
Software Overhead in Messaging Layers: Where Does the Time Go?

Vijay Karamcheti and Andrew A. Chien
Department of Computer Science

University of Illinois at Urbana-Champaign
1304 W. Springfield Avenue, Urbana, IL 61801

fvijayk,achieng@cs.uiuc.edu

In Proceedings of ASPLOS-VI, San Jose, California, October 5-7, 1994.

Abstract

Despite improvements in network interfaces and software
messaging layers, software communication overhead still
dominates the hardware routing cost in most systems. In
this study, we identify the sources of this overhead by an-
alyzing software costs of typical communication protocols
built atop the active messages layer on the CM-5. We show
that up to 50–70% of the software messaging costs are a
direct consequence of the gap between specific network fea-
tures such as arbitrary delivery order, finite buffering, and
limited fault-handling, and the user communication require-
ments of in-order delivery, end-to-end flow control, and reli-
able transmission. However, virtually all of these costs can
be eliminated if routing networks provide higher-level ser-
vices such as in-order delivery, end-to-end flow control, and
packet-level fault-tolerance. We conclude that significant
cost reductions require changing the constraints on messag-
ing layers: we propose designing networks and network in-
terfaces which simplify or replace software for implementing
user communication requirements.

1 Introduction

In highly parallel machines, a collection of computing
nodes work in concert to solve large application problems,
coordinating their efforts by sending and receiving messages
through the communication network. Thus, the achievable
performance of such machines critically depends on the end-
to-end cost of communication mechanisms. The main cost
contributors are the routing time, the time to get messages
into and out of the network, and software protocol overhead.
These times are determined by the design of the routing net-
work and processor-network interface as well as the choice
of software protocols.

Recent advances in messaging implementations [26] and
improved network interfaces [24, 13] have significantly re-
duced the software cost of messaging. However, software
communication overhead continues to dominate the hard-
ware routing cost. Our study focuses on understanding the

reasons for software overhead by precisely characterizing the
costs in a prototypical messaging layer. Messaging layers
on parallel machines bridge the gap between raw hardware
functionality and the higher-level user communication re-
quirements. Thus, the cost characterization can be viewed
either as the cost of messaging layer services, or alternately,
as the cost of particular network hardware features which
necessitate additional software to provide critical applica-
tion services.

This study has two parts. In the first part, we analyze the
costs of communication functionalityand network features in
typical communication protocols built atop a minimal and ef-
ficient messaging layer, the CM-5 [24] active messages layer
(CMAM) [26]. We first consider a base protocol (single-
packet delivery), and then examine more sophisticated pro-
tocols providing reliable multi-packet message delivery. The
latter protocols incur software overhead because they require
additional support for buffer management, in-order delivery,
and end-to-end fault tolerance. Our study shows that this
overhead accounts for 50 – 70% of the software communi-
cation cost and is a direct result of specific CM-5 network
features – arbitrary delivery order, finite buffering, and lim-
ited fault-tolerance.

Given that CMAM is already quite efficient, we are left
with two alternatives for reducing this overhead: either lower
the level of user communication services, or raise the level
of services provided by the network. In the second part
of this study, we examine what overheads might be recov-
ered with routingnetworks which exploit low-level hardware
structure to provide higher-level services. Using a network
design based on Compressionless Routing [16] which pro-
vides in-order delivery, end-to-end flow control, and packet-
level fault-tolerance, we show that the software overheads of
buffer-management, in-order delivery and end-to-end fault-
tolerance can be completely eliminated. Consequently, we
propose designing networks which simplify the messaging
software (or replace some portions). This means that appli-
cations can use high-level communication services without
sacrificing efficiency.

The specific contributions of this paper include:

� A detailed analysis of an efficient messaging layer
which identifies the key cost components and attributes
them to specific user communication services.

� Correlation of the cost analysis with network hardware
features, pointing out the software cost of several com-
monly discussed routing features. Network designers

must weigh the software cost of these features against
their hardware performance benefits.

� A messaging layer implementation which demonstrates
that if a network provides high level services (in-order
delivery, end-to-end flow control, and reliable packet
delivery), essentially all but the data movement cost can
be removed from the messaging layer. Several networks
with such features have been proposed [22, 16].

The remainder of the paper is organized as follows. Sec-
tion 2 describes the problem context. In Section 3, we an-
alyze the costs incurred by CMAM-based implementations
of typical communication protocols. Section 4 explores the
advantages of higher level network features on messaging
layer costs. We discuss and generalize our results in Sec-
tion 5. A description of related work appears in Section 6,
followed by our conclusions in Section 7.

2 Background

Communication in parallel machines [24, 15, 13] requires
both routing hardware which supplies the basic primitives,
and a software messaging layer which orchestrates their use
to provide application-level communication services. In this
section, we discuss typical application-level services, current
and likely future routinghardware features, and how a typical
messaging layer bridges the two.

2.1 Communication services

Application programs typically expect a basic set of com-
munication services from messaging layers. Most messaging
layers provide the following services [3, 25, 11, 10]:

1. Message Delivery
2. Message Ordering
3. Deadlock/Overflow Safety
4. Reliable Delivery

First, the most basic service is data movement from the
sender to the receiver. Second, messages between a par-
ticular sender and receiver should be delivered in order of
transmission. Although not strictly necessary, this is both
a commonly provided feature and a common programmer’s
assumption. Third, use of the network should not cause
deadlock or data loss through buffer overflow. This is essen-
tial; without it programmers would be forced to reason about
scheduling and resource usage in detail. Finally, messages
should be delivered reliably. Most existing parallel machines
settle for detecting errors and crashing. However, given their
exhibited mean-time-between-failures [14], the need for re-
liable communication is evident. These basic services ease
network programming concerns for low-level explicitly par-
allel programming (C or FORTRAN and message passing).
They also support higher level approaches to programming
parallel systems, freeing the compiler from having to explic-
itly schedule and manage the network resources for correct
program execution.

2.2 Routing hardware features

Though routing networks in commercial machines [24,
15] (and in literature) offer a variety of features, we focus on
those which are likely characteristics of future systems, and
have significant impact on the software messaging layer:

1. Arbitrary Delivery Order
2. Finite Buffering
3. Fault-detection but not Fault-tolerance

Arbitrary delivery order means that the transmission or-
der of messages between a particular source and destination
is not preserved. This may arise when messages pass each
other in the network (as with multipath routing (adaptiv-
ity) [7, 20] and virtual channels [4]), or when the network
state is swapped and resumed in a way that does not preserve
delivery order (as with timesharing [8] and process migra-
tion). Finite buffering in machines means that flow control
is generally necessary for correct execution. Most networks
provide deadlock-freedom guarantees on the assumption that
each output eventually extracts any packets delivered to it,
relying on software to ensure that all nodes always have
enough space to absorb incoming packets. Most networks
provide only error detection, but no error correction capa-
bilities. This means that when a bad packet is detected, the
entire computation must be aborted and perhaps the machine
will also crash. In the long run, such behavior can incur sig-
nificant time and computation loss, extra input/output (due
to checkpointing), and poor availability.

2.3 Software messaging layers

Messaging layers bridge the gap between hardware fea-
tures and communication services. Essentially, the messag-
ing layer uses software protocols to provide any communi-
cation services not directly supported in hardware. Figure 1
shows the relationship between messaging layer elements,
user services, and network features. Each column shows the
messaging layer service needed to support the user require-
ment above it given the network features below. As can be
seen, some of the services require extensive support.

Providing in-order delivery in a network which does not
preserve transmission order means that the software must
sequence outgoing packets and buffer incoming packets ar-
riving out of order. Ensuring deadlock/overflow safety in
networks with finite network and node buffering means that
a messaging layer must avoid over-commitment of buffers.
Generally this involves preallocating space on the destina-
tion, ensuring that packets are introduced into the network
only when they can be absorbed at the destination. Finally,
providing reliable delivery in networks without error correc-
tion forces the messaging layer to keep copies of messages
in transit. In addition, acknowledgements are also required
to release these finite buffer resources.

The next section analyzes a specific messaging layer to
characterize the costs of the features described above.

3 Analysis of messaging layer costs

We explore costs of communication services in a spe-
cific messaging layer, the CM-5 active messages layer [26]

IN−ORDER DELIVERY
− sequence and
 reorder packets.
− buffer out−of−order
 packets.

BUFFER MANAGEMENT
− end−to−end
 flow control.
− preallocate storage for
 transmission packets.

FAULT−TOLERANCE
− source buffering of
 message data.
− acknowledgement from
 destination.

MESSAGE ORDERING DEADLOCK/OVERFLOW
 SAFETY

RELIABLE DELIVERY

− arbitrary delivery order
− finite network (and machine) buffering
− limited fault handling

MESSAGING
 LAYER

NETWORK
FEATURES

 USER
REQUIREMENTS

Figure 1: Messaging layers bridge the gap between user requirements and network features.

(CMAM). User-level access to the CM-5 network interface
(NI) is essential for low-cost communication and is a likely
feature of future parallel machines. CMAM is widely rec-
ognized as efficient; in fact, several commercial vendors are
extending their messaging layers to incorporate CMAM fea-
tures. CMAM’s efficiency is critical as our goal is to identify
fundamental messaging costs, not those which result from
poor implementation. In addition, the availability of the
CMAM source code is a pragmatic concern, allowing us to
accurately gauge and assign messaging cost.

We first give the relevant background by describing the
CM-5 NI, the CM-5 network, and CMAM interfaces. We
then analyze software costs incurred by typical communica-
tion patterns implemented using the CMAM layer.

3.1 The CM-5 and CMAM

The CM-5 NI provides a memory-mapped interface (con-
trol registers and network FIFO’s) on the processor-memory
bus (see Figure 2). A packet is injected into the network
by storing the destination node number and data arguments
to the NI send buffer. Packets are extracted using LOADs
from the NI receive buffer, while the NI status is queried by
loading the control registers.1

C
O
N
T
R
O
L
L
E
R

CONTROL REGS

RECEIVE BUFFER

SEND BUFFER

NODE BUS DATA NETWORK

NETWORK
INTERFACE

Figure 2: The CM-5 network interface.

The CM-5 network [8] has a number of features which
increase the messaging layer complexity . First, out-of-order
delivery requires the messaging layer to sequence and reorder
packets. Second, the nodes, NI, and the network all have
finite buffering, so software buffer management is required.
Third, the CM-5 network provides error detection at the
packet level, but no error correction, requiring a software

1While this is not the most efficient type of network interface [12, 6],
it requires no changes to the processor. Many researchers believe that this
type of interface is representative of future network interfaces.

protocol to ensure reliable delivery. And finally, the CM-
5 network hardware only supports packets with five 32-bit
words, so a typical message is broken into many packets,
further increasing the software overhead.

CMAM provides a simple messaging layer on the CM-
5. The basic primitive is an active message: a message
with an associated small amount of computation (in the
form of a handler) at the receiving end. The current im-
plementation polls the network to accept messages.2 We
use two CMAM interfaces in our study. The first provides
an active message which carries up to four words of user
data and is implemented by the CMAM 4 function at the
source, and CMAM request poll, CMAM handle left, and
CMAM got left functions at the destination. The second
interface supports bulk memory-to-memory transfers and is
implemented using the CMAM xfer function which splits up
the transfer intoa sequence of hardware packets at the source,
and the CMAM handle left xfer function which reassembles
the packets at the destination.

3.2 Communication costs of typical protocols

Using CMAM, we examine the costs for implementing
typical protocols, at each stage relating the measured costs to
the network features. Costs were measured using dynamic
instruction counts of the CMAM assembly code (some of
CMAM is coded in assembly and the rest was generated
from the original C code using gcc -O2). Execution paths
which minimize the instruction count are chosen, so our
measurements are a conservative estimate.

Although actual execution time might be a better metric
for characterizing communication cost, we use instruction
counts for three reasons. First, obtaining accurate cycle
counts is not tractable as they depend on details such as
write buffers, bus synchronization,memory refresh, and even
the user application. Second, instruction counts represent
a portable and perhaps more useful characterization of the
messaging costs. While the times for each instruction may
vary depending on the implementation, it appears likely that
the instruction counts will be substantially the same across
machines with memory-mapped network interfaces. Finally,
instructioncounts lend themselves to use with simple models
which allow determination of the messaging overhead for the
machines and applications of interest.

2The CM-5 NI also supports an interrupt-driven interface for reception;
however, the cost for interrupts is very high for the SPARC processor.

A detailed breakdown of the instruction counts into sev-
eral subcategories for the protocols described in this section
appears in Appendix A. In the rest of this paper, we con-
fine ourselves to a simple model where all instructions are
assumed to have unit cost.

We consider the implementation of three protocols:

1. Single-packet delivery transfers a single packet.
2. Finite sequence, multi-packet delivery transfers a

fixed-size user message consisting of several packets.
3. Indefinite sequence, multi-packet delivery transfers

an indefinite sequence of hardware packets, correspond-
ing to an ordered stream of communication.

Single-packet delivery is the cheapest communication
possible in CMAM – a four word datagram packet. The
multi-packet protocols have a base cost based on single-
packet deliveries, but incur additional overhead to support
user communication requirements. Finite sequence, multi-
packet delivery incurs buffer management and in-order de-
livery costs to support larger messages. Indefinite sequence,
multi-packet delivery sees additional in-order delivery costs.
Both multi-packet protocols also have additional overhead
for ensuring reliable transmission.

We now examine these protocols in detail: for each pro-
tocol, we first give details of the implementation, and then a
breakdown of the measured costs.

Single-packet delivery This protocol consists of sending
and receiving a single-packet message. The packet is sent
using the CMAM 4 function, and received using a combi-
nation of the CMAM request poll, CMAM handle left, and
CMAM got left functions. The receiver functions, respec-
tively, check for outstanding packets, receive waiting pack-
ets, and invoke user handlers for received packets.

Description Source Destination
Call/Return 3 10
NI setup 5 –
Write to NI 2 –
Read from NI – 3
Check NI status 7 12
Control flow 3 2

20 27

Table 1: Instruction counts for single-packet delivery.

Table 1 presents a breakdown of the source and destina-
tion costs. Source costs include NI setup, writing user data
to the NI send buffer, and polling a status register which
confirms the send as well as tests for presence of any in-
coming packets. The destination costs include polling the
NI to check for any waiting packets, extracting the packet
data, vectoring on the hardware message tag, and then in-
voking the user handler. Thus, single-packet transfer in the
CMAM layer costs 47 instructions, of which 34 instructions
are dedicated to accessing the NI. This number is essentially
the minimum required to interface with the CM-5 hardware.
However, this protocol does not meet any of the require-
ments for communication services – packets are not ordered,
nor are they deadlock/overflow safe, nor are they delivered
reliably. Further, communication can only be done in units
of four data words.

Finite sequence, multi-packet delivery This protocol
supports arbitrary size messages and reliably transfers data
from a source memory buffer to a destination memory
buffer. The protocol is implemented using CMAM xfer N
and CMAM handle left xfer functions and consists of six
steps (see Figure 3). The sender sends an allocation request
to the receiver (Step 1), which allocates a communication
segment (Step 2) and replies to the sender (Step 3). The
sender then initiates a sequence of single-packet transfers
(Step 4), whose data are stored by the receiver into the allo-
cated segment. On completion of the transfer, the receiver
frees up the communication segment (Step 5), and sends back
an acknowledgement packet (Step 6).

MESSAGING
 LAYER

MESSAGING
 LAYER

response

data transfer

1 allocation request

3 2

4

close_seg

open_seg

5

acknowledge6
free_buffer

USER
CODE

USER
CODE

Figure 3: Finite sequence, multi-packet protocol.

The protocol cost has four parts: base single-packet trans-
fers (Step 4), buffer management (Steps 1,2,3 and 5), in-order
delivery, and fault-tolerance (Step 6). Single-packet transfers
contribute a single-packet send and receive cost per transfer.
The base cost also includes the additional LOAD/STOREs
to move data up/down the memory hierarchy.

Buffer management costs include the preallocation and
deallocation of the destination buffer. The preallocation cost
involves two single-packet deliveries (request and response),
and the cost of associating a segment number with the target
buffer. Deallocation disassociates the segment number from
the target buffer.

In-order delivery ensures that data is written at the correct
position in the destination buffer. Its cost arises from the
following protocol: each packet carries an offset into the tar-
get buffer where it should be stored, eliminating the need for
sequence numbers. The destination extracts this offset and
updates the communication segment count associated with
the transfer. The source overheads include incrementing and
storing the offset for each packet, while the receiver over-
heads include a LOAD to extract the offset and operations to
decrement the count.

Fault tolerance ensures that a copy of the data is main-
tained at the source pending acknowledgement of successful
reception. Its costs are that of a single-packet delivery ac-
knowledging successful completion of the transfer.

These four components of finite sequence, multi-packet
delivery costs are shown in Table 2 for two message sizes:
small (16 words) and large (1024 words). To obtain the most
favorable execution path, we assume there is no other com-
munication going on at the source and destination nodes. We
observe that buffer management contributes 50% of the total
transfer costs for small messages because of the round-trip
handshake, but has negligible impact on the communication
cost for large messages. Despite this, additional messaging

Message size = 16 words
Finite sequence, multi-packet delivery
Feature Source Destination Total
Base Cost 91 90 181
Buffer Mgmt. 47 101 148
In-order Del. 8 13 21
Fault-toler. 27 20 47

Total 173 224 397

Indefinite sequence, multi-packet delivery
Feature Source Destination Total
Base Cost 80 69 149
Buffer Mgmt. – – –
In-order Del. 20 116 136
Fault-toler. 116 80 196

Total 216 265 481

0

100

200

300

400

500

Src Dest Total Src Dest Total

Fault-toler.

In-order Del.

Buffer Mgmt.

Base Cost

Finite sequence Indefinite sequence

Message size = 1024 words
Finite sequence, multi-packet delivery
Feature Source Destination Total
Base Cost 5635 4626 10261
Buffer Mgmt. 47 101 148
In-order Del. 512 769 1281
Fault-toler. 27 20 47

Total 6221 5516 11737

Indefinite sequence, multi-packet delivery
Feature Source Destination Total
Base Cost 5120 3597 8717
Buffer Mgmt. – – –
In-order Del. 1280 7424 8704
Fault-toler. 7424 5120 12544

Total 13824 16141 29965

0

5000

10000

15000

20000

25000

30000

Src Dest Total Src Dest Total

Fault-toler.

In-order Del.

Buffer Mgmt.

Base Cost

Finite sequence Indefinite sequence

Table 2: Multi-packet delivery costs for 16- and 1024-word messages: packet size = 4 words.

layer costs still account for �10% of the costs in the latter
case. In-order delivery does not contribute as much to the
total cost since the requirements on ordering are relaxed: in-
stead of specifying an exact order of arrival, the only user
requirement is that the data be placed in the target buffer
in order. Knowing the total count of expected packets al-
lows this functionality to be provided cheaply. As we will
see in the next section, sequencing can be quite expensive
if this information is not available. Fault-tolerance accounts
for �10% of the total cost for the small transfer, but has
negligible impact on the costs of the large transfer.

Indefinite sequence, multi-packet delivery This protocol
supports the sending and receiving of an indefinite length
sequence of hardware packets between a pair of nodes. These
packets are all part of a larger logical user communication.
Such a communication pattern is normally associated with
static channels between a pair of user processes (sockets) and
is characterized by an indefinite amount of communication
through the channels.

Figure 4 shows the protocol steps. The sender node first
buffers the user message (Step 1) (to support retransmis-
sion), and then sends it using single-packet transfers (Step
2). The receiver node buffers all out-of-order packets (Step
3), initiating the user handler for each packet arriving in
transmission order. Since the entire transmission may be
very large, each packet has its own acknowledgement (Step

MESSAGING
 LAYER

MESSAGING
 LAYER

acknowledge

1

data transfer2

source
buffering

out−of−order
pkt buffering3

4

free_buffers

USER
CODE

USER
CODE

Figure 4: Indefinite sequence, multi-packet protocol.

4), allowing source storage to be released.
As in the finite sequence protocol, this protocol also has

four components contributing to the total cost: base single-
packet transfers (Step 2), buffer management, in-order de-
livery (Step 3), and fault-tolerance (Steps 1 and 4). The base
cost consists of single-packet delivery and reception costs
for each transfer.

In this protocol, buffer management refers to one of three
kinds of buffers: those used to source-buffer messages, those
used to handle out-of-order packets at the receiver, and those
required to store user data into a receiver buffer. We have
chosen to account for source-buffering as part of the fault-
tolerance overheads, and the out-of-order packet buffering
as part of the in-order delivery costs. Further, since the

user view of register-to-register communication eliminates
the need for a separate receiver buffer, buffer management
has negligible cost in this protocol.3

In-order delivery incurs a source overhead of sequence
numbers and requires the buffering of out-of-order packets
at the destination, since there is no space allocated for them
elsewhere. Unlike the finite-sequence multi-packet protocol,
one cannot exploit information about the number of expected
packets to reduce sequencing costs.

Fault-tolerance costs arise from source buffering and ac-
knowledgement messages. Source buffering contributes ad-
ditional STOREs to the cost, and supports retransmission
in the presence of faults. Each acknowledgement message
incurs the cost of a single-packet delivery. For larger (and
more predictable) messages, this per-packet cost can be re-
duced by employing group acknowledgements (at the cost of
reserving source buffers for a longer period of time).

These components of indefinite sequence, multi-packet
delivery costs are shown in Table 2 for the two message
sizes of 16 and 1024 words. Message sizes correspond to the
total data volume transmitted. To measure in-order delivery
costs, we assume that half the packets arrive out of order. We
observe from the costs that the in-order delivery and fault-
tolerance functionality accounts for�70% of the end-to-end
costs, and this fraction is independent of the total volume
of data transmitted. As can be seen, the overhead remains
significant (�40–50%) even if group acknowledgements are
employed.

3.3 Summary

The breakdown of costs for the two multi-packet deliv-
ery protocols shows that a large fraction of the end-to-end
software communication cost is attributable to communi-
cation services – in-order delivery, deadlock and overflow
safety, and fault-tolerance – and accounts for 50–70% of the
total cost in all situations except large finite-sequence multi-
packet transfers. Another perspective on these results is to
view these overheads as costs of specific network features –
arbitrary delivery order, finite network and node buffering,
and limited fault-handling capabilities. Since the CMAM
layer is already quite efficient, these costs are unlikely to be
eliminated through improved software implementations.

Thus, there are two alternatives for reducing these costs:
either lower the level of user communication services, or
raise the level of services provided by the network. The for-
mer alternative is, in general, undesirable because it requires
parallel software to build messaging services and manage
their cost as appropriate. In the next section, we consider the
costs of the same multi-packet protocols using a messaging
layer built atop a routing substrate that provides higher-level
services. As we shall see, almost all of the software over-
head attributed to various user communication services can
be eliminated; applications need not sacrifice efficiency when
using high-level communication services.

3Some systems may include buffer management to provide overflow
safety. This only introduces additional buffer management overhead, but
does not affect the other components.

4 Messaging layer with high-level network
features

Several networks now provide higher level features. Ex-
amples include the Sunshine ATM switch [9] and DEC Au-
tonet II [22] which provide in-order delivery of messages,
and TRANSIT [17] which supports implicit acknowledge-
ment of message reception. In this section, we consider the
implementation of the protocols described in Section 3 us-
ing a messaging layer designed on top of a specific routing
substrate which provides similar higher level services.

We consider the design of a messaging layer atop a low-
cost routing framework called Compressionless Routing [16]
which provides the following features in hardware:

� Order-preserving transmission
� Deadlock freedom independent of packet acceptance

guarantees
� Fault-tolerant transmission at the packet level

Compressionless Routing (CR) provides order-preserving
transmission by ensuring that messages, issued in sequence
from the sender, must begin to arrive at their destinationprior
to completely entering the network. Most networks guaran-
tee deadlock freedom only under the assumption that each
output eventually extracts all packets delivered to it. How-
ever, CR ensures deadlock freedom independent of such ac-
ceptance guarantees by providing a mechanism for releasing
the resources of a message path whenever the possibility of
deadlock is detected. This mechanism eventually frees up all
network resources, allowing other messages in the network
to make progress even if a destination node, having commit-
ted all its resources, cannot extract any messages from the
network. Finally, CR provides fault-tolerant packet delivery
by exploiting the acceptance of the last flit as an end-to-end
acknowledgement.

To characterize the benefits of these higher-level hardware
services, we assume that they are implemented on hardware
similar to the CM-5 network described in Section 3.1 with
a packet size of five words. We first describe how the three
protocols of Section 3 are implemented using the above high-
level features, and then compare their costs with those of the
CMAM-based implementations.

4.1 Costs of communication protocols

Single-packet delivery The costs for sending and receiv-
ing a single packet are identical to the CMAM case, costing
20 instructions at the source and 27 instructions at the desti-
nation. These costs are fixed by the network interface, which
is identical in the two cases. However, unlike the CMAM
implementation, single-packet delivery now meets all re-
quirements of user communication services: it is guaranteed
to be order preserving, fault-free and not cause deadlock or
buffer overflow.

Finite sequence, multi-packet delivery This protocol for
transferring data from a source memory buffer to a desti-
nation memory buffer is shown in Figure 5 and consists of
four steps: First, the sender breaks up the large user message
into several packets and injects them into the network (Step

1). Second, on successful receipt of the header packet which
contains information about the size of the transfer,4 the desti-
nation node allocates a buffer large enough to store the entire
message being transmitted (Step 2). The destination then
takes packets from the network and stores their data into the
buffer associated with the transmission. The arrival of the last
packet invokes the user handler (Step 3). This protocol dif-
fers from the corresponding CMAM-based protocol in three
ways: there are no buffer allocation messages, no overhead
for in-order delivery, and no end-to-end acknowledgements.
Buffer preallocation is unnecessary since CR allows nodes,
which have committed all their resources, to reject incoming
messages (by rejecting the header packet) without deadlock-
ing the network. In-order delivery comes for free since the
CR routing substrate preserves transmission order, and the
end-to-end acknowledgement is made unnecessary because
each packet is reliably delivered.

MESSAGING
 LAYER

MESSAGING
 LAYER

free_buffer

USER
CODE

USER
CODE

data transfer1

2 allocate
 buffer

invoke
handler3

Figure 5: Finite sequence protocol using high-level network
features.

Thus, there are only two components to the protocol cost:
base single-packet deliveries (Steps 1 and 3) and buffer man-
agement (Step 2). The base cost consists of multiple trans-
missions of single packets. Buffer management has negli-
gible overhead when compared with the CMAM-based pro-
tocol, its cost arising from having to store the pointer to the
allocated buffer in a table, associating it with the incoming
message.5 Note that an additional advantage which does not
show up in our accounting is that the user message need not
be source buffered because data is reliably transmitted once
it is successfully injected into the network.

The protocols costs are shown on the left in Figure 6. The
bar charts compare the costs in the CMAM implementation
(left bars) with the implementation using the high-level net-
work features (right bars). The slightly lower destination
cost in the high-level feature based protocol is due to fewer
branches in the packet reception code, and a specialized last-
packet handler. The costs of the high-level feature based
protocol correspond exactly to the base costs of the CMAM
implementations, providing a 10-50% improvement (based
on message size) by effectively eliminating all the overheads
of providing user communication requirements in software.

Indefinite sequence, multi-packet delivery The imple-
mentation of this protocol is simplified considerably with
the higher level of network services offered by the routing

4We assume that the network interface can selectively accept a header
packet based on a hardware check for the availability of node resources. A
rejected header packet results in the tear down of the message path and later
retransmission.

5As in the CMAM-based protocol, we exclude the actual allocation cost
since our interest is only in the protocol costs.

0

100

200

300

400

500
Base Cost Buffer Mgmt In-order Del. Fault-toler.

Src Dest Total TotalDestSrc

Finite sequence Indefinite sequence

Message size = 16 words

0

5000

10000

15000

20000

25000

30000

Base Cost Buffer Mgmt In-order Del. Fault-toler.

Src Dest Total Src Dest Total

Finite sequence Indefinite sequence

Message size = 1024 words

Figure 6: Comparison of messaging layer costs.

substrate. This protocol is shown in Figure 7 and is imple-
mented essentially for free on top of multiple single-packet
transmissions. Unlike the corresponding CMAM-based pro-
tocol, there are no overheads for in-order delivery or fault-
tolerance; both are supported directly in hardware.

MESSAGING
 LAYER

MESSAGING
 LAYER

USER
CODE

USER
CODE

data transfer1

Figure 7: Indefinite sequence protocol using high-level net-
work features.

The protocol costs are shown on the right in Figure 6.
As can be seen from the comparison with the CMAM im-
plementation, the higher-level network features reduce the
software costs in the messaging layer by �70%.

We have seen in this section that the software cost of
messaging can be significantly reduced by designing routing
networks which replace (or otherwise make unnecessary)
software to implement user communication requirements.
Specifically, networks which provide message ordering, end-
to-end flow control, and hardware support for fault-tolerance
can significantly reduce the end-to-end cost of communica-
tion.

5 Discussion

No single study can address all of the issues. In this
study, we have chosen to put aside issues of protection and

Finite sequence, multi-packet delivery
Feature Source Cost Destination Cost Total Cost (insns)

Base Cost 3 + (18+ n)p 18 + (14 + n)p 21 + (32 + 2n)p
Buffer Mgmt. 47 101 148
In-order Del. 2p 1 + 3p 1 + 5p
Fault-Toler. 27 20 47

Total 77 + (20 + n)p 140+ (17+ n)p 217 + (37 + 2n)p

Indefinite sequence, multi-packet delivery
Feature Source Cost Destination Cost Total Cost (insns)

Base Cost (18 + n

2)p 13 + (12+ n

2)p 13 + (30 + n)p

Buffer Mgmt. – – –
In-order Del. 5p 29p 34p
Fault-Toler. (27 + n

2)p 20p (47 + n

2)p

Total (50 + n)p 13 + (61+ n

2)p 13 + (111+ 3n
2)p

0

10

20

30

40

50

60

70

80

4 8 16 32 64 128

O
ve

rh
ea

d
as

 %
 o

f t
ot

al
 c

os
t

Packet size (in words)

finite-sequence protocol
indefinite-sequence protocol

Figure 8: (Left) Generalized breakdown of CMAM costs into messaging layer features: n = packet size in words, p = number
of packets in message. (Right) Messaging layer overhead versus packet size for 1024 words of communication.

processor scheduling, and focus on basic delivery, ordering,
buffer management, and fault tolerance. Clearly, any solu-
tion which reduces messaging overhead to the level of tens
of instructions must deal with the former issues.

Studying a specific network, network interface, and mes-
saging layer limits the applicability of our conclusions to
a range of similar systems. These concerns can only be
mitigated by studying a system that is as representative as
possible so that the conclusions are broadly applicable. We
believe that CMAM on the CM-5 is representative of many
future messaging systems. However, in the following para-
graphs we consider how our results would be affected by
modest changes in machine architecture.

Larger packet sizes The CMAM implementation supports
four data words per packet; however, other parallel machines
and even the CM-5E network interface support larger packet
sizes. Our results can be parameterized based on the hard-
ware packet size, n (words per packet) and p (packets per
message). These generalized costs are shown in Figure 8.

The parameterized results show that the CMAM messag-
ing overhead is not just an artifact of the CM-5’s small packet
size. For example, the plot on the right of Figure 8 shows the
messaging overhead for a 1024-word message as a fraction
of the total software communication cost as the packet size
is varied from 4–128 words. It is clear that messaging over-
head for indefinite-sequence multi-packet delivery remains
significant over the range of packet sizes. For finite-sequence
multi-packet deliveries, the messaging overhead is lower, but
still significant, accounting for 9–11% of the total cost.

Improved network interfaces and DMA hardware If
network interfaces can be integrated on-chip, as in [12, 6],
the basic cost of communication can be reduced, but this will
not reduce protocol costs in the messaging layer on which
our study focuses. If the base cost is reduced, that increases
the importance of the costs in the rest of the messaging layer.
Similarly, while DMA hardware can reduce the cost of mov-
ing large amounts of data, it is unlikely that it would give
much benefit for the packet sizes we have considered. Fur-
ther, as with network interface improvements, this would
also reduce the base cost, increasing the importance of the
software messaging layers.

Implications for network design One important contri-
bution of this study is to concretely establish the cost and
benefit of a variety of network features. In many cases, there
is a tension between optimizing routing performance, and
improving end-to-end communication performance. As we
have seen in this study, some features which produce im-
proved routing performance may incur large software costs.
For example, a number of designs have proposed out-of-
order delivery in order to improve network routing perfor-
mance (randomization [18] or adaptive routing [20, 5, 7]).
Our results show clearly that packet sequencing and reorder-
ing incur a significant cost, so the benefits of out-of-order
delivery for the network must be weighed against the soft-
ware costs of such behavior. Because software overhead is
generally much larger than hardware routing time, in many
cases, the overheads of such features will outweigh their
benefits.

Another perspective is that our results point out where
“high level” network features can be of most benefit. As we
have shown, a network design which provides some simple
high-level features can eliminate the need for parts of the
messaging layer, reducing communication cost. Specifically,
a network that provides in-order delivery, end-to-end flow
control, and reliable delivery would obviate much of the
need for a messaging layer, reducing the messaging cost to
that of basic data movement.

Reducing communication features We have focused on
how to support high level communication features, but an
obvious alternative is to provide lower level services to the
application. Such an approach has the drawback that it places
the burden on the parallel software to build messaging ser-
vices and manage their cost as appropriate. This choice
is problematic as software is already a major challenge in
most parallel systems. Achieving low cost implementations
without compromising on functionality has the significant
advantage of insulating programmers and compilers from
reasoning about network scheduling and resource usage.

Communication cost versus latency Finally, we have fo-
cused on instruction counts as the primary measure of com-
munication cost. Latency is a reasonable alternative perfor-
mance metric, but is hard to measure in a portable fashion

because it depends on a host of low-level hardware detail
as well as software policies such as scheduling. For cases
where software overhead dominates, instruction counts are
indicative of communication latency.

6 Related Work

A great deal of attention has been focused on the design
of interconnection networks, network interfaces, and even
fast messaging layers. The primary distinction of our study
is that it seeks to implement high level software communi-
cation primitives without compromising on performance or
functionality.

Research on interconnection networks has focused pri-
marily on optimizing for bandwidthand latency performance
metrics [23, 8]. While these are certainly important at-
tributes, much less energy has gone into exploring what
impact advanced network features (adaptive routing, virtual
channels) have on network interface complexity and soft-
ware overhead. Our work addresses some of these issues.
Only recently have routing studies begun to consider the pos-
sibility of supporting higher level communication features in
hardware to increase end-to-end performance [22, 16].

Research on network interfaces has focused primarily on
reducing message injection (and reception) overhead [12, 6,
19] or offloading the communication onto a coprocessor [13,
15, 2]. Improvements in network interfaces only reduce
the basic communication cost. From our studies, we have
seen that reducing the software protocol overhead is equally
important. Further, reductions in the basic cost will increase
the importance of reducing software protocol overhead.

Researchers have explored several approaches for reduc-
ing the cost of messaging layers. While substantial progress
has been made, much of it has been made at the cost of re-
ducing functionality. For example, techniques for speeding
interprocess communication [1, 21] have resorted to lower
level (and more risky) communication primitives to achieve
high performance. In parallel systems, a number of reduced
messaging layers have also been developed. In fact, active
messages, the basis for our study, is one such reduced layer.
The lowest level primitive – single packet send – is widely
used, but is unsafe because no flow control is performed.6

While reduced functionality layers may be a necessary ex-
pedient, a better long term solution would involve full func-
tionality communication primitives and high performance.

7 Conclusion

We have described a study to measure the end-to-end
costs of communication by analyzing the costs incurred by a
prototypical messaging layer, specifically the CMAM layer
running on the CM-5. Our study provides a piecewise break-
down of the communication costs, relating specific network
features to the software components required for supporting
user communication services. Our results show that up to
50–70% of end-to-end messaging cost is attributable to the
arbitrary order of packet delivery, finite buffering,and limited

6The CMAM round-trip protocol using the two separate CM-5 networks
however is safe.

fault-handling capabilities. For example, despite CMAM’s
efficiency, the cost of delivering a 16-word message is be-
tween 285 and 481 instructions using a finite sequence, multi-
packet protocol. While improvements to the CM-5 network
interface are possible, paradoxically, such improvements will
only worsen the situation, causing these network features to
contribute an even larger percentage of the cost.

One way to reduce these software overheads is by using
messaging layers which run atop networks providing higher-
level services. Networks similar to Compressionless Routing
which provide services such as in-order delivery, end-to-end
flow control, and fault-tolerance at the packet level are not
only practical but also considerably simplify the design of
software messaging layers. Our studies, using a messaging
layer based on Compressionless Routing, show that virtually
all software overheads associated with protocols atop lower-
level networks can be eliminated.

This study highlightsa fundamental tension between opti-
mizing routing performance and reducing software overhead.
As we have seen, some network features may well incur
software overheads that outweigh the features’ benefits. Be-
cause the software overhead is often a dominant contributor,
network designers should also consider how their decisions
affect the software messaging layers. Further, based on the
results of this study, we believe the most significant way to
further reduce messaging overhead is for the hardware to
provide functionality which eliminates much of the need for
software layers.

Acknowledgements

The research described in this paper was supported in
part by NSF grant CCR-9209336, ONR grants N00014-92-J-
1961 and N00014-93-1-1086, and NASA grant NAG 1-613.

The authors thank Jae Hoon Kim and John Plevyak for
participating in several discussions about the messaging pro-
tocols described in the paper. We also thank the anonymous
reviewers for their useful comments.

References

[1] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M.
Levy. User-level interprocess communication for shared
memory multiprocessors. ACM Transactions on Computer
Systems, 9(2):175–198, May 1991.

[2] M. A. Blumrich et al. Virtual memory mapped network in-
terface for the SHRIMP multicomputer. In Proceeding of
the International Symposium on Computer Architecture,April
1994.

[3] V. Cerf and R. Kahn. A protocol for packet network intercon-
nection. IEEE Transactions on Communications, 1974.

[4] W. J. Dally. Virtual channel flow control. IEEE Transactions
on Parallel and Distributed Systems, 3(2):194–205, 1992.

[5] W. J. Dally and H. Aoki. Deadlock-free adaptive routing in
multicomputer networks using virtual channels. IEEE Trans-
actions on Parallel and Distributed Systems, 4(4):466–74,
April 1993.

[6] W. J. Dally et. al The J-Machine: A fine-grain concurrent
computer. In Information Processing 89, Proceedings of the
IFIP Congress, pages 1147–1153, August 1989.

[7] J. Duato. On the design of deadlock-free adaptive routing
algorithms for multicomputers: Design methodologies. In
Proceedingsof Parallel Architecturesand LanguagesEurope,
1991.

[8] C. Leiserson et al. The network architecture of the Connection
Machine CM-5. In Proceedingsof the Symposium on Parallel
Algorithms and Architectures, 1992.

[9] J. Giacopelli et al. Sunshine: A high-performance self-routing
broadband packet-switch architecture. IEEE J. Selected Areas
Comm., 9(8):1289 – 1298, October 1991.

[10] Message Passing Interface Forum. The MPI message passing
interface standard. Technical report, University of Tennessee,
Knoxville, April 1994.

[11] G. Geist and V. Sunderam. The PVM system: Supercomputer
level concurrent computation on a heterogeneous network of
workstations. In Proceedingsof the Sixth Distributed Memory
Computers Conference, pages 258–61, 1991.

[12] D. S. Henry and C. F. Joerg. A tightly-coupled processor-
network interface. In Proceedings of the Fifth International
Conference on Architectural Support for Programming Lan-
guages an Operating Systems, pages 111–122, 1992.

[13] M. Homewood and M. McLaren. Meiko CS-2 interconnect
Elan – Elite design. In Proceedingsof the IEEE Hot Intercon-
nects Symposium. IEEE TCMM, August 1993.

[14] B. Horst. Massively-parallel systems you can trust. In Pro-
ceedings of COMPCON Spring ’94. IEEE Computer Society,
IEEE Press, February 1994.

[15] Intel Corporation. Paragon XP/S Product Overview, 1991.

[16] J. Kim, Z. Liu, and A. Chien. Compressionless routing: A
framework for adaptive and fault-tolerant routing. In Pro-
ceedings of the International Symposium on Computer Archi-
tecture, April 1994.

[17] T. F. Knight. Technologies for low latency interconnection
switches. In Proceedings of ACM Symposium on Parallel
Algorithms and Architectures, 1989.

[18] S. Konstantinidou and L. Snyder. Chaos router: Architec-
ture and performance. In Proceedings of the International
Symposium on Computer Architecture, pages 212–21, 1991.

[19] J. Kubiatowicz and A. Agarwal. Anatomy of a message send
in Alewife. In Proceedings of the International Conference
on Supercomputing, 1993.

[20] L. Ni and C. Glass. The Turn model for adaptive routing.
In Proceedings of the International Symposium on Computer
Architecture, 1992.

[21] M. D. Schroeder and M. Burrows. Performance of Firefly
RPC. ACM Transactions on Computer Systems, 8(1):1–17,
February 1990.

[22] Jim Scott et al. Link by link, per VC credit based flow con-
trol. Technical Report 94-0168, The ATM Forum Technical
Committee, 1994.

[23] C. Seitz and W. Su. A family of routing and communication
chips based on the Mosaic. In Proceedings of the University
of Washington Symposium on Integrated Systems, 1993.

[24] Thinking Machines Corporation. Connection Machine CM-5,
Technical Summary, November 1992.

[25] Thinking Machines Corporation. CMMD Reference Manual,
V3.0, May 1993.

[26] T. von Eicken,D. Culler, S. Goldstein, and K. Schauser.Active
Messages: a mechanism for integrated communication and
computation. In Proceedings of the International Symposium
on Computer Architecture, 1992.

A Breakdown of instruction counts for
CMAM-based multi-packet protocols

The instruction counts for the multi-packet messaging
protocols described in Section 3 can be further classified into
several subcategories. We identify three subcategories based
on the cost hierarchy prevalent in existing machines:

1. register-based instructions (reg)
2. loads and stores to memory (mem)
3. loads and stores to memory-mapped devices (dev)

It is expected that instructions belonging to the reg category
will incur less overhead than instructions belonging to the
mem and dev categories. Such a classification enables the
messaging overhead to be characterized in terms of cycle
counts using a simple weighted cost model. These models
can in turn be specialized to the machine and applications
of interest. For example, a model for the CM-5 hardware
might assume that reg and mem instructions cost 1 cycle
each, while a dev instruction costs 5 cycles [24].

Table 3 shows the instruction count breakdown into the
subcategories above for the CMAM-based multi-packet pro-
tocols described in Section 3.

Message size = 16 words
Finite sequence, multi-packet delivery
Feature Source Destination

reg mem dev reg mem dev

Base Cost 62 9 20 62 11 17
Buffer Mgmt. 36 1 10 79 12 10
In-order Del. 8 – – 13 – –
Fault-toler. 22 – 5 14 1 5

Total 128 10 35 168 24 32

Indefinite sequence, multi-packet delivery
Feature Source Destination

reg mem dev reg mem dev

Base Cost 56 4 20 52 – 17
Buffer Mgmt. – – – – – –
In-order Del. 8 12 – 70 46 –
Fault-toler. 88 8 20 56 4 20

Total 152 24 40 178 50 37

Message size = 1024 words
Finite sequence, multi-packet delivery
Feature Source Destination

reg mem dev reg mem dev

Base Cost 3842 513 1280 3086 515 1025
Buffer Mgmt. 36 1 10 79 12 10
In-order Del. 512 – – 769 – –
Fault-toler. 22 – 5 14 1 5

Total 4412 514 1295 3948 528 1040

Indefinite sequence, multi-packet delivery
Feature Source Destination

reg mem dev reg mem dev

Base Cost 3584 256 1280 2572 – 1025
Buffer Mgmt. – – – – – –
In-order Del. 512 768 – 4480 2944 –
Fault-toler. 5632 512 1280 3584 256 1280

Total 9728 1536 2560 10636 3200 2305

Table 3: Instruction subcategories for CMAM-based finite
sequence and indefinite sequence, multi-packet protocols.

