### Lecture 14: Recursive Types

Polyvios Pratikakis

Computer Science Department, University of Crete

Type Systems and Static Analysis





### Motivation

- Lists, so far
  - ▶ Introduce a type constructor List T
  - ▶ Values are either nil or cons  $(e_{hd}, e_{tl})$
  - List have arbitrary size, but regular structure
- Similarly, queues, binary trees, labeled trees, ASTs, etc
- It is impractical to extend the language with each as an additional primitive type!
- Solution: recursive types



### Example

Lists of numbers:

$$NatList = \langle nil : Unit, cons : \{Nat, NatList\} \rangle$$

- This equation defines an infinite tree
- To change into a definition, use abstraction

$$NatList = \mu X. \langle nil : Unit, cons : \{Nat, X\} \rangle$$

- ullet  $\mu$  is the explicit recursion operator for types
- Intuitively: "NatList is the type that satisfies the equation  $X = \langle nil : Unit, cons : \{Nat, X\} \rangle$ "



### Example: Lists

#### Lists

- ightharpoonup nil =  $\langle nil = () \rangle$  as NatList
- ightharpoonup cons =  $\lambda x : Nat.\lambda I : NatList. \langle cons = \{x, I\} \rangle$  as NatList
- $sinil = \lambda I : NatList.case\ I\ of\ nil(\underline{\ \ \ }) => true\ |\ cons(\underline{\ \ \ \ }) => false$
- ▶  $hd = \lambda I : NatList.case\ I \ of \ nil(\_) => 0\ |\ cons(p) => p.1$
- ▶  $tl = \lambda l : NatList.case l of nil(\underline{\ }) => l | cons(p) => p.2$
- ▶ sum = fix  $\lambda f$ :  $NatList \rightarrow Nat.\lambda I$ : NatList. case I of  $nil(\_) => 0 \mid cons(p) => p.1 + (fp.2)$



## Hungry functions

• A function that can always take more:

$$hungry = \mu X.Nat \rightarrow X$$

• Such a function is a fixpoint (recursive function):

$$f = fix (\lambda f : Nat \rightarrow hungry.\lambda n : Nat.f)$$

ullet What is the type of  $f1\ 2\ 3\ 4\ 5\ ?$ 





CS490.40, 2015-2016

#### Streams

- A stream is a function that can return an arbitrary number of values
- Each time it consumes a unit, returns a new value

$$Stream = \mu X. Unit \rightarrow \{Nat, X\}$$

- We can use it like an infinite list
  - Next item  $hd = \lambda s : Stream.(s()).1$
  - Rest of stream  $tl = \lambda s : Stream.(s()).2$
- The stream of all natural numbers:

$$\mathsf{fix}\ (\lambda \mathit{f} : \mathit{Nat} \to \mathit{Stream}.\lambda \mathit{n} : \mathit{Nat}.\lambda\_: \mathit{Unit}.\,\{\mathit{n},\mathit{f}(\mathsf{succ}\ \mathit{n})\})0$$



6 / 11

# **Objects**

• Objects can also be recursive types

Counter = 
$$\mu$$
C. {get :  $Nat$ , inc :  $Unit \rightarrow C$ }

- Unlike last time, this is a functional object: inc returns the new object
  - Java strings are immutable





### Recursive type of fixpoint

Using recursive types we can type the fixpoint operator

$$fix_T = \lambda f \colon T \to T.$$

$$(\lambda x \colon (\mu X.X \to T).f(x x)) \ (\lambda x \colon (\mu X.X \to T).f(x x))$$

- Without types this is the fixpoint combinator of untyped calculus
- Allows programs to diverge: not strongly normalizing
- A term that doesn't terminate can have any type T!
- By Curry-Howard:
  - ► All propositions are proved, including false!
  - ▶ The corresponding logic is inconsistent



## Type system

- Two ways to treat recursive types
- Depending on the relation between folded/unfolded type
  - e.g. NatList and  $\langle nil : Unit, cons : \{Nat, NatList\} \rangle$
- Implicit fold/unfold, the above types are equal in all contexts
  - Transparent to the programmer
  - More complex to write typechecker
  - All proofs remain the same (except induction on type expressions)
- Explicit fold/unfold using language primitives
  - Programmer must write fold/unfold primitives to help typechecker
  - Easier to typecheck
  - Requires extra proof cases for soundness: fold/unfold



# Type system (cont'd)

Syntax:

$$\begin{array}{lll} e & ::= & \dots \mid \mathsf{fold} \; [\mathit{T}] \; e \mid \mathsf{unfold} \; [\mathit{T}] \; e \\ v & ::= & \dots \mid \mathsf{fold} \; [\mathit{T}] \; v \\ \mathcal{T} & ::= & \dots \mid \mathsf{X} \mid \mu \mathsf{X}. \mathcal{T} \end{array}$$

Typing

$$[\text{T-Fold}] \frac{U = \mu X.T \quad \Gamma \vdash e : T[U/X]}{\Gamma \vdash \text{fold} [U] \ e : U}$$

$$[\text{T-UNFOLD}] \frac{\textit{U} = \mu \textit{X}.\textit{T} \quad \Gamma \vdash \textit{e} : \textit{U} }{\Gamma \vdash \textit{unfold} \ [\textit{U}] \ \textit{e} : \ \textit{T}[\textit{U}/\textit{X}] }$$



### **Semantics**

unfold [S] (fold [T] 
$$v$$
)  $\rightarrow v$ 

$$\frac{e \rightarrow e'}{\text{fold } [T] \ e \rightarrow \text{fold } [T] \ e'}$$

$$e \rightarrow e'$$
unfold [T]  $e \rightarrow \text{unfold } [T] \ e'$ 





CS490.40, 2015-2016