
static Lock | =
new ReentrantLock();

void inc() {
I.lock();
c++;
I.unlock();

}

void returnAndinc() {
int temp;

I.lock();
temp =¢;
inc();
I.unlock();

}

@ Reentrancy is useful because each method can
acquire/release locks as it needs
» No need to worry about whether callers already hold locks
» Keeps code simpler, readable

Pratikakis (CSD) Java Threads CS529, 2017 26/61



Deadlock

@ Deadlock occurs when no thread can run because all

threads are waiting for a lock

@ No thread runs, so no thread can release any lock to

enable another to run

Lock | = new ReentrantLock();
Lock m = new ReentrantLock();

Thread 1 Thread 2
I.lock(); m.lock();
m.lock(); I.lock();
m.unlock(); I.unlock();
I.unlock(); m.unlock();

27 /61



Deadlock, cont.

@ Some schedules work fine

» Thread 1 runs to completion, then thread 2
@ What if...

» Thread 1 acquires 1

» Thread 2 acquires m
@ Deadlock:

» Thread 1 is trying to acquire m
» Thread 2 is trying to acquire 1
» Neither can, because the other thread has it

Pratikakis (CSD) Java Threads CS529, 2017 28/61



The wait graph

@ The wait graph
» Each thread is a node
Each lock is a node
Draw edge 1 to Threadl if it has the lock
Draw edge Threadl to m when it tries to acquire the lock
The wait graph captures a single point in the execution

v

v vyy

@ Deadlock occurs when there is a cycle
@ Program has deadlock if any execution can produce a cycle
@ Difficult to reproduce, difficult to debug

Pratikakis (CSD) Java Threads CS529, 2017 29/61



Another Deadlock Example

static Lock | = new ReentrantLock();

void f() throws Exception {

I.lock();
FilelnputStream f = new FileInputStream(”file.txt”);

// do something with f
f.close();
I.unlock();

@ Lock 1 not released along all possible execution paths
@ File exception may leave lock acquired by the thread

» Likely to cause deadlock later
» Even more difficult to debug, deadlock will appear in

possibly unrelated point in the execution

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 30/61



Solution: use “finally”

static Lock | = new ReentrantLock();

void f() throws Exception {
I.lock();
try {
FilelnputStream f = new FileInputStream(”file.txt”);
// do something with f
f.close();
¥
finally {
// this code is executed always,
// regardless of how we exit the try block
|.unlock();
}
}

Pratikakis (CSD) Java Threads CS529, 2017 31/61



Synchronized blocks

@ This pattern is very common
» Acquire a lock, do something, release the lock under any
circumstances (e.g., finally)
@ Java has a special language construct for this pattern
» synchronized (obj) { body }
* Every Java object has an implicit associated lock

» Obtain the lock associated with obj
» Execute body
» Release the lock when the syntactic scope is exited

* Even in the case of exception or explicit return

Pratikakis (CSD) Java Threads CS529, 2017 32/61



Example

static Object o = new Object();

void f() throws Exception {
synchronized (o) {
FilelnputStream f = new FilelnputStream(”file.txt”);
// do something with f
f.close();
h
}

@ Lock associated with object o acquired before body is
executed

» Released when exiting the block scope, even when
exception is thrown

Pratikakis (CSD) Java Threads CS529, 2017 33/61



Object locks

@ An object and its associated lock are different!

@ Holding the lock does not stop anyone else from accessing
that object, calling methods, etc.

Pratikakis (CSD) Java Threads CS529, 2017 34/61



Example (1)

class C {
int counter;

void inc() {
synchronized (this) {
counter++;
}
}
}

é"c = new C();

Thread 1 Thread 2

c.inc(); c.inc();

@ Does this program have a data race?

Pratikakis (CSD) IEVERLIGERS CS529, 2017 35/61



Example (1)

class C {
int counter;

void inc() {
synchronized (this) {
counter++;
}
}
)

é“c = new C();

Thread 1 Thread 2

c.inc(); c.inc();

@ Does this program have a data race?
» No, both threads acquire locks on the same object before
accessing the shared data

Pratikakis (CSD) Java Threads CS529, 2017 35/61



Example (2)

class C { void dec() {
int counter; synchronized (this) {
counter--;
void inc() { }
synchronized (this) { }
counter++; }
}
} C c = new C();
Thread 1 Thread 2
c.inc(); c.dec();

@ Does this program have a data race?

Pratikakis (CSD) Java Threads CS529, 2017 36/61



Example (2)

class C { void dec() {
int counter; synchronized (this) {
counter--;
void inc() { }
synchronized (this) { }
counter++; }
}
} C c = new C();
Thread 1 Thread 2
c.inc(); c.dec();

@ Does this program have a data race?

» No, both threads acquire locks on the same object before
accessing the shared data

Pratikakis (CSD) Java Threads CS529, 2017 36/61



Example (3)

class C {
int counter;

void inc() {
synchronized (this) {
counter++;
}
}
)

é"cl = new C();
C c2 = new C();

Thread 1 Thread 2

cl.inc(); c2.inc();

@ Does this program have a data race?

Pratikakis (CSD) IEVERLIGERS CS529, 2017 37/61



Example (3)

class C {
int counter;

void inc() {
synchronized (this) {
counter++;
}
}
)

é“cl = new C();
C c2 = new C();

Thread 1 Thread 2

cl.inc(); c2.inc();

@ Does this program have a data race?
» No, threads acquire different locks, but they write to
different objects

Pratikakis (CSD) Java Threads CS529, 2017 37/61



Synchronized Methods

@ Mark a method as synchronized

» The same as synchronizing on this in the body of the

method

» Easier way to express the same pattern

@ The following programs are the same:

class C {
int counter;

void inc() {
synchronized (this) {
counter++;
)
}

Pratikakis (CSD) Java Threads

class C {
int counter;

synchronized void inc() {
counter++;
}
}

CS529, 2017

38/61



Synchronized methods: Example

class C {

int counter; synchronized void dec() {

counter--;
void inc() { }
synchronized (this) { }
counter++;
} C c = new C();
} J
Thread 1 Thread 2
c.inc(); c.dec();

CS529, 2017

39/61



Synchronized static methods

@ Warning: Static methods lock class object!
» There is no this to lock

class C { static synchronized void dec() {
int counter; counter--;
}
synchronized void inc() { }
counter++;
} Cc = new C();
Thread 1 Thread 2
c.inc(); c.dec();

Pratikakis (CSD) Java Threads CS529, 2017 40/61



Thread Scheduling

@ When multiple threads share a CPU core
» When should the current thread stop running?
» What thread should run next?

@ A thread can voluntarily yield() the CPU core
» Call to yield() may be ignored

@ Preemptive schedulers

» Can de-schedule a running thread at any time

» Not all JVMs use pre-emptive schedulers

» A thread stuck in a loop may never yield automatically
» Sometimes good to yield() manually inside loops

@ Threads are de-scheduled when they block

@ Lock, I/0O, etc.

Pratikakis (CSD) Java Threads CS529, 2017 41 /61



Thread Lifecycle

@ Running thread goes through several different phases

» New: Created but not yet started

» Runnable: Currently running or able to run on a free CPU
core

» Blocked: Waiting for I/O, lock, or other synchronization
operation

» Sleeping: Paused for a user-specified interval

» Terminated: Completed, not running

Pratikakis (CSD) Java Threads CS529, 2017 42 /61



Which Thread Runs Next?

@ Look at all runnable threads
» Any thread just became unblocked?

* A lock was released
* 1/O became available
* Finished sleeping

@ Pick a thread and run it

» Can try to influence priority with setPriority(int)
» Higher priority value gets preference
» Probably no need to set priority

Pratikakis (CSD) Java Threads CS529, 2017 43 /61



Interesting Thread Methods

@ void join() throws InterruptedException
» Waits for a thread to finish

@ static void yield()
» Current thread gives up the CPU core

@ static void sleep(long milliseconds) throws
InterruptedException

» Current thread sleeps for the given time

@ static Thread currentThread()
» Returns the Thread object of the currently executing thread

Pratikakis (CSD) Java Threads CS529, 2017 44 /61



Example: Alarm

while (true) {
System.out.print(”Alarm> ");

// read user input
String line = b.readLine();
parselnput(line); // sets timeout

// wait (seconds) asynchronously
if (msg != null) {
// start alarm thread
Thread t = new AlarmThread(msg, timeout);
t.start();
// wait for the thread to complete
t.join();

Pratikakis (CSD) Java Threads CS529, 2017 45/61



Daemon Threads

@ void setDaemon(boolean on)
» Marks thread as a daemon thread
» Must be set before thread started

@ By default, each new thread acquires the status of the
thread that spawned it

@ Program execution terminates when no threads left
running

» Except daemon threads

Pratikakis (CSD) Java Threads CS529, 2017 46 /61



Key Ideas

@ Multiple threads running simultaneously

» Either truly in multiple CPU cores
» Or scheduled on a single processor

* A running thread can be pre-empted at any time
» Or a combination of these

@ Threads can share data
» In Java, only fields can be shared
» Need to prevent interference

* Good practice 1: Hold a lock when accessing shared data
* Good practice 2: Do not release the lock until shared data is
in a valid state

» Overuse of synchronization can create deadlocks
* Rule of thumb: No deadlock if only one lock acquired at a time

Pratikakis (CSD) Java Threads CS529, 2017 47 /61



Producer - Consumer Design Pattern

@ Suppose two threads communicate with a shared variable

» E.g., some kind of buffer holding messages
» One thread produces input to the buffer

» One thread consumes data from the buffer
» How do we implement this?

* Use condition variables

Pratikakis (CSD) Java Threads CS529, 2017 48 /61



Conditions

interface Lock { Condition newCondition(); ... }
interface Condition {

void await();

void signalAll();

}

@ Condition created using a Lock object
@ await() called with lock acquired
» Releases the lock
* But not any other locks held by this thread
» Adds this thread to wait set for the lock
» Blocks the thread
@ signalAll() called with lock acquired
» Resumes all threads on lock’s wait set
» Those threads try to reacquire lock before continuing
* Only one will succeed
* If acquiring thread had blocked in await () it continues with
lock acquired

Pratikakis (CSD) IEVERLGIGELS CS529, 2017 49 /61



Example: Producer - Consumer

Lock lock = ReentrantLock();

Condition ready = lock.newCondition();

boolean valueReady = false;

Object value;

Thread 1

void produce(Object o) {
lock.lock();
while (valueReady)

ready.await();

value = o;
valueReady = true;
ready.signalAll();
lock.unlock();

Thread 2

Object consume() {
lock.lock();
while (!valueReady)

ready.await();

Object o = value;
valueReady = false;
ready.signalAll();
lock.unlock();

Pratikakis (CSD) Java Threads

CS529, 2017

50/61



Prefer this design pattern

@ This is the right solution to the problem

» It may be tempting to try to use locks directly
» Very hard to get right
» Problems with other implementations often very subtle

* E.g., double-checked locking is broken

Pratikakis (CSD) Java Threads CS529, 2017 51/61



Example: BROKEN code (1)

Lock lock = new ReentrantLock();
boolean valueReady = false;
Object value;

Thread 1 Thread 2

void produce(Object o) { Object consume() {
lock.lock(); lock.lock();
while (valueReady); while (!valueReady);
value = o; Object o = value;
valueReady = true; valueReady = false;
lock.unlock(); lock.unlock();

} }

@ This code is broken
@ Deadlock: threads wait while holding the lock, no progress

Pratikakis (CSD) Java Threads CS529, 2017 52/61



Example: BROKEN code (2)

Lock lock = new ReentrantLock();
boolean valueReady = false;
Object value;

Thread 1 Thread 2

void produce(Object o) { Object consume() {
while (valueReady); while (!valueReady);
lock.lock(); lock.lock();
value = o; Object o = value;
valueReady = true; valueReady = false;
lock.unlock(); lock.unlock();

} }

@ This code is broken, too
@ Data Race: valueReady accessed without holding the lock

Pratikakis (CSD) Java Threads CS529, 2017 53/61



Example: BROKEN code (3)

Lock lock = new ReentrantLock();
Condition ready = lock.newCondition();
boolean valueReady = false;

Object value;

Thread 1 Thread 2

void produce(Object o) { Object consume() {
lock.lock(); lock.lock();
if (valueReady) ready.await(); if (!valueReady) ready.await();
value = o; Object o = value;
valueReady = true; valueReady = false;
ready.signalAll(); ready.signalAll();
lock.unlock(); lock.unlock();

) }

@ This code is broken, too!
@ Correctness: What if there are multiple producers and

consumers?

Pratikakis (CSD) Java Threads CS529, 2017 54 /61



The Condition Interface

interface Condition {
void await();
boolean await(long time, TimeUnit unit);
void signal();
void signalAll();

@ await(t, u) waits for time t and then gives up
» Boolean result: false if the waiting time detectably elapsed
before return from the method, else true
@ signal () wakes up only one waiting thread
» Tricky to get right
* Have all waiting threads be equal, handle exceptions
correctly

» Highly recommended to use signalAll()

Pratikakis (CSD) Java Threads CS529, 2017 55/61



Issues with await and signalAll

@ await() must be in a loop

» Do not assume that when it returns, the condition holds
» Maybe many threads “consume” the condition

@ Avoid holding other locks when waiting
» await() only gives up locks on the object you wait on

@ Cannot have a Condition object on two locks
@ Can have two Condition objects on the same lock

Pratikakis (CSD) Java Threads CS529, 2017 56 /61



Blocking Queues

@ Interface for Producer-Consumer pattern

interface Queue<E> extends Collection<E> {
boolean offer(E x); // produce
// waits for queue to have capacity

E remove(); // consume
// waits for queue to become non-empty

@ Two useful implementations

» LinkedBlockingQueue (FIFO, may be bounded)
» ArrayBlockingQueue (FIFO, bounded)
» A few more, look up in documentation

Pratikakis (CSD) Java Threads CS529, 2017 57 /61



Wait and NotifyAll (1)

@ Old synchronization (Java 1.4)

@ InJava 1.4, use synchronized keyword on an object to
acquire lock

» Objects have an associated lock
» Objects have an associated wait set

Pratikakis (CSD) Java Threads CS529, 2017 58/61



Wait and NotifyAll (2)

@ 0.wait()
» Must hold the lock associated with o (inside synchronized

block)
Releases the lock

* No other locks
Adds the thread to the wait set of the lock
Blocks the thread
On return, the lock will again be acquired

@ o.notifyAll()
» Must hold the lock associated with o
» Resumes all threads in the wait set of o
» These threads will try to reacquire lock before continuing
(e.g., before wait () returns)

v

v

v

\4

Pratikakis (CSD) Java Threads CS529, 2017 59/61



Producer - Consumer in Java 1.4

public class ProducerConsumer {
private boolean valueReady = false;
private Object value;

synchronized void produce(Object o) {
while (valueReady) wait();
value = o;
valueReady = true;
notifyAll();
}

synchronized Object consume() {
while (!valueReady) wait();
valueReady = false;
Object o = value;
notifyAll();
return o;

}

}

Pratikakis (CSD) Java Threads CS529, 2017 60/61



InterruptedException

@ Exception thrown if certain concurrency operations are
interrupted
» wait(), await(), sleep(), join(), and
lockInterruptibly()
» Also thrown if one of these is called with interrupt flag set
@ The exception is not thrown when blocked on Java 1.4 lock
oron 1I/O

class Object {
void wait() throws InterruptedException;

interface Lock {
void lock();
void lockinterruptibly() throws InterruptedException;

)
interface Condition {
void await() throws InterruptedException;
void signalAll();

}
Pratikakis (CSD) IEVERLGIGELS CS529, 2017 61/61




	Threads in general
	Java Threads
	Concurrency
	Synchronization
	Data Races
	Locks
	Deadlocks
	Synchronized blocks

	Thread Scheduling
	Concurrent Patterns
	Condition variables
	Producer – Consumer
	Wait and NotifyAll


