
Introduction
OpenMP

Memory consistency
Tasks

CS529 Lecture 05:
OpenMP

Dimitrios S. Nikolopoulos

University of Crete and FORTH-ICS

March 15, 2011

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 1 / 72

Introduction
OpenMP

Memory consistency
Tasks

OpenMP

Outline

Introduction
OpenMP

OpenMP
API
Scheduling
Library API

Memory consistency

Tasks

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 2 / 72

Introduction
OpenMP

Memory consistency
Tasks

OpenMP

Sources of material

I OpenMP 3.0 specification
I http://www.openmp.org/mp-documents/spec30.pdf

I OpenMP tutorial, Lawrence Livermore National Lab
https://computing.llnl.gov/tutorials/openMP/

I Comp 422 course notes, Department of Computer
Science, Rice University

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 3 / 72

http://www.openmp.org/mp-documents/spec30.pdf
https://computing.llnl.gov/tutorials/openMP/

Introduction
OpenMP

Memory consistency
Tasks

OpenMP

What is OpenMP

I De-facto standard API for writing parallel applications
based on the abstraction of a shared address space, in C,
C++, and Fortran

I Consists of:
I Compiler directives
I Run time routines
I Environment variables

I Specification maintained by the OpenMP Architecture
Review Board (http://www.openmp.org)

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 4 / 72

http://www.openmp.org

Introduction
OpenMP

Memory consistency
Tasks

OpenMP

First OpenMP example

For-loop with independent
iterations

for (i = 0; i < n; i++)
c[i] = a[i] + b[i];

For-loop parallelized with
OpenMP pragma

#pragma omp parallel for \
shared(n, a, b, c) \
private(i)

for (i = 0; i < n; i++)
c[i] = a[i] + b[i];

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 5 / 72

Introduction
OpenMP

Memory consistency
Tasks

OpenMP

OpenMP execution model
Fork and join model

of executionMaster thread

Parallel

region

Worker

threads

Parallel

region

Worker

threads

Synchronization

Synchronization

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 6 / 72

Introduction
OpenMP

Memory consistency
Tasks

OpenMP

OpenMP Terminology

I OpenMP team = Master + Workers
I A parallel region is a block of code executed by all threads

simultaneously
I The master thread always has ID 0
I Thread adjustment (if enabled) is only done before entering

a parallel region
I Parallel regions can be nested, but support for this is

implementation dependent
I An ”if” clause can be used to parallelize optionally and

execute serially if condition is not met
I A work-sharing construct divides the execution of the

enclosed code region among the members of the team; in
other words: they split the work

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 7 / 72

Introduction
OpenMP

Memory consistency
Tasks

OpenMP

Components of OpenMP

Directives
I Parallel regions
I Work sharing
I Synchronization
I Data-sharing

attributes
I private
I firstprivate
I lastprivate
I shared
I reduction
I threadprivate

Environment
variables

I Number of
threads

I Scheduling
algorithm

I Dynamic
thread
adjustment

I Nested
parallelism

Runtime
environment

I Number of
threads

I Thread ID
I Dynamic

thread
adjustment

I Nested
parallelism

I Timers
I API for locks,

barriers

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 8 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

Outline

Introduction
OpenMP

OpenMP
API
Scheduling
Library API

Memory consistency

Tasks

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 9 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

OpenMP directives and clauses
I C-directives are case-sensitive

#pragma omp directive [clause[clause]...]

I Continuation: use ’ı́n pragma
I Conditional compilation: OPENMP macro is set

I if (scalar expression)
I Only execute in parallel if expression evaluates to true
I Otherwise execute serially

#pragma omp parallel if (n > threshold) \
shared (n,x,y) private(i)
{
#pragma omp for

for (i=0; i<n; i++)
x[i] += y[i];

} /* -- End of parallel region -- */

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 10 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

OpenMP directives and clauses

I private (list)
I No storage association with original object
I All references are to the local object
I Values are undefined on entry and exit

I shared (list)
I Data is accessible by all threads in the team
I All threads access the same address space

I firstprivate (list)
I All variables in the list are initialized to the value the original

object had before entering the parallel region
I lastprivate (list)

I The thread that executes the sequentially last iteration
updates the values of the objects in the list

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 11 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

Parallel region
#pragma omp parallel [clause[[,] clause] ...]
{
"this is executed in parallel"

} // (implied barrier)

A parallel region is a block of code executed by multiple threads
simultaneously and supports the following clauses
if (scalar expression)
private (list)
shared (list)
default (none — shared) (C/C++)
default (none — shared — private) Fortran
reduction (operator:list)
copyin (list)
firstprivate (list)
num threads (scalar int expression)

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 12 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

OpenMP programming model

I The clause list is used to specify conditional parallelization,
number of threads and data handling

I Conditional parallelization: The clause if (scalar
expression) determines whether the parallel construct
results in creation of threads

I Degree of concurrency: The clause num threads
(integer expression) specifies the number of threads
that are created

I Data handling: The clause private (list) indicates
variables local to each thread. The clause firstprivate
(list) is similar to private except values of variables
are initialized to corresponding values before the parallel
directive. The clause shared (variable list)
indicates that variables are shared across all threads.

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 13 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

Worksharing constructs in parallel regions
#pragma omp for
{

...
}

#pragma omp sections
{
...

}

#pragma omp single
{

...
}

I Work is distributed between threads
I Must be enclosed in a parallel region
I Must be encountered by all threads in a team or none at all
I No implied barrier on entry; implied barrier on exit (unless

nowait is specified)
I A work-sharing construct does not launch new threads
I Shorthand syntax supported for parallel region with single

work sharing construct
#pragma omp parallel for
for (...)

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 14 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

Example of worksharing OpenMP for loop

#pragma omp parallel default (none) \
shared (n,a,b,c,d) private(i)
{

#pragma omp for nowait
for (i=0; i<n-1; i++)
b[i] = (a[i] + a[i+1]) / 2;

#pragma omp for nowait
for (i=0; i<n; i++)
d[i] = 1.0/c[i];

} /*-- End of parallel region -- */

First parallel loop

Second parallel loop

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 15 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

OpenMP reductions

I The reduction clause specifies how multiple local copies
of a variable at different threads are combined into a single
copy at the master when threads exit

I The usage of the reduction clause is reduction
(operator: variable list).

I The variables in the list are implicitly specified as being
private to threads.

I The operator can be one of: +,*,-,&,|,,̂&&,||

#pragma omp parallel reduction (+: sum) num_threads(8) {
/* compute local sums here */

}
/* sum here contains sum of all instances of sums */

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 16 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

OpenMP programming example

/* **
An OpenMP version of a threaded program to compute PI.
** */
#pragma omp parallel default(private) shared (npoints) \
reduction(+: sum) num_threads(8)
{

num_threads = omp_get_num_threads();
sample_points_per_thread = npoints / num_threads;
sum = 0;
for (i = 0; i < sample_points_per_thread; i++) {
rand_no_x =(double)(rand_r(&seed))/(double)((2<<14)-1);
rand_no_y =(double)(rand_r(&seed))/(double)((2<<14)-1);
if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +

(rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
sum ++;

}
}

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 17 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

Worksharing sections example

#pragma omp parallel default (none) \
shared (n,a,b,c,d) private(i)
{

#pragma omp sections nowait
{
#pragma omp section
for (i=0; i<n-1; i++)

b[i] = (a[i] + a[i+1]) / 2;
#pragma omp section
for (i=0; i<n; i++)

d[i] = 1.0/c[i];
} /*-- End of sections -- */

} /*-- End of parallel region -- */

First parallel setion Second parallel section

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 18 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

single and master constructs in parallel region
only one thread in the team executes enclosed code

#pragma omp single [clause[[,] clause] ...]
{

<code block>
}

only the master thread in the team executes enclosed code
#pragma omp master [clause[[,] clause] ...]
{

<code block>
}

I Single and master are useful for computations that are
intended for single-processor execution, such as I/O

I No implied barrier on entry or exit of single or master
construct

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 19 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

Implicit barriers
Barrier region

idle

idle

idle

#pragma omp for
for (i=0; i<N; i++)
a[i] = c[i] + b[i];

/* --- Implicit barrier --- */
#pragma omp for

for (i=0; i<N; i++)
d[i] = a[i] + b[i];

Barrier is redundant if there is a guarantee that the mapping of
iterations is identical on both threads!

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 20 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

nowait clause and explicit barrier

#pragma omp for nowait
{
...

}

#pragma omp barrier

I To minimize synchronization, some OpenMP directives
support an optional nowait clause

I If present, threads do not synchronize/wait at the end of
that particular construct

I An explicit barrier can force synchronization at only the
desired program points

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 21 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

Second example

#pragma omp parallel if (n>limit) default (none) \
shared (n,a,b,c,x,y,z) private (f,i,scale)

{
f = 1.0 /* --- Executed by all threads ---*/

#pragma omp for nowait
for (i=0; i<n; i++) /* ---Parallel loop, work distributed---*/

z[i] = x[i] + y[i];
#pragma omp for nowait

for (i=0; i<n; i++) /* ---Parallel loop, work distributed---*/
a[i] = b[i] + c[i];

#pragma omp barrier /*---Synchronization---*/
...
scale = sum (a,0,n) + sum (z,0,n) + f; /* --- Executed by all threads --- */

} /*---End of parallel region---*/

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 22 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

schedule clause for parallel loops
schedule (static | dynamic | guided [, chunk])
schedule (runtime)
static [,chunk]

I Distribute iterations in blocks of size ”chunk” over the
threads in a round-robin fashion

I In absence of ”chunk” each thread executes dN
P e or bN

P c
iterations

Example, 4 threads, 16 iterations
TID 0 1 2 3
no chunk 1–4 5–8 9–12 13–16

chunk=2
1–2 3–4 5–6 7–8
9–10 11–12 13–14 15–16

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 23 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

schedule clause for parallel loops
dynamic [, chunk]

I Fixed portions of work; size is controlled by the value of
chunk

I When a thread finishes it starts on the next available
portion of work

I Assignment of iterations to threads is non-deterministic
(can vary across executions)

guided [, chunk]

I Same behavior as dynamic but with automatically
controlled chunk size

I Chunk size reduced exponentially over time dN
P e,

N−dN
P e

P , . . .

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 24 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

schedule clause for parallel loops

runtime

I Scheduling defined by runtime system
I Can be set with OMP SCHEDULE environment variable
I Can be used to implement sophisticated alternatives (e.g.

work stealing)

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 25 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

Assigning iterations to threads example

/* static scheduling of matrix multiplication loops */
#pragma omp parallel default(private) shared (a, b, c, dim) \

num_threads(4)
#pragma omp for schedule(static)
for (i = 0; i < dim; i++) {
for (j = 0; j < dim; j++) {

c(i,j) = 0;
for (k = 0; k < dim; k++) {
c(i,j) += a(i, k) * b(k, j);

}
}

}

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 26 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

Nesting parallel directives

I Nested parallelism can be enabled using the OMP NESTED
environment variable

I In this case, each parallel directive creates a new team of
threads

I Advantages:
I Nested parallelism can increase concurrency (availability of

parallel work for more cores)
I Provides more flexibility to the scheduler, opportunities for

load balancing
I Disadvantages:

I May increase overheads and degrade performance if
#threads of all teams exceeds #cores

I Implementation-dependent, no standard behavior

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 27 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

Orphan directives
I OpenMP does not restrict worksharing and

synchronization directives (omp for, omp single,
omp barrier, omp critical) to be within the lexical
extent of a parallel region. If not, directives are orphaned

(void) dowork; /*---Sequential for---*/
#pragma omp parallel
{
(void) dowork; /*---Parallel for---*/

}

(void) dowork {
#pragma omp for
for (i=0;...)
{

...
}

}

When an orphaned directive is encountered in the sequential
part of the program (outside parallel region) only the master
thread executes it (effectively, directive is ignored)

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 28 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

OpenMP library functions

I In addition to directives OpenMP also supports a number
of functions that allow a programmer to control the
execution of threaded programs

/* thread and processor count */
void omp_set_num_threads (int num_threads);
int omp_get_num_threads ();
int omp_get_max_threads ();
int omp_get_thread_num ();
int omp_get_num_procs ();
int omp_in_parallel();

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 29 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

Example

#pragma omp parallel single (...)
NumP = omp_get_num_threads();

allocate WorkSpace[NumP][N];

#pragma omp parallel for (...)
for (i=0; i<N; i++)
{
TID = omp_get_thread_num();
...
WorkSpace[TID][i] = ... ;
...
... = WorkSpace[TID][i];
...

}

Workspace[TID]

NumP

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 30 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

OpenMP locks

I Simple locks: may not be locked if already in a locked state
I Nestable locks: may be locked multiple times by the same

thread before being unlocked
I The API for functions dealing with nested and simple locks

is similar
Simple locks

omp_init_lock
omp_destroy_lock
omp_set_lock
omp_unset_lock
omp_test_lock

Nested locks

omp_init_nest_lock
omp_destroy_nest_lock
omp_set_nest_lock
omp_unset_nest_lock
omp_test_nest_lock

Critical and atomic constructs can be used instead of locks

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 31 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

Locking example
parallel region begin

TID=0 TID=1

acquire lock

release lock

protected region

other

work

other

work

acquire lock

release lock

protected region

parallel region end

I Protected region updates
shared variables

I One thread acquires the
lock and performs the
update

I Meanwhile, other thread
can perform other work

I When lock is released,
other thread performs
update on shared variables

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 32 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

Environment variables in OpenMP

I OMP NUM THREADS: Specifies the default number of
threads created upon entering the following parallel region

I OMP SET DYNAMIC: Determines if the number of threads
can be dynamically changed

I OMP NESTED: Turns on nested parallelism
I OMP SCHEDULE: Scheduling of for loops if the schedule

clause specifies that runtime scheduling is used

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 33 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

Shared data in OpenMP
I Global data in OpenMP is shared by default
I Problems arise if multiple threads access shared data

simultaneously
I Read-only data is not a problem
I Updates need to be checked for race conditions

I It is the programmer’s responsibility to deal with this
problem in OpenMP

I Solution:
I Split the global data into a part that is accessed in serial

parts only and a part that is accessed in parallel
I Manually create thread private copies of the latter
I Use the thread ID to access these private copies

I Alternative: Use OpenMP’s threadprivate directive

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 34 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

threadprivate directive

#pragma omp threadprivate (list)

I Creates private copies of designated global variables
I Several restrictions and rules apply:

I The number of threads has to remain the same for all the
parallel regions (i.e. no dynamic threads)

I Initial data values are undefined, unless copyin is used

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 35 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

OpenMP performance optimization hints

I Parallelizing at the outermost level
I Outer loop preferred over inner loop

I If it is sufficiently long in execution time
I Parallel regions

I Use as few parallel regions as possible
I Each region creation carries significant overhead
I Enclose as many parallel loops as possible in same region
I Avoid parallel regions in innermost loops

I Reduce barriers to the bare minimum
I Use nowait whenever possible
I Removing waits needs care to avoid data races

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 36 / 72

Introduction
OpenMP

Memory consistency
Tasks

API
Scheduling
Library API

OpenMP performance optimization hints

I Minimize the size of critical regions
I Avoid ordered loops

I Slow due to point-to-point synchronization
I Avoid or minimize false sharing

I Use private data
I Experiment with different values of chunk size in loops
I Try non-static scheduling schemes

I Experimentation:
I Using master versus single can improve performance
I Read-only data privatization or sharing

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 37 / 72

Introduction
OpenMP

Memory consistency
Tasks

Outline

Introduction
OpenMP

OpenMP
API
Scheduling
Library API

Memory consistency

Tasks

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 38 / 72

Introduction
OpenMP

Memory consistency
Tasks

Memory consistency models

Memory

Memory

Memory

P

P

P

Network

I Set of rules governing how the memory system will
process memory operations from multiple processors

I Contract between the programmer and the system
I Determines what optimizations can be performed for

correct programs

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 39 / 72

Introduction
OpenMP

Memory consistency
Tasks

What is a memory model

C++ program

Compiler

Assembly

Dynamic

optimizer

Hardware

I Interface between program and transformers of the
program

I Determines what values a read returns
I Language level model has implications for hardware and

vice versa
I Weakest possible model exposed to the programmer
I Programmer enforces synchronization based on memory

model

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 40 / 72

Introduction
OpenMP

Memory consistency
Tasks

Uniprocessor memory model

I Model of memory behavior
I Memory operations occur in program order, read returns

the value of the last write in program order
I Semantics defined by sequential program order

I Simple to reason about but too constrained
I What really needs to be enforced is control and data

dependencies
I Independent operations can execute in parallel
I Optimizations preserve these semantics

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 41 / 72

Introduction
OpenMP

Memory consistency
Tasks

Sequential consistency

Memory

P P P

SD

...

LD

LD

[Lamport]: A multiprocessor system is sequentially consistent if
the result of any execution is the same as if the operations of all
processors were executed in some sequential order, and the
operations of each individual processor appear in this
sequence in the order specified by the program

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 42 / 72

Introduction
OpenMP

Memory consistency
Tasks

Sequential consistency
I SC constrains all memory operations

I Write → Read
I Write → Write
I Read → Read, Write

I SC is a simple model for reasoning about parallel programs
I But, intuitively, unreasonable ordering of memory operations in a

uniprocessor may violate sequential consistency model
I Modern processors reorder memory operations to obtain

performance using write buffers, overlapped writes,
non-blocking reads

I Optimizing compilers perform transformations that have the
effect of reordering memory operations e.g. scalar
replacement, register allocation, instruction scheduling, etc.

I Programmers may perform similar transformations for
software engineering reasons, without realizing that they
are changing the program’s semantics

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 43 / 72

Introduction
OpenMP

Memory consistency
Tasks

SC violation: write buffer

//Dekker’s algorithm for critical sections
Flag1 = Flag2 = 0;

P1
Flag1 = 1; //W(Flag1)
if (Flag2 == 0) // R(Flag2)
// critical section
...

P2
Flag2 = 1; W(Flag2)
if (Flag1 == 0) R(Flag1)
// critical section
...

I Relaxed consistency: assume processor with write buffer
I Example breaks sequential consistency
I Each processor can read other’s flag as 0 while write is

pending
I Violates Dekker’s algorithm’s correctness

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 44 / 72

Introduction
OpenMP

Memory consistency
Tasks

Weak ordering

I Divide memory operations into data operations and
synchronization operations

I Synchronization acts as a fence
I All data operations before synchronization in program order

must complete before synch is executed
I All data operations after synchronization in program order

must wait for synchronization to complete
I All synchronizations are performed in program order

I Hardware implementation of fence: processor has counter
that is incremented when data operation is issued and
decremented when data operation is completed.

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 45 / 72

Introduction
OpenMP

Memory consistency
Tasks

Release consistency

I Further relaxation of weak consistency
I Synchronization accesses are divide into:

I Acquires: operate like a lock
I Releases: operate like an unlock

I Semantics of acquire:
I Acquire must complete before all following memory

accesses
I Semantics of release:

I All memory operations before release are complete
I but accesses after release in program order do not have to

wait for release to complete
I operations that follow release and depend on release must

be protected by an acquire

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 46 / 72

Introduction
OpenMP

Memory consistency
Tasks

Data races
I Data races are defined only for SC executions (total order)
I Two memory accesses form a race if:

I Executed from different threads to same memory location
and one is a write

I May execute consecutively in a SC global total order, i.e.
may execute “in parallel”

I Data race free program: no data race in any SC execution

Thread 1 Thread 2
write A, 10
write B, 20

read Flag, 0
write Flag, 1

read Flag, 1
read B, 20

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 47 / 72

Introduction
OpenMP

Memory consistency
Tasks

Data races
I Different data operations have different semantics
I Flag is a synchronization variable (wait for flag to update

data)
I A, B are data variables
I Separation of synchronization variables from data

variables yields best programming practices and
optimizations given a consistency model

Thread 1 Thread 2
write A, 10
write B, 20

read Flag, 0
write Flag, 1

read Flag, 1
read B, 20

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 48 / 72

Introduction
OpenMP

Memory consistency
Tasks

Data-race-free-0 (DRF-0) program

I Data-Race-Free-0 Program
I All accesses distinguished as either synchronization or data
I All races distinguished as synchronization (in any SC

execution)
I Data-Race-Free-0 Model

I Guarantees SC to data-race-free-0 programs
I (For others, reads return value of some write to the location)

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 49 / 72

Introduction
OpenMP

Memory consistency
Tasks

Programming with data-race-free-0

I Information required:
I This operation never races (in any SC execution)

I Write program assuming SC
I For every memory operation specified in the program do:

never

races?
Data

Yes

No

Synchronization

Don’t know

Don’t care

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 50 / 72

Introduction
OpenMP

Memory consistency
Tasks

Distinguish data from synchronization in
programming model

I Option 1: annotations of statements
Thread 1 Thread 2

data = ON synchronization = ON
A=10 while (Flag != 1) {;}
B=20 data=ON

synchronization=ON . . . = B;
Flag=1; . . . = A;

I Declarations:
I synch int: Flag
I data int: A, B

I Option 3: use flush operations or other memory barriers in
lieu of synchronization = ON, OFF

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 51 / 72

Introduction
OpenMP

Memory consistency
Tasks

OpenMP memory model

I All shared and private variables have original variables
I Shared access to a variable:

I Within a structured block, references to the variable all refer
to the original variable

I Private access to a variable:
I A variable of the same type and size as the original variable

is provided for each thread

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 52 / 72

Introduction
OpenMP

Memory consistency
Tasks

OpenMP memory model
I A form of weak ordering
I All accesses to variables may be reordered unless the

programmer annotates code with memory barriers
I Memory barriers implemented with flush directive in

OpenMP
I Different memory barriers must be sequentially consistent
I No reordering across memory barriers

I W → flush, R → flush, flush → R, flush → W, flush → flush
I A flush construct has an optional list of variables that must

be flushed
I If pointer present in the list then only pointer is flushed not

pointed to data
I If no list is given entire thread state flushed

I May be necessary due to hardware implementation
limitations

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 53 / 72

Introduction
OpenMP

Memory consistency
Tasks

Memory latency overlap with flush

a = . . .; /* a can be committed here... */
<other computation>
#pragma omp flush(a) /* or as late as here... */

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 54 / 72

Introduction
OpenMP

Memory consistency
Tasks

Reordering example

a = ...; //(1)
b = ...; //(2)
c = ...; //(3)
#pragma omp flush(c) //(4)
#pragma omp flush(a,b) //(5)
. . . a . . . b . . .; //(6)
. . . c . . .; //(7)

I (1) and (2) may not be moved after (5)
I (6) may not be moved before (5)
I (4) and (5) may be interchanged at will.

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 55 / 72

Introduction
OpenMP

Memory consistency
Tasks

Moving data between threads

I To move the value of a shared variable from thread 1 to
thread 2:

I Write variable on thread 1
I Flush variable on thread 1
I Flush variable on thread 2
I Read variable on thread 2

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 56 / 72

Introduction
OpenMP

Memory consistency
Tasks

Using the flush directive

/* Announce that I am done with my work. The first flush
* ensures that my work is made visible before synch.
* The second flush ensures that synch is made visible.
*/
#pragma omp flush(work,synch)
synch[iam] = 1;

#pragma omp flush(synch)
/* Wait for neighbor. The first flush ensures that synch is read
* from memory, rather than from the temporary view of memory.
* The second flush ensures that work is read from memory, and
* is done so after the while loop exits.
*/

neighbor = (iam>0 ? iam : omp_get_num_threads()) - 1;
while (synch[neighbor] == 0) {

#pragma omp flush(synch)
}

#pragma omp flush(work,synch)
/* Read neighbor’s values of work array */
result[iam] = fn(work[neighbor], work[iam]);

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 57 / 72

Introduction
OpenMP

Memory consistency
Tasks

Implicit flushes

I In barriers
I At entry to and exit from

I Parallel, parallel worksharing, critical, ordered regions
I At exit of worksharing regions (unless nowait specified)
I In omp set lock, omp set nest lock,
omp unset lock, omp unset nest lock

I In omp test lock, omp test nest lock, if lock is
acquired

I At entry to and exit from atomic, flush set is the atomically
updated variable

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 58 / 72

Introduction
OpenMP

Memory consistency
Tasks

OpenMP ordering vs. weak ordering

I OpenMP reordering restrictions are similar to weak
ordering with ”flush” defined as a ”synch” operation

I Actually weaker than weak ordering:
I Synchronization operations on disjoint variables are not

ordered with respect to each other
I Relaxed memory model enables OpenMP implementations

on distributed-memory architectures, such as clusters and
accelerators.

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 59 / 72

Introduction
OpenMP

Memory consistency
Tasks

Use of list in flush directives

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 60 / 72

Introduction
OpenMP

Memory consistency
Tasks

Outline

Introduction
OpenMP

OpenMP
API
Scheduling
Library API

Memory consistency

Tasks

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 61 / 72

Introduction
OpenMP

Memory consistency
Tasks

OpenMP tasks (OpenMP v3.0 onwards)

I A task is:
I A piece of code to execute
I A data environment (task owns the data)
I An assigned thread that executes the code and accesses

the data
I Two activities: packaging (instantiation) and executing

I Each encountering thread packages a new instance of a
task (code and data)

I Some thread in the team executes the task at a later time

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 62 / 72

Introduction
OpenMP

Memory consistency
Tasks

Definitions

I Task construct: task directive plus structured block
I Task: the package of code and instructions for allocating

data created when a thread encounters the task construct
I Task region: the dynamic sequence of instructions

produced by the execution of a task by a thread

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 63 / 72

Introduction
OpenMP

Memory consistency
Tasks

Task construct

#pragma omp task [clause[[,]clause]...]
structured block

clause can be one of:
if (expression)
untied
shared (list)
private (list)
firstprivate (list)
default (shared | none)

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 64 / 72

Introduction
OpenMP

Memory consistency
Tasks

The if clause

I When if clause argument is false
I The task is executed immediately by the encountering

thread
I The data environment is still local to the new task
I The task is still an independent task with respect to

synchronization
I User-directed optimization

I when the cost of deferring the task for parallel execution is
too high compared to executing the task locally

I controls cache and memory affinity

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 65 / 72

Introduction
OpenMP

Memory consistency
Tasks

When and where are tasks completed?

I At thread barriers, implicit or explicit
I applies to all tasks generated in the current parallel region

up to the barrier
I matches user expectation

I At task barriers
I applies only to children tasks generated in the current task ,

not to “descendants”
I #pragma omp taskwait

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 66 / 72

Introduction
OpenMP

Memory consistency
Tasks

Pointer chaining using tasks

#pragma omp parallel
{

#pragma omp single private(p)
{
p = listhead ;
while (p) {

#pragma omp task /* spawn call to process(p) */
process (p)

p=next (p) ;
}

}
} /* Implicit taskwait */

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 67 / 72

Introduction
OpenMP

Memory consistency
Tasks

Pointer chaining on multiple lists using tasks

#pragma omp parallel
{

#pragma omp for private(p)
for (int i =0; i <numlists ; i++) {

p = listheads[i] ;
while (p) {
#pragma omp task

process (p)
p=next (p) ;
}

}
}

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 68 / 72

Introduction
OpenMP

Memory consistency
Tasks

Postorder tree traversal

void postorder(node *p) {
if (p->left)

#pragma omp task
postorder(p->left);

if (p->right)
#pragma omp task
postorder(p->right);

#pragma omp taskwait // wait for child tasks
process(p->data);

}

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 69 / 72

Introduction
OpenMP

Memory consistency
Tasks

Task switching

I Certain constructs have task scheduling points at defined
locations

I When a thread encounters a task scheduling point it can
suspend the current task and switch to execute another
task

I Following the other task execution, the thread can return to
the suspended task

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 70 / 72

Introduction
OpenMP

Memory consistency
Tasks

Task switching example

#pragma omp single
{
for (i=0; i<MANYITS; i++)
#pragma omp task
process(item[i]);

}

I Too many tasks created in very short time
I Generating task does not have chance to execute

computation until it creates all other tasks
I With task switching, the generating thread can:

I execute already generated tasks (draining the task queue)
I execute the first encountered task (cache-friendly)

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 71 / 72

Introduction
OpenMP

Memory consistency
Tasks

Task switching example

#pragma omp single untied
{
for (i=0; i<ONEZILLION; i++)
#pragma omp task
process(item[i]);

}

I Too many tasks created in very short time
I Generating task does not have chance to execute

computation until it creates all other tasks
I With task switching, the generating thread can:

I execute already generated tasks (draining the task queue)
I execute the first encountered task (cache-friendly)

I Must be provided by programmer!

Dimitrios S. Nikolopoulos CS529 Lecture 05: OpenMP 72 / 72

	Introduction
	OpenMP

	OpenMP
	API
	Scheduling
	Library API

	Memory consistency
	Tasks

