CS529 Lecture 03:
POSIX Threads

Dimitrios S. Nikolopoulos
University of Crete and FORTH-ICS

February 22, 2011

Dimitrios S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Introduction

Outline

Introduction

Dimitrios S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Introduction

Sources of material

» “Programming Shared Address Space Platforms”, by
Ananth Grama

» Bradford Nichols, Dick Buttlar, Jacqueline Proulx Farrell,
“Pthreads Programming: A POSIX Standard for Better
Multiprocessing”, O’Reilly Media, 1996.

» “Programming Shared Memory Platforms with Pthreads”,
by John Mellor Crummey

Dimitrios S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Introduction

Outline

» Shared-address space programming taxonomy

» The POSIX threads API (Pthreads)
» Synchronization primitives in Pthreads

» Mutexes
» Condition variables
» Reader/writer locks

Dimitrios S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Taxonomy Shared Address Space

Threads

Outline

Taxonomy
Shared Address Space
Threads

os S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Taxonomy Shared Address Space

Threads

Shared Address Space Programming Models

» Lightweight processes and threads

» all memory is global and shared

» examples: Pthreads, Cilk (lazy, lightweight threads)
» Process-based models

» each process’ data is private, unless otherwise specified

» example: Linux shget, shmat, shmdt API
» Directive-based models (e.g. OpenMP)

» shared and private data

» logically shared address space

» simplify decomposition, scheduling, synchronization
» Global Address Space programming languages

» shared and private data

» hardware based on distributed memory, often with

shared-memory nodes
» Unified Parallel C, Co-array Fortran

Dimitrios S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Taxonomy Shared Address Space

Threads

Thread

» A single, sequential stream of control in a program
» Logical machine model

» Flat global memory shared among all threads
» Local stack of frames for each thread’s active procedures

P P P 00 P

Shared Address Space

os S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Taxonomy Shared Address Space

Threads

Why Threads?

» Portable, widely available programming model

» Used on both serial machines (latency overlap) and parallel
machines (concurrency)

» Useful for hiding latency

» Overlap I/0, communication, or memory latency with the
execution of threads other than the stalled ones

» Scheduling and load balancing

» Can implement dynamic concurrency (N-to-M execution
model)

» Relatively easy to program

» Significantly easier than message passing (no naming of
processors, no explicit communication)

Dimitrios S. Nikolopoulos CS529 Lecture 03: POSIX Threads



API

POSIX threads Example

Outline

POSIX threads
API
Example

os S. Nikolopoulos CS529 Lecture 03: POSIX Threads



API

POSIX threads Example

POSIX Threads API (Pthreads)

» Standard threads API supported by vendors (software,
with architecture-dependent implementation)
» Concepts behind POSIX threads interface are broadly
applicable
» Concurrency and synchronization abstractions relatively

independent of the API
» Useful for programming with other thread APls

» NT threads
» Java threads
» Threads are peers, unlike processes

» no parent/child relationship
» inherit parent/child properties of process address space

Dimitrios S. Nikolopoulos CS529 Lecture 03: POSIX Threads



API

POSIX threads Example

POSIX Thread Creation

» Asynchronously invoke thread_function in a new
thread

#include <pthread.h>
int pthread create(
pthread_t xthread_handle, /#* returns handle here #*/
const pthread attr t *attribute,
void * (*xthread_ function) (void x),
void *arg); /+ single argument; perhaps a structure */

» attribute created by pthread_attr_init contains details
about

» whether scheduling policy is inherited or explicit
» scheduling policy, scheduling priority
» stack size, stack guard region size

rios S. Nikolopoulos CS529 Lecture 03: POSIX Threads



API

POSIX threads Example

Thread Attributes

» Detach state
» PTHREAD_CREATE_DETACHED,
PTHREAD_CREATE_JOINABLE
» reclaim storage at termination (detached) or join (joinable)
Scheduling policy
» SCHED_OTHER: standard round robin (priority must be 0)
» SCHED_FIFO, SCHED_RR:real time policies
» FIFO: re-enter priority list at head; RR: re-enter priority list
at tail
Scheduling parameters
» only priority
Inherit scheduling policy
» PTHREAD_INHERIT_SCHED, PTHREAD EXPLICIT_SCHED
Thread scheduling scope
» PTHREAD_SCOPE_SYSTEM, PTHREAD_SCOPE_PROCESS

» Stack size

v

v

v

v

Dimitrios S. Nikolopoulos CS529 Lecture 03: POSIX Threads



API

POSIX threads Example

Wait for Pthread Termination

» Suspend execution of calling thread until thread terminates

#include <pthread.h>

int pthread_ join (
pthread_t thread, /+ thread id */
void *xptr); /* ptr to location for return code a terminating
thread passes to pthread exit */

os S. Nikolopoulos CS529 Lecture 03: POSIX Threads



API

POSIX threads Example

Example: Thread Creation and Termination

#include <pthread.h>
#include <stdlib.h>
#define NUM_THREADS 32
void *compute pi (void «x);

J.nt main(...) {

pthread t p_threads[NUM_THREADS];

pthread attr_t attr;

pthread_attr_init (&attr);

for (i=0; i< NUM_THREADS; i++) {
hits[i] = i;
pthread create (&p_threads[i], &attr, compute_pi,

(voidx) &hits[i]);

}

for (i=0; i< NUM_THREADS; i++) {
pthread_join(p_threads[i], NULL);
total hits += hits[i];

}

Dimitrios S. Nikolopoulos CS529 Lecture 03: POSIX Threads



API

POSIX threads Example

Example: Thread Function (compute pi)

void xcompute_pi (void xs) {

int seed, i, *hit_pointer;

double x_coord, y_coord;

int local_hits;

hit_pointer = (int *) s;

seed = *xhit_pointer;

local_hits = 0;

for (i = 0; i < sample_points_per thread; i++) {
x_coord = (double) (rand_r (&seed))/((1<<15)-1) - 0.5;
y_coord =(double) (rand_r (&seed))/((1<<15)-1) - 0.5;
if ((x_coord * x_coord + y coord x y_coord) < 0.25)

local_hits++;

}

*hit_pointer = local_hits;

pthread exit (0);

Dimitrios S. Nikolopoulos CS529 Lecture 03: POSIX Threads



API

POSIX threads Example

Programming for Performance Note

» Code carefully minimizes false-sharing of cache lines
» false sharing
» multiple processors access words in the same cache line
> at least one processor updates a word in the cache line
» no word updated by one processor is accessed by another
» False sharing resolved in code by localizing (privatizing)
variables

os S. Nikolopoulos CS529 Lecture 03: POSIX Threads



API

POSIX threads Example

Example: Thread function (compute pi) with false
sharing prevention

void *compute_pi (void xs) {

int seed, i, xhit_pointer;

double x_coord, y_coord;

int local_hits;

hit_pointer = (int *) s;

seed = xhit_pointer;

local_hits = 0;

for (i = 0; i < sample_points_per thread; i++) {
x_coord = (double) (rand_r(&seed))/((1<<15)-1) - 0.5;
y_coord =(double) (rand_r (&seed))/((1<<15)-1) - 0.5;
if ((x_coord * x coord + y coord x y coord) < 0.25)

local_hits++; // avoid false sharing!

}

*hit pointer = local_hits;

pthread_exit (0);

Dimitrios S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example
Synchronization Condition Variables
Outline
Synchronization
Races
Critical Sections
Example

Condition Variables

os S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example
Synchronization Condition Variables

Data Races in Pthreads Programs

» Consider

/* threads compete to update global variable best_cost */
if (my_cost < best_cost)
best_cost = my_cost;

» two threads
» initial value of best_cost is 100
» values of my_cost are 50 and 75 for threads t1 and t2

» After execution, best_cost could be 50 or 75
» 75 does not correspond to any serialization of the threads

rios S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example
Synchronization Condition Variables

Critical Sections and Mutual Exclusion

» Critical section = must execute code by only one thread at
atime

/* threads compete to update global variable best_cost */
if (my_cost < best_cost)
best_cost = my_cost;

» Mutex locks enforce critical sections in Pthreads

» mutex lock states: locked and unlocked

» only one thread can lock a mutex lock at any particular time
» Using mutex locks

» request lock before executing critical section

» enter critical section when lock granted

» release lock when leaving critical section
» Operations

int pthread mutex_init (pthread mutex_ t *mutex lock,
const pthread mutexattr t xlock attr)

int pthread mutex_lock (pthread mutex t *mutex_lock)

int pthread mutex unlock (pthread mutex t *mutex_lock)

Di os S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example

Synchronization Condition Variables
Mutex Types
» Normal
» thread deadlocks if it tries to lock a mutex it already has
locked
» Recursive

» single thread may lock a mutex as many times as it wants
» increments a count on the number of locks
» thread relinquishes lock when mutex count becomes zero

» Error check

» report error when a thread tries to lock a mutex it already
locked
» report error if a thread unlocks a mutex locked by another

os S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example
Synchronization Condition Variables

Example: Reduction using Mutex Locks

pthread mutex t cost_lock;
int main() {
pthread_mutex_init (&cost_lock, NULL);

}
void *find best (void xlist_ptr) {

pthread mutex_lock (&cost_lock); /* lock the mutex */
if (my_cost < best_cost)
best_cost = my_cost;
pthread mutex_unlock (&cost_lock); /* unlock the mutex */

}

s S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example
Synchronization Condition Variables

Producer-Consumer using Mutex Locks

Constraints

» Producer thread
» must not overwrite the shared buffer until previous task has
picked up by a consumer
» Consumer thread

» must not pick up a task until one is available in the queue
» must pick up tasks one at a time

Dimitrios S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example

Synchronization Condition Variables

Producer Consumer using Mutex Locks

pthread mutex_t task_queue_lock;
int task_available;

main() {

task_available = 0;
pthread mutex_init (&task_queue_lock, NULL);

}

void *producer (void *producer_thread data) {

while (!done()) {
inserted = 0;
create_task (&my_task);
while (inserted == 0) {
pthread mutex_lock (&task_queue_lock);
if (task_available == 0) {
insert_into_queue (my_task);
task_available = 1;
inserted = 1;

pthread mutex_unlock (&task_queue_lock) ;
}

ikolopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example
Synchronization Condition Variables

Producer Consumer using Mutex Locks

void *consumer (void xconsumer_thread data) {
int extracted;
struct task my_task;
/#* local data structure declarations */
while (!done()) {
extracted = 0;

while (extracted == 0) {
pthread mutex_lock (&task_gqueue_lock);
if (task_available == 1) {

extract_from queue (&my_ task);
task_available = 0;
extracted = 1;
}
pthread mutex_unlock (&task_queue_lock);
}
process_task (my_task);

}

ikolopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example
Synchronization Condition Variables

Overheads of Locking

» Locks enforce serialization

» threads must execute critical sections one at a time
» many critical sections may co-exist, one convoy of threads
per critical section

» Large critical sections can seriously degrade performance
» Long periods of serialization

» Reduce overhead by overlapping computation with waiting

int pthread mutex_trylock (pthread mutex_t *mutex_ lock) ‘

» acquire lock if available
» return EBUSY if not available
» enables a thread to do something else if lock unavailable

rios S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example
Synchronization Condition Variables

Condition Variables for Synchronization

Condition variable: associated with a predicate and a mutex

» Using a condition variable

thread can block itself until a condition becomes true
thread locks a mutex
» tests a predicate defined on a shared variable

» if predicate is false, then wait on the condition variable
» waiting on condition variable unlocks associated mutex

when some thread makes a predicate true
» that thread can signal the condition variable to either wake
one waiting thread or wake all waiting threads

when thread releases the mutex, it is passed to first waiter

v

v

v

v

os S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example
Synchronization Condition Variables

Pthread Condition Variable API

/* initialize or destroy a condition variable #*/

int pthread cond_init (pthread_cond_t *cond,
const pthread condattr_t =xattr);

int pthread cond_destroy (pthread cond_t x*cond);

/% block until a condition is true */

int pthread cond wait (pthread _cond_t *cond,
pthread mutex_t *mutex);

int pthread cond timedwait (pthread_cond_t *cond,
pthread mutex_t *mutex,
const struct timespec *wtime);

/* signal one or all waiting threads that condition is true */
int pthread cond_signal (pthread cond_t xcond);
int pthread cond_broadcast (pthread_cond_t *cond);

olopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example
Synchronization Condition Variables

Condition Variable Producer Consumer (main)

pthread_cond_t cond_queue_empty, cond_queue_full;

pthread mutex t task_queue_cond_lock;

int task_available;

/* other data structures here #*/

main () {
/* declarations and initializations */
task_available = 0;
pthread _init();
pthread cond_init (&cond_queue_empty, NULL);
pthread_cond_init (&cond_queue_full, NULL);
pthread mutex init (&task_queue_cond lock, NULL);
/* create and join producer and consumer threads */

s S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example
Synchronization Condition Variables

Producer using Condition Variables

void *producer (void *producer_thread data) {
int inserted;
while (!done()) {
create_task();
pthread_mutex_lock (&task_queue_cond_lock) ;
while (task_available == 1)
pthread _cond wait (&cond_queue_empty,
&task_queue_cond lock) ;
insert_into_queue();
task_available = 1;
pthread cond_signal (&cond_queue_full);
pthread mutex unlock (&task_queue_cond_lock);

s S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example

Synchronization Condition Variables

Consumer using Condition Variables

void xconsumer (void *consumer_thread_data) {
while (!done()) {
pthread mutex lock (&task_queue_cond_lock);
while (task_available == 0)
pthread _cond wait (&cond_queue_full,

&task_queue_cond_lock) ;

my task = extract_from queue();

task_available = 0;

pthread cond_signal (&cond_queue_empty) ;

pthread_mutex_unlock (&task_queue_cond_lock);

process_task (my_task);

s S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example
Synchronization Condition Variables

Composite Synchronization Constructs

» POSIX threads provides only basic synchronization
constructs
» Build higher-level constructs from basic ones
» e.g. readers-writer locks

Dimitrios S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example
Synchronization Condition Variables

Readers-Writer Locks

» Purpose: access to data structure when
» frequent reads
» infrequent writes

» Acquire read lock

» OK to grant when other threads already have acquired read
lock
» if write lock on the data or queued write locks

» reader thread performs a condition wait
» Acquire write lock

» if multiple threads request a write lock
» must perform a condition wait

os S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example
Synchronization Condition Variables

Readers-Writer Lock Sketch

» Use a data type with the following components

vVvyVvyy

v

a count of the number of active readers

a count of the number of waiting readers

0/1 integer specifying whether a writer is active
a condition variable readers_proceed

» signaled when readers can proceed
a condition variable writer proceed
» signaled when one of the writers can proceed

acountwaiting.writers of waiting writers
a mutex read_ write_lock

» controls access to the reader/writer data structure

os S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example
Synchronization Condition Variables

Readers-writer Lock with Writer Priority

void xreader_start () {

pthread mutex lock (&read write_lock);

while (waiting writers + active_writer > 0)) {
waiting readers++;
pthread cond _wait (&readers_proceed, &read write_lock);
waiting readers--;

}

active_readers++;

pthread mutex unlock (&read_write_lock);

ios S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example
Synchronization Condition Variables

Readers-writer Lock with Writer Priority

void xreader_ finish() {

pthread mutex_lock (&read write_lock);
active_readers—-;

if (active_readers == 0 && waiting writers > 0) {
pthread cond_signal (&writer proceed);
}

pthread mutex unlock (&read write_ lock);

Dimitrios S. Nikolopoulos

CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example
Synchronization Condition Variables

Readers-writer Lock with Writer Priority

void xwriter_start () {

pthread mutex lock (&read write_lock);

while ((active_writers + active_readers) > 0) {
waiting _writers++;
pthread cond _wait (&writer_proceed, &read write_lock);
waiting writers--;

}

active_writers++;

pthread mutex unlock (&read_write_lock);

ios S. Nikolopoulos CS529 Lecture 03: POSIX Threads



Races
Critical Sections

Example
Synchronization Condition Variables

Readers-writer Lock with Writer Priority

void *writer_finish() {
pthread_mutex_lock (&read_write_lock);
active_writers—-—;
if (waiting writers > 0} {
pthread_cond_signal (&writer_ proceed);

}
else if (waiting readers > 0) {
pthread cond_broadcast (&§reader_proceed);

}

pthread mutex unlock (&read write_ lock);

s S. Nikolopoulos CS529 Lecture 03: POSIX Threads



	Introduction
	Taxonomy
	Shared Address Space
	Threads

	POSIX threads
	API
	Example

	Synchronization
	Races
	Critical Sections
	Example
	Condition Variables


