
University of Crete

The JavaTM Memory Model (JMM)

Foivos Zakkak
27th of March 2017

27/03/2017 2 of 14Foivos Zakkak

Introduction

• Multi-core processors create multiple copies of data on their
cores’ caches to improve performance

• Maintaining these copies consistent is not trivial

• Trade-off between performance and consistency

● Usually we are only interested about data we can observe

27/03/2017 3 of 14Foivos Zakkak

Introduction

Different architectures feature different memory models
Type ARMv7 and Power X86 AMD64

Loads reordered after loads

Loads reordered after stores

Stores reordered after stores

Stores reordered after loads

Atomic reordered with loads

Atomic reordered with stores

Dependent loads reordered

Incoherent instruction cache pipeline

Source: https://en.wikipedia.org/wiki/Memory_ordering

https://en.wikipedia.org/wiki/Memory_ordering

27/03/2017 4 of 14Foivos Zakkak

Introduction

• Some programming languages define their memory models

 JavaTM

 C++11

 Unified Parallel C (UPC)

• Why?

 To provide consistent behavior across different platforms

27/03/2017 5 of 14Foivos Zakkak

What is a Memory Model ?

 Contract between language or processor designers and developers

 Helps language implementers build the runtime and/or compiler

 Helps developers understand a program’s behavior

27/03/2017 6 of 14Foivos Zakkak

The JavaTM Memory Model

 Guarantees sequential consistency in data-race-free (DRF) programs

 “[...] the result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by
its program.” – L. Lamport

 No out of thin air values under any circumstances

 Reads may only observe values written by some write acting on the
corresponding variable

 Monitors provide mutual exclusion

27/03/2017 7 of 14Foivos Zakkak

The JavaTM Memory Model Approach

• Model all legal executions (in algebraic way)

• Map instructions to actions
e.g. a=4 maps to a write action

• Synchronization actions

● Release-Acquire pairs

● Implicit vs Explicit

27/03/2017 8 of 14Foivos Zakkak

Release-Acquire pairs

• Thread finish / Thread join – Explicit

• Monitor.wait() / Monitor.notify() – Explicit

• Monitor exit / Monitor enter – Implicit

• Thread.start() / Thread.run() – Implicit

• …

Reads following an acquire action must be able to observe
writes performed before the corresponding release action

27/03/2017 9 of 14Foivos Zakkak

Examples

● Implicit

synchronized (this) {
 b = 3;
}

…

synchronized (this) {
 a = b;
}

● Explicit

b.notifyall();

…

b.wait();

…

t.join();

27/03/2017 10 of 14Foivos Zakkak

Formal Definition

 Action kinds
 read, write, wait, join, etc.
 Grouped in regular and synchronization actions

 Total orders
 Synchronization order

 Partial orders
 Program order
 Synchronizes-with order
 Happens-before order

 Well-formedness conditions

27/03/2017 11 of 14Foivos Zakkak

Actions ordering visualization

27/03/2017 12 of 14Foivos Zakkak

Well-formedness conditions

 Each read of a variable sees a write to this variable
 All reads and writes of volatile variable are volatile actions
 The number of synchronization actions preceeding another

synchronization action is finite
 Synchronization order is consistent with the program order
 Lock operations (monitors) are consistent with mutual exclusion
 The execution obeys synchronization order consistency
 The execution obeys happens-before order consistency
 Every thread’s start action happens before its other actions except

for initialization actions

27/03/2017 13 of 14Foivos Zakkak

The JavaTM Memory Model Limitations

• Defined by observing existing JVMs

• Tailored after shared memory architectures

• Not machine checkable

• Non-intuitive definition

27/03/2017 14 of 14Foivos Zakkak

Better Understanding

For in depth understanding of JMM refer to the following
resources:

• The JSR-133 Cookbook for Compiler Writers

• JSR-133 Java Memory Model and Thread Specification

• SPECIAL POPL ISSUE: The Java Memory Model (not published)

• Jeremy Manson's Ph.D. Thesis

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

