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Lectures 16, 17: Dataflow Analysis

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Static Analysis

Based on slides by Jeff Foster
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Abstract syntax trees

ASTs are abstract
▶ They don’t contain all information in the program

⋆ E.g., spacing, comments, brackets, parentheses
▶ Any ambiguity is resolved

⋆ E.g., a + b + c produces the same AST as (a + b) + c

but not great for analysis
▶ An AST has many similar forms

⋆ E.g., for,while, repeat..until, . . .
⋆ E.g., if, switch, . . .

▶ AST expressions might be complex, nested
⋆ E.g., (10 ∗ x) + (y > 3?5 ∗ z : z)

We want a simpler representation for analysis
▶ …at least for dataflow analysis
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Control-flow graph (CFG)

A directed graph, where:
▶ Each node represents a statement
▶ Each edge represents control flow (i.e. what happens after what)

Statements may be
▶ Assignments x := y op z or x := op y
▶ Copy statements x := y
▶ Branches goto L or if x relop y goto L
▶ etc.
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Control-flow graph example
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Kinds of CFGs

We usually don’t include declarations (e.g., int x)
▶ Some CFG implementations do

We may add special, unique “enter” and “exit” nodes
We can group “straight-line” code into basic blocks

▶ Straight-line: without branches, simple instructions one after the other
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Control-flow graph with basic blocks

Can lead to more efficient implementations
But, is more complicated

▶ We will use single-statement blocks here
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Control-flow graph with entry/exit
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CFG versus AST

CFGs are simpler than ASTs
▶ Fewer forms, less redundancy, simpler expressions
▶ Capture flow of control better, easier to see execution paths

But, AST is a more faithful representation
▶ CFGs introduce temporary variables
▶ CFGs lose the block-structure of the program

AST benefits
▶ Easier for reporting errors and other compiler messages
▶ Easier to explain to the programmer
▶ Easier to unparse and produce code closer to the original
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Dataflow analysis

A framework for proving facts about programs
Reasons about lots of little facts
Little or no interaction between different facts

▶ Works best on properties about how the program computes
Based on all paths through the program control-flow

▶ Including infeasible paths
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Available expressions

An expression e is available at a program point p if:
▶ e is computed on every path leading to p, and
▶ the value of e has not changed since it was last computed

Used in compiler optimization
▶ If an expression is available don’t recompute its value
▶ Instead, save it in a register the first time, and use that
▶ …if possible
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Dataflow facts

Is expression e available?
Possible facts:

▶ a + b is available
▶ a ∗ b is available
▶ a + 1 is available
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Gen and kill

What is the effect of each
statement on the set of facts?

Stmt Gen Kill
x := a + b a + b
y := a ∗ b a ∗ b

a := a + 1
a + 1
a + b
a ∗ b
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Terminology

A joint point is a program point where two branches meet
Available expressions is a forward must problem

▶ Forward means the facts flow from “in” to “out” at every node, follow
the edge arrows

▶ Must means at every joint point, the property must hold on all paths
joined

There are also backward and may problems
▶ Backward means the facts flow from “out” to “in” at every node,

backwards on the edges
▶ May means at every joint point, the property must hold on any of the

joined paths
All combinations:

▶ Forward may, backward must, etc.
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Dataflow equations

If s is a statement
▶ succ(s) is the set of all immediate successor statements of s
▶ pred(s) is the set of all immediate predecessor statements of s
▶ In(s) is the set of facts at the program point just before s
▶ Out(s) is the set of facts at the program point just after s

Forward must:
▶ In(s) =

∩
s′∈pred(s) Out(s′)

▶ Out(s) = Gen(s) ∪ (In(s) \ Kill(s))
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Live variables

A variable x is live at a program point p if:
▶ x will be used on some execution path starting at p
▶ before x is overwritten

Compiler optimization
▶ If a variable is not live, there’s no need to keep it in a register
▶ If a variable is dead at an assignment, we can eliminate the assignment
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Dataflow equations

Liveness is a backward may problem
▶ To decide if a variable is live at a program point p, we need to look at

the paths starting at p
▶ The variable is live if it is used on any future program point

Backward may:
▶ Out(s) =

∪
s′∈succ(s) In(s′)

▶ In(s) = Gen(s) ∪ (Out(s) \ Kill(s))

Pratikakis (CSD) Dataflow CS490.40, 2015-2016 16 / 50



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Gen and kill

All possible facts:
▶ a is live
▶ b is live
▶ x is live
▶ y is live

What is the effect of each
statement on the set of facts?

Stmt Gen Kill
x := a + b a, b x
y := a ∗ b a, b y

y > a a, y
a := a + 1 a a
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Very busy expressions

An expression e is very busy at a program point p if:
▶ On every path from p, expression e is evaluated before its value is

changed
Compiler optimization

▶ The compiler can lift very busy expression computation
What kind of problem?

▶ Forward or backward?
▶ May or must?
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Reaching definitions

A definition of a variable x is an assignment to x
A definition of a variable x reaches a program point p if:

▶ There is no intervening assignment to x between the definition and p

Also called “def-use” information
What kind of problem?

▶ Forward or backward?
▶ May or must?
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Dominators

A program point p dominates another program point p′ if:
▶ p occurs in all paths from the start of the program to p′

What kind of problem?
▶ Forward or backward?
▶ May or must?
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Space of dataflow analyses

May Must

Forward Reaching
definitions

Available
expressions

Backward Live
variables

Very busy
expressions

Most dataflow analyses can be classified this way
▶ A few cannot: e.g., bidirectional analyses

Lots of literature on dataflow analysis
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So far

ASTs are very abstract, not ideal for program analysis
Control-flow graph is an alternative representation of the program

▶ Captures flow of control, all execution paths
▶ Better represents computation steps
▶ But, not as close to the original source

Dataflow analysis: computes a solution to dataflow equations for a
program property

▶ Depending on property: forward/backward, may/must analysis
▶ Worklist algorithm, computes solution per program point

Examples: available expressions, liveness, very busy expressions, etc.
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Formalizing it

Some algebra background
Formalization of dataflow analysis
Properties of dataflow algorithms

▶ Termination
▶ Solving algorithms
▶ Fixpoints
▶ Accuracy

Implementation issues
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Partial orders

A partial order is a pair (P,≤) of a set P and a relation ≤ such that:
▶ (≤) ⊆ (P × P): The relation ≤ is defined only over elements of P
▶ ≤ is reflexive: x ≤ x, for all x ∈ P
▶ ≤ is anti-symmetric: if x ≤ y and y ≤ x then y = x
▶ ≤ is transitive: if x ≤ y and y ≤ z then x ≤ z
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Lattices

A partial order is a lattice if ⊓ and ⊔ are defined such that:
▶ ⊓ is the meet, or greatest lower bound operation

⋆ x ⊓ y ≤ x and x ⊓ y ≤ y
⋆ if z ≤ x and z ≤ y then z ≤ x ⊓ y

▶ ⊔ is the join, or least upper bound operation
⋆ x ≤ x ⊔ y and y ≤ x ⊔ y
⋆ if x ≤ z and y ≤ z then x ⊓ y ≤ z
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Lattices (cont’d)

A finite partial order is a lattice if meet and join exist for every pair of
elements
A lattice has unique elements ⊤ (top) and ⊥ (bottom) such that:

▶ x ⊓ ⊥ = ⊥
▶ x ⊓ ⊤ = x
▶ x ⊔ ⊥ = x
▶ x ⊔ ⊤ = ⊤

In a lattice
▶ x ≤ y if and only if x ⊓ y = x
▶ x ≤ y if and only if x ⊔ y = y

A partial order P is a complete lattice if meet and join are defined on
any set S ⊆ P
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Available expressions lattice

Typically, sets of dataflow facts form a lattice
Top element is ⊤ = {a + b, a ∗ b, a + 1}
Bottom element is ⊥ = ∅
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Forward-must dataflow algorithm

Forward-Must(CFG)
for all statements s ∈ CFG

Out(s) := ⊤
W := {all statements}
while W ̸= ∅
take s from W
In(s) :=

∩
s′∈pred(s) Out(s′)

tmp := Gen(s) ∪ (In(s) \ Kill(s))
if tmp ̸= Out(s) then

Out(s) := tmp
W := W ∪ succ(s)

end if

end while
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Monotonicity

A function f on a partial order is monotonic if

x ≤ y => f(x) ≤ f(y)

Easy to check that operations to compute In and Out are monotonic
▶ In(s) :=

∩
s′∈pred(s) Out(s′)

▶ tmp := Gen(s) ∪ (In(s) \ Kill(s))︸ ︷︷ ︸
fs(In(s))

Putting these together
▶ tmp := fs

(
ds′∈pred(s) Out(s′)

)
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Useful lattices
(2S,⊆) forms a lattice for any set S

▶ 2S is the powerset of S: the set of all subsets
If (S,≤) is a lattice, so is (S,≥)

▶ I.e., we can flip a lattice upside-down and still have a lattice

The lattice for constant propagation is:
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Termination

The algorithm terminates because
▶ The lattice has finite height
▶ The operations to compute In and Out are monotonic
▶ On every iteration:

⋆ We reduce the size of the worklist or
⋆ we move the set of facts at a statement down the lattice
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Forward dataflow

Forward(CFG)
for all statements s ∈ CFG

Out(s) := ⊤
W := {all statements}
while W ̸= ∅
take s from W
tmp := fs

(
ds′∈pred(s) Out(s′)

)
if tmp ̸= Out(s) then

Out(s) := tmp
W := W ∪ succ(s)

end if

end while
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Lattices for known analyses

Available expressions
▶ P = {sets of expressions}
▶ S1 ⊓ S2 = S1 ∩ S2

▶ ⊤ = {all expressions}
Reaching definitions

▶ P = {all assignment statements}
▶ S1 ⊓ S2 = S1 ∪ S2

▶ ⊤ = ∅
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Fixpoints

We always start with ⊤
▶ Every expression is available/no definitions reach this point
▶ The most optimistic assumption
▶ The strongest hypothesis possible: true at the fewest number of states

Revise as we encounter contradictions
▶ Always move down the lattice (using ⊓)

Result: greatest fixpoint
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Forward vs. backward dataflow

Forward(CFG)
for all statements s ∈ CFG

Out(s) := ⊤
W := {all statements}
while W ̸= ∅
take s from W
tmp := fs

(
ds′∈pred(s) Out(s′)

)
if tmp ̸= Out(s) then

Out(s) := tmp
W := W ∪ succ(s)

end if

end while

Backward(CFG)
for all statements s ∈ CFG

In(s) := ⊤
W := {all statements}
while W ̸= ∅
take s from W
tmp := fs

(
ds′∈succ(s) In(s′)

)
if tmp ̸= In(s) then

In(s) := tmp
W := W ∪ pred(s)

end if

end while
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Termination revisited

How many times can we apply the step:
▶ tmp := fs

(
ds′∈pred(s) Out(s′)

)
▶ if tmp ̸= Out(s) then ...

Claim: Out(s) only shrinks
▶ Proof: Out(s) starts as ⊤

⋆ so it must be tmp ≤ ⊤ after the first step
▶ Assume Out(s) shrinks for all predecessors s′ of s
▶ Then ds′∈pred(s) Out(s′) also shrinks
▶ Since fs is monotonic, fs

(
ds′∈pred(s) Out(s′)

)
shrinks
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Termination revisited (cont’d)

A descending chain in a lattice is a sequence
▶ x0 ⊏ x1 ⊏ . . .

The height of a lattice is the length of the longest descending chain in
the lattice
Then, dataflow must terminate in O(nk) time, where

▶ n is the number of statements in a program
▶ k is the height of the lattice
▶ …assuming the meet operation takes O(1) time
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Least vs. greatest fixpoint

Usually in dataflow we start with ⊤, move down using ⊓
▶ To do this, we need a meet semilattice with top

⋆ complete meet semilattice: meet defined for all elements
⋆ finite height ensures termination

▶ We compute the greatest fixpoint: the solution highest in the lattice
In other settings (e.g, denotational semantics) we start with ⊥, move
up using ⊔

▶ Computes the least fixpoint
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Distributive dataflow problems

By monotonicity we have f(x ⊓ y) ≤ f(x) ⊓ f(y)
A function f is distributive if f(x ⊓ y) = f(x) ⊓ f(y)
When using distributive functions, joins lose no information:

k(h(f(⊤) ⊓ g(⊤))) =

k(h(f(⊤)) ⊓ h(g(⊤))) =

k(h(f(⊤))) ⊓ k(h(g(⊤)))
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Accuracy

Ideally, we want the meet over all paths (MOP) solution
▶ Assume fs is the transfer function of statement s
▶ Assume p is a path s1, . . . , sn
▶ We define fp = fn; . . . ; f1
▶ Let path(s) be the set of paths from the entry to s
▶ Then

MOP(s) = d
p∈path(s)

fp(⊤)

If a dataflow problem is distributive then algorithm produces the MOP
solution
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What problems are distributive?

Analyses of how the program computes
▶ Live variables
▶ Available expressions
▶ Reaching definitions
▶ Very busy expressions

All Gen/Kill problems are distributive
Analyses of what the program computes are not distributive

▶ Constant propagation
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Implementation issues

Dataflow facts are assertions of what is true at every program point
We represent the set of facts as a bit-vector

▶ Order all possible facts
▶ The i-th bit represents the i-th fact
▶ Intersection is bitwise and
▶ Union is bitwise or

“Only” a constant factor speedup
▶ But very useful in practice!
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Basic blocks

A basic block is a sequence of statements such that
▶ No statement except the last is a branch
▶ There are no branches to any statement in the block except the first

Practically, when implementing dataflow
▶ Compute Gen/Kill for each basic block

⋆ By composing the transfer functions of statements
▶ Store In /Out sets only for each basic block
▶ Typical basic block is around 5 statements
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CFG visiting order - acyclic

Assume forward dataflow
▶ Let G = (V,E) be the control-flow graph
▶ and k be the height of the lattice

If G is acyclic, visit it in topological order
▶ For every edge, visit the head node before the tail node

Running time is O(|E|)
▶ Regardless of the lattice size
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CFG visiting order - cycles

If G has cycles, visit in reverse postorder
▶ Order of depth-first search

Let Q be the max number of back-edges on a path without cycles
▶ Depth of loop nesting
▶ Back edge goes from descendant node to ancestor node in DFS tree

Then if ∀x.f(x) ≤ x (sufficient, not necessary)
▶ Running time is O((Q + 1)|E|)

⋆ depends on definition of ⊤: f shrinks the fact set
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Flow-sensitivity

Dataflow analysis is flow-sensitive
▶ The answer produced depends on the order of statements in the

program
▶ We keep track of facts per program point

Alternative: flow-insensitive analysis
▶ Analysis result does not depend on the statement order
▶ Standard example: types

⋆ A variable has the same type before and after any statement
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Dataflow analysis and functions

What happens at function calls?
▶ Lots of possible solutions in the literature

Usually, analyze one function at a time
▶ Called intraprocedural analysis
▶ When analyzing multiple functions together called interprocedural

⋆ Special case: whole-program analysis

Consequences of intraprocedural analysis
▶ Call to function kills all dataflow facts
▶ Depending on language, we may be able to save some: e.g., called

function cannot affect caller’s local variables
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Dataflow analysis and pointers

Dataflow is good at analyzing local variables
▶ What about values in the heap?
▶ Not modeled in traditional dataflow

In practice, when ∗x := e
▶ Assume it can write anywhere
▶ All dataflow facts killed!
▶ Better: assume it can write all variables whose address is taken

In general: it’s hard to analyze pointers
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Analysis terminology

Must vs. May
▶ Definition depends on which answer is imprecise: yes/maybe, or

no/maybe result
▶ Not always followed in the literature

Forward vs. Backward
Flow-sensitive vs. flow-insensitive
Distributive vs. non-distributive
Intraprocedural vs. interprocedural vs. whole-program
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Dataflow analysis used in practice

Moore’s law: Hardware advances double computing power every 18
months
Proebsting’s law: Compiler advances double computing power every
18 years

▶ Costs less than making chips, but not very much worth the trouble for
optimization

Useful for other things:
▶ bug-finding: memory leaks, security vulnerabilities, etc.
▶ support for high-level language-features
▶ program understanding
▶ …
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