Lectures 16, 17: Dataflow Analysis

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Static Analysis

Based on slides by Jeff Foster

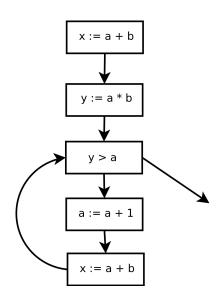
Abstract syntax trees

- ASTs are abstract
 - ▶ They don't contain all information in the program
 - ★ E.g., spacing, comments, brackets, parentheses
 - Any ambiguity is resolved
 - ★ E.g., a + b + c produces the same AST as (a + b) + c
- but not great for analysis
 - ► An AST has many similar forms
 - ★ E.g., for, while, repeat..until, . . .
 - ★ E.g., if, switch, . . .
 - AST expressions might be complex, nested
 - ★ E.g., (10*x) + (y > 3?5*z:z)
- We want a simpler representation for analysis
 - ...at least for dataflow analysis

Control-flow graph (CFG)

- A directed graph, where:
 - ▶ Each node represents a statement
 - Each edge represents control flow (i.e. what happens after what)
- Statements may be
 - Assignments $x := y \ op \ z \ or \ x := op \ y$
 - Copy statements x := y
 - ▶ Branches goto L or if x relop y goto L
 - etc.

Control-flow graph example

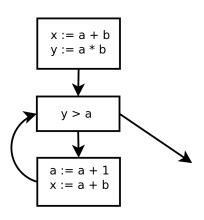


4 / 50

Kinds of CFGs

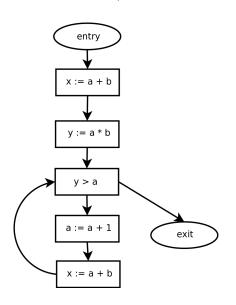
- We usually don't include declarations (e.g., int x)
 - ▶ Some CFG implementations do
- We may add special, unique "enter" and "exit" nodes
- We can group "straight-line" code into basic blocks
 - ▶ Straight-line: without branches, simple instructions one after the other

Control-flow graph with basic blocks



- Can lead to more efficient implementations
- But, is more complicated
 - ▶ We will use single-statement blocks here

Control-flow graph with entry/exit



CFG versus AST

- CFGs are simpler than ASTs
 - ► Fewer forms, less redundancy, simpler expressions
 - ▶ Capture flow of control better, easier to see execution paths
- But, AST is a more faithful representation
 - CFGs introduce temporary variables
 - ► CFGs lose the block-structure of the program
- AST benefits
 - Easier for reporting errors and other compiler messages
 - Easier to explain to the programmer
 - Easier to unparse and produce code closer to the original

Dataflow analysis

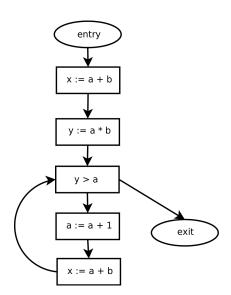
- A framework for proving facts about programs
- Reasons about lots of little facts
- Little or no interaction between different facts
 - Works best on properties about how the program computes
- Based on all paths through the program control-flow
 - Including infeasible paths

Available expressions

- An expression e is available at a program point p if:
 - e is computed on every path leading to p, and
 - the value of e has not changed since it was last computed
- Used in compiler optimization
 - ▶ If an expression is available don't recompute its value
 - Instead, save it in a register the first time, and use that
 - ...if possible

Dataflow facts

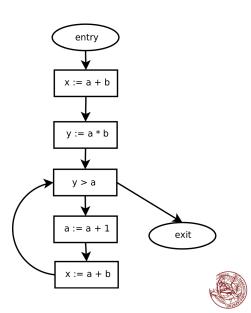
- Is expression *e* available?
- Possible facts:
 - \triangleright a+b is available
 - ► *a* * *b* is available
 - \triangleright a+1 is available



Gen and kill

 What is the effect of each statement on the set of facts?

Stmt	Gen	Kill
x := a + b	a+b	
y := a * b	a * b	
		a + 1
a := a + 1		a+b
		a * b



Terminology

- A joint point is a program point where two branches meet
- Available expressions is a forward must problem
 - Forward means the facts flow from "in" to "out" at every node, follow the edge arrows
 - Must means at every joint point, the property must hold on all paths joined
- There are also backward and may problems
 - Backward means the facts flow from "out" to "in" at every node, backwards on the edges
 - May means at every joint point, the property must hold on any of the joined paths
- All combinations:
 - Forward may, backward must, etc.

Dataflow equations

- If s is a statement
 - ightharpoonup succ(s) is the set of all immediate successor statements of s
 - ightharpoonup pred(s) is the set of all immediate predecessor statements of s
 - ▶ In(s) is the set of facts at the program point just before s
 - ightharpoonup Out(s) is the set of facts at the program point just after s
- Forward must:
 - $In(s) = \bigcap_{s' \in pred(s)} Out(s')$
 - $Out(s) = Gen(s) \cup (In(s) \setminus Kill(s))$

Live variables

- A variable x is *live* at a program point p if:
 - x will be used on some execution path starting at p
 - before x is overwritten
- Compiler optimization
 - ▶ If a variable is not live, there's no need to keep it in a register
 - ▶ If a variable is dead at an assignment, we can eliminate the assignment

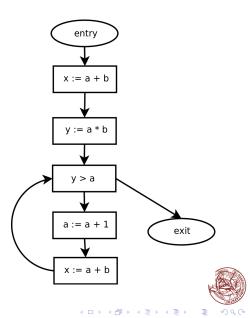
Dataflow equations

- Liveness is a backward may problem
 - ► To decide if a variable is live at a program point *p*, we need to look at the paths starting at *p*
 - ▶ The variable is live if it is used on any future program point
- Backward may:
 - $\qquad \quad \textit{Out}(s) = \bigcup_{s' \in \mathit{succ}(s)} \mathit{In}(s')$
 - $In(s) = Gen(s) \cup (Out(s) \setminus Kill(s))$

Gen and kill

- All possible facts:
 - ► a is live
 - ▶ b is live
 - x is live
 - ▶ *y* is live
- What is the effect of each statement on the set of facts?

Stmt	Gen	Kill
x := a + b	a, b	X
y := a * b	a, b	у
<i>y</i> > <i>a</i>	<i>a</i> , <i>y</i>	
a := a + 1	а	а



Very busy expressions

- An expression e is very busy at a program point p if:
 - \triangleright On every path from p, expression e is evaluated before its value is changed
- Compiler optimization
 - ▶ The compiler can lift very busy expression computation
- What kind of problem?
 - Forward or backward?
 - May or must?

Reaching definitions

- A definition of a variable x is an assignment to x
- A definition of a variable x reaches a program point p if:
 - ▶ There is no intervening assignment to x between the definition and p
- Also called "def-use" information
- What kind of problem?
 - Forward or backward?
 - May or must?

Dominators

- A program point p dominates another program point p' if:
 - p occurs in all paths from the start of the program to p'
- What kind of problem?
 - ► Forward or backward?
 - ► May or must?

Space of dataflow analyses

	May	Must
Forward	Reaching definitions	Available expressions
Backward	Live variables	Very busy expressions

- Most dataflow analyses can be classified this way
 - ► A few cannot: e.g., bidirectional analyses
- Lots of literature on dataflow analysis

So far

- ASTs are very abstract, not ideal for program analysis
- Control-flow graph is an alternative representation of the program
 - Captures flow of control, all execution paths
 - Better represents computation steps
 - But, not as close to the original source
- Dataflow analysis: computes a solution to dataflow equations for a program property
 - ▶ Depending on property: forward/backward, may/must analysis
 - Worklist algorithm, computes solution per program point
- Examples: available expressions, liveness, very busy expressions, etc.

Formalizing it

- Some algebra background
- Formalization of dataflow analysis
- Properties of dataflow algorithms
 - ▶ Termination
 - Solving algorithms
 - **Fixpoints**
 - Accuracy
- Implementation issues

Partial orders

- A partial order is a pair (P, \leq) of a set P and a relation \leq such that:
 - ▶ (\leq) \subseteq $(P \times P)$: The relation \leq is defined only over elements of P
 - \blacktriangleright \leq is reflexive: $x \leq x$, for all $x \in P$
 - \blacktriangleright \leq is anti-symmetric: if $x \leq y$ and $y \leq x$ then y = x
 - \blacktriangleright \leq is transitive: if $x \leq y$ and $y \leq z$ then $x \leq z$

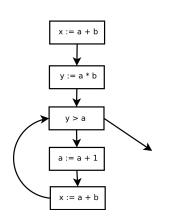
Lattices

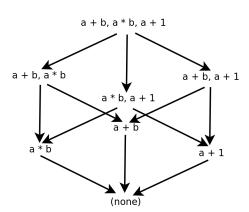
- A partial order is a lattice if □ and □ are defined such that:
 - ightharpoonup is the *meet*, or *greatest lower bound* operation
 - ★ $x \sqcap y \le x$ and $x \sqcap y \le y$
 - **★** if $z \le x$ and $z \le y$ then $z \le x \sqcap y$
 - ▶ ⊔ is the *join*, or *least upper bound* operation
 - ★ $x \le x \sqcup y$ and $y \le x \sqcup y$
 - **★** if $x \le z$ and $y \le z$ then $x \sqcap y \le z$

Lattices (cont'd)

- A finite partial order is a lattice if meet and join exist for every pair of elements
- A lattice has unique elements \top (top) and \bot (bottom) such that:
 - \triangleright $x \sqcap \bot = \bot$
 - $\triangleright x \sqcap \top = x$
 - \triangleright $x \sqcup \bot = x$
 - $ightharpoonup x \sqcup \top = \top$
- In a lattice
 - ▶ $x \le y$ if and only if $x \sqcap y = x$
 - ▶ $x \le y$ if and only if $x \sqcup y = y$
- \bullet A partial order P is a complete lattice if meet and join are defined on any set $S\subseteq P$

Available expressions lattice





- Typically, sets of dataflow facts form a lattice
- Top element is $\top = \{a+b, a*b, a+1\}$
- Bottom element is $\bot = \emptyset$

Forward-must dataflow algorithm

```
Forward-Must(CFG)
  for all statements s \in CFG
    Out(s) := \top
  W := \{ \text{all statements} \}
  while W \neq \emptyset
    take s from W
    In(s) := \bigcap_{s' \in pred(s)} Out(s')
    tmp := Gen(s) \cup (In(s) \setminus Kill(s))
    if tmp \neq Out(s) then
       Out(s) := tmp
       W := W \cup succ(s)
    end if
  end while
```


Monotonicity

• A function f on a partial order is monotonic if

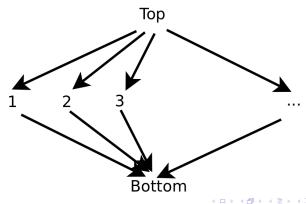
$$x \le y => f(x) \le f(y)$$

- ullet Easy to check that operations to compute In and Out are monotonic
 - $ightharpoonup In(s) := \bigcap_{s' \in pred(s)} Out(s')$
 - $tmp := \underbrace{Gen(s) \cup (In(s) \setminus Kill(s))}_{f_c(In(s))}$
- Putting these together
 - $\qquad tmp := f_s \left(d_{s' \in pred(s)} \ Out(s') \right)$

CS490.40, 2015-2016

Useful lattices

- $(2^S, \subseteq)$ forms a lattice for any set S
 - \triangleright 2^S is the powerset of S: the set of all subsets
- If (S, \leq) is a lattice, so is (S, \geq)
 - ▶ I.e., we can flip a lattice upside-down and still have a lattice
- The lattice for constant propagation is:



Termination

- The algorithm terminates because
 - ► The lattice has finite height
 - ightharpoonup The operations to compute In and Out are monotonic
 - On every iteration:
 - ★ We reduce the size of the worklist or
 - ★ we move the set of facts at a statement down the lattice

Forward dataflow

```
Forward(CFG)
  for all statements s \in CFG
     Out(s) := \top
   W := \{ \text{all statements} \}
  while W \neq \emptyset
     take s from W
     tmp := f_s \left( d_{s' \in pred(s)} \ Out(s') \right)
     if tmp \neq Out(s) then
       Out(s) := tmp
       W := W \cup succ(s)
     end if
  end while
```


Lattices for known analyses

- Available expressions
 - \triangleright $P = \{\text{sets of expressions}\}$

 - ightharpoonup $T = \{\text{all expressions}\}\$
- Reaching definitions
 - \triangleright $P = \{\text{all assignment statements}\}$
 - $\blacktriangleright S_1 \sqcap S_2 = S_1 \cup S_2$
 - ► T = Ø

Fixpoints

- ullet We always start with \top
 - Every expression is available/no definitions reach this point
 - ▶ The most optimistic assumption
 - ▶ The strongest hypothesis possible: true at the fewest number of states
- Revise as we encounter contradictions
 - ► Always move down the lattice (using □)
- Result: greatest fixpoint

Forward vs. backward dataflow

```
Forward(CFG)
  for all statements s \in CFG
     Out(s) := \top
  W := \{ \text{all statements} \}
  while W \neq \emptyset
    take s from W
     tmp := f_s \left( d_{s' \in pred(s)} Out(s') \right)
     if tmp \neq Out(s) then
       Out(s) := tmp
       W := W \cup succ(s)
     end if
  end while
```

```
Backward(CFG)
for all statements s \in CFG
  In(s) := \top
W := \{ \text{all statements} \}
while W \neq \emptyset
  take s from W
  tmp := f_s \left( d_{s' \in succ(s)} In(s') \right)
  if tmp \neq In(s) then
    In(s) := tmp
     W := W \cup pred(s)
  end if
end while
```


35 / 50

Termination revisited

- How many times can we apply the step:
 - $\blacktriangleright tmp := f_s \left(d_{s' \in pred(s)} Out(s') \right)$
 - if $tmp \neq Out(s)$ then ...
- Claim: Out(s) only shrinks
 - ▶ Proof: Out(s) starts as \top
 - ★ so it must be $tmp \leq \top$ after the first step
 - ► Assume Out(s) shrinks for all predecessors s' of s
 - ▶ Then $d_{s' \in pred(s)} Out(s')$ also shrinks
 - ▶ Since f_s is monotonic, $f_s\left(d_{s' \in pred(s)} Out(s')\right)$ shrinks

Termination revisited (cont'd)

- A descending chain in a lattice is a sequence
 - \triangleright $x_0 \sqsubseteq x_1 \sqsubseteq \dots$
- The *height* of a lattice is the length of the longest descending chain in the lattice
- Then, dataflow must terminate in O(nk) time, where
 - n is the number of statements in a program
 - ▶ *k* is the height of the lattice
 - ...assuming the meet operation takes O(1) time

37 / 50

Least vs. greatest fixpoint

- Usually in dataflow we start with \top , move down using \square
 - ▶ To do this, we need a meet semilattice with top
 - * complete meet semilattice: meet defined for all elements
 - ★ finite height ensures termination
 - ▶ We compute the greatest fixpoint: the solution highest in the lattice
- ullet In other settings (e.g, denotational semantics) we start with \bot , move up using \sqcup
 - Computes the least fixpoint

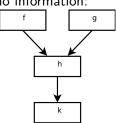
Distributive dataflow problems

- By monotonicity we have $f(x \sqcap y) \le f(x) \sqcap f(y)$
- A function f is distributive if $f(x \sqcap y) = f(x) \sqcap f(y)$
- When using distributive functions, joins lose no information:

$$k(h(f(\top) \sqcap g(\top))) =$$

$$k(h(f(\top)) \sqcap h(g(\top))) =$$

$$k(h(f(\top))) \sqcap k(h(g(\top)))$$



Accuracy

- Ideally, we want the meet over all paths (MOP) solution
 - ightharpoonup Assume f_s is the transfer function of statement s
 - ightharpoonup Assume p is a path s_1, \ldots, s_n
 - We define $f_p = f_n; \ldots; f_1$
 - ▶ Let *path(s)* be the set of paths from the entry to *s*
 - Then

$$MOP(s) = \underset{p \in path(s)}{\operatorname{d}} f_p(\top)$$

If a dataflow problem is distributive then algorithm produces the MOP solution

What problems are distributive?

- Analyses of how the program computes
 - Live variables
 - Available expressions
 - Reaching definitions
 - Very busy expressions
- All Gen/Kill problems are distributive
- Analyses of what the program computes are not distributive
 - Constant propagation

Implementation issues

- Dataflow facts are assertions of what is true at every program point
- We represent the set of facts as a bit-vector
 - Order all possible facts
 - ▶ The *i*-th bit represents the *i*-th fact
 - Intersection is bitwise and
 - Union is bitwise or
- "Only" a constant factor speedup
 - But very useful in practice!

Basic blocks

- A basic block is a sequence of statements such that
 - No statement except the last is a branch
 - ▶ There are no branches to any statement in the block except the first
- Practically, when implementing dataflow
 - Compute Gen/Kill for each basic block
 - ★ By composing the transfer functions of statements
 - ► Store *In / Out* sets only for each basic block
 - Typical basic block is around 5 statements

CFG visiting order - acyclic

- Assume forward dataflow
 - Let G = (V, E) be the control-flow graph
 - ▶ and *k* be the height of the lattice
- If G is acyclic, visit it in topological order
 - ▶ For every edge, visit the head node before the tail node
- Running time is O(|E|)
 - Regardless of the lattice size

CFG visiting order - cycles

- If G has cycles, visit in reverse postorder
 - ▶ Order of depth-first search
- Let Q be the max number of back-edges on a path without cycles
 - ▶ Depth of loop nesting
 - ▶ Back edge goes from descendant node to ancestor node in DFS tree
- Then if $\forall x. f(x) \leq x$ (sufficient, not necessary)
 - Running time is O((Q+1)|E|)
 - \star depends on definition of \top : f shrinks the fact set

CS490.40, 2015-2016

Flow-sensitivity

- Dataflow analysis is flow-sensitive
 - The answer produced depends on the order of statements in the program
 - We keep track of facts per program point
- Alternative: flow-insensitive analysis
 - Analysis result does not depend on the statement order
 - ► Standard example: types
 - * A variable has the same type before and after any statement

Dataflow analysis and functions

- What happens at function calls?
 - Lots of possible solutions in the literature
- Usually, analyze one function at a time
 - Called intraprocedural analysis
 - When analyzing multiple functions together called interprocedural
 - ★ Special case: whole-program analysis
- Consequences of intraprocedural analysis
 - Call to function kills all dataflow facts
 - Depending on language, we may be able to save some: e.g., called function cannot affect caller's local variables

Dataflow analysis and pointers

- Dataflow is good at analyzing local variables
 - ▶ What about values in the heap?
 - Not modeled in traditional dataflow
- In practice, when *x := e
 - Assume it can write anywhere
 - All dataflow facts killed!
 - ▶ Better: assume it can write all variables whose address is taken
- In general: it's hard to analyze pointers

Analysis terminology

- Must vs. May
 - Definition depends on which answer is imprecise: yes/maybe, or no/maybe result
 - ▶ Not always followed in the literature
- Forward vs. Backward
- Flow-sensitive vs. flow-insensitive
- Distributive vs. non-distributive
- Intraprocedural vs. interprocedural vs. whole-program

Dataflow analysis used in practice

- Moore's law: Hardware advances double computing power every 18 months
- Proebsting's law: Compiler advances double computing power every 18 years
 - Costs less than making chips, but not very much worth the trouble for optimization
- Useful for other things:
 - bug-finding: memory leaks, security vulnerabilities, etc.
 - support for high-level language-features
 - program understanding
 - **.**..

