Lecture 12: Memory and References

Polyvios Pratikakis
Computer Science Department, University of Crete

Type Systems and Static Analysis

Pratikakis (CSD) Memory and References (CS490.40, 2015-2016 1/21

So far

Pure lambda calculus
Simply typed lambda calculus

Additional types: sums, products, lists, tuples, variants, etc.

Pure language features:
» The machine state is a program expression
» The semantics rewrite the program expresssion/machine state
» Program evaluation reduces the program expression to a result

Pure features form the backbone of most languages

Pratikakis (CSD) Memory and References (CS490.40, 2015-2016 2/21

Impure features

@ Impure languages

» The machine state is not just the program expression
» Program evaluation does not just produce a result,
» ..it also changes the machine state

@ Most languages also include impure features

» Mutable state: memory locations, arrays, mutable record fields, etc.
I/0O: network, display, etc.

Exceptions, signals, interrupts

Inter-process communication

vV vy VvYyy

o Computation has “side-effects”: computational effects

Pratikakis (CSD) Memory and References (CS490.40, 2015-2016 3/21

Memory effects

@ Support for assignment, a way to alter memory contents
@ Variable names remain immutable
» In C, a variable name can mean two things
* At the left side of an assignment: a memory location
* At the right side of an assignment: the contents of a memory location
» Keep variables immutable: a variable name always means the same
> Use explicit syntax to read from or write to a memory location

Pratikakis (CSD) Memory and References (CS490.40, 2015-2016 4 /21

Memory operations

@ Memory allocation (and initialization):
let r=ref 5

@ Memory dereference (read)

e Memory assignment (write)

r:=42

Pratikakis (CSD) Memory and References (CS490.40, 2015-2016 5/21

Aliasing

@ A reference points to a memory location

@ We can copy the reference:
lets=r

@ That does not copy the memory location

» Both s and r point to the same original location

If we assign s:= 2

Then !r will also be 2

We say references s and r are aliases for the same memory location

v vy

@ Is the program (r:= 1;r:=!s) equivalent to the program (r:=!s)?

Pratikakis (CSD) Memory and References (CS490.40, 2015-2016 6 /21

Shared state

@ A reference is like a communication channel

@ Implicitly sends something from one part of the program to another,
e.g.
let c=ref O
let incc = Ax: Unit. (¢ := succ (!¢);!c)
let decc = Ax: Unit. (c:= pred (lc);!c)
@ Create sequential numbers from anywhere in the program by calling
incc()

@ The function incc is stateful: we don't need to give it the previous
value, incc remembers it (and so is decc)

@ Reference ¢ works like an implicit argument to incc and decc, contains
the last thing stored

Pratikakis (CSD) Memory and References (CS490.40, 2015-2016 7/21

Shared state (cont’d)

@ We can pack it all in a record

let counter =
let c=ref Oin

{
incr = Ax: Unit. (c := succ (lc);!c),
decr = Ax: Unit. (c:= pred (lc);!c)

}

@ We can now use counter.incr() and counter.decr()

@ This is a simple object

Pratikakis (CSD) Memory and References (CS490.40, 2015-2016 8/21

References, formally

@ Syntax
e u= ...|refelle|e:=¢
T == ...|RefT
e Typing
I'Fe: T
[T-Rer] I'Frefe: Ref T
I'e: Ref T
[T-DEREF]

T'He: T

I'te:Ref T T'key: T

[T-Assicn] Tk e :=e: Unit

Pratikakis (CSD) Memory and References (CS490.40, 2015-2016 9/21

References, formally (cont'd)

@ What is the result of ref 2 at run time?

Allocates a new memory location,

> initiallizes it with 2, and

> returns a pointer to that location

» But what is the value of the pointer?

v

@ We add another type of value (and expression) that only occurs at
run-time:
vie u= ...|1
@ A pointer, or location, /is an element of an abstract set of all possible
locations £

@ We represent memory as a partial function from locations / to values

Pratikakis (CSD) Memory and References CS490.40, 2015-2016 10 / 21

References, formally (cont'd)

@ Extend operational semantics with memory

@ The machine state is not just an expression e like in pure calculus

e New machine state is (M | e)

@ M represents memory: a map from locations / to values (also called
store)

@ Operational semantics define transitions between the new machine
states:

» Small-step: (M| e) — (M | €)
> Big-step: (M|e) L (M| V)

Pratikakis (CSD) Memory and References CS490.40, 2015-2016 11 /21

Semantics

@ We need to extend all existing semantic rules with memory

(M| (Ax: T.e) vy = (M] e[v/x])

(M| e)) = (M| &)
(M| erex) = (M| € e)

(M| e) = (M]|€)
(M|ve)— (M |vé)

Pratikakis (CSD) Memory and References CS490.40, 2015-2016 12 /21

Semantics (cont'd)

@ Allocation
(M]e)— (M |¢€)

(M| ref €) — (M| ref €)

¢ dom (M)
(M| ref v) = (M, I—v) |])

@ Dereference

(M|e) = (M]|€) M(l) = v
(M]le) = (M |!€) (M) = (M]v)

Pratikakis (CSD) Memory and References CS490.40, 2015-2016 13 /21

Semantics (cont'd)

@ Assignment

(M| e) > (M| &)
(M| e1:=e) = (M|é:=e)

(M| e) = (M| ¢€)
(Mlvi=e) = (M |v:=¢)

(M| I:=v) = (M= v | ())

Pratikakis (CSD) Memory and References CS490.40, 2015-2016 14 /21

Store typing

@ To prove type soundness, we need (as before) progress and
preservation

But, the run-time language includes locations /

What is the type of a location?
> It depends on the value it points to in the store (incorrect):

rEM(): T
'FIl:RefT

The store becomes part of the typing relation: I'; Mle: T

Typing locations (not yet correctly):

OsMEM(N: T
DsMET: Ref T

Pratikakis (CSD) Memory and References CS490.40, 2015-2016 15 / 21

Store typing (cont’d)

What happens when the store has a cycle?
» Typing doesn't terminate: bad!

Instead, use store typing ¥, a map from locations to types

Now, typing relation dependson ¥: I'; X Fe: T

Typing locations (correctly):

S(h=T
;X F1:Ref T

[T-Loc]

The other rules are simple to extend: just pass X up recursively

To type original program, use empty ¥: no pointers allowed in the
original program text

Pratikakis (CSD) Memory and References CS490.40, 2015-2016 16 / 21

Typing, finally

I'x: T;XFe: T x: Tel
T-A T-VAR] —————
[T-As] X (MAx:Te): T T [1-Vax] YFx: T
IiXke : T— T
Y bke: T
[T-App] : e [T-UniT] -
;Xbkee: T X F () : Unit
[T-Rex] ;YkFe: T (D] 'Y Fe: Ref T
T S refe: Ref T T S e T

Y Fe :Ref T
Yk e: T =T

T-A T-L
[T AssIoN 5 S e T Lo S Ref 7

Pratikakis (CSD) Memory and References CS490.40, 2015-2016 17 /21

Store typing, finally

@ To state and prove soundness (progress and preservation) we need to

link M and 3:
> A store M is well-typed in context I' under store typing X, written
;Y F M, if
* dom (M) = (X) and

dom
* T35 - M(I) : S(I) for all 1€ dom (M)

Pratikakis (CSD) Memory and References CS490.40, 2015-2016 18 / 21

Preservation theorem

o If a well-typed program takes a step, it is still well-typed:
If

» 'Y ke T,
» I Y F M and
> (M]e) = (M]€)
then, for some ¥’ D %,
» 'Y Fé€: Tand
» Y M
@ We prove as before by induction on the evaluation derivation.

@ But first, we need a few auxilliary lemmas

Pratikakis (CSD) Memory and References CS490.40, 2015-2016 19 /21

Preservation theorem (cont'd)

@ Prove the substitution lemma:
fO,x: T;5Fe: T and ;5 F v: Tthen ;X F e[v/x] : T

@ Prove we can update values in the store (keeping the same type):
fSFM E()=Tand ;8 F v: T, then I'; X = M|/ +— V]

@ Prove weakening for stores, we can always add stuff to the store:
fI;XFe: Tand X DX, then ;X Fe: T.

Pratikakis (CSD) Memory and References CS490.40, 2015-2016 20 /21

Progress theorem

@ A closed, well-typed program is either a value, or it can take a step:
If),X F e: T, then either e is a value, or for any store M for which
0; 3 F M, there are some € and M such that (M |) — (M| €).

@ Proof as before, by induction on typing derivations

@ Need to extend the canonical forms lemma with the cases for Unit
and Ref T

Pratikakis (CSD) Memory and References CS490.40, 2015-2016 21 /21

