Section 8 Leader Election in Rings

An Algorithm with Communication Complexity O(nlogn) - Main Ideas

• The k-neighborhood of a process p_i in the ring is the set of processes that are at distance at most k from p_i in the ring (either to the left or to the right).

Main Ideas

- The algorithm works in phases:
 - kth phase, k ≥ 0: a process tries to become a winner for the phase; a process becomes a winner if it has the largest id in its 2^k-neighborhood.
 - Only processes that are winners in the kth phase continue to compete in the (k+1)st phase.

P.Fatourou, CS486 - Principles of Distributed Computing

niti	ally, $asleep = true$
1:	upon receiving no message:
2:	if asleep then
3:	asleep := false
4:	send $\langle probe, id, 0, 1 \rangle$ to left and right
5:	upon receiving (probe, j, k, d) from left (resp., right):
5:	if $j = id$ then terminate as the leader
7:	if $j > id$ and $d < 2^k$ then // forward the message
3:	send (probe, $j, k, d + 1$) to right (resp., left) // increment hop counter
):	if $j > id$ and $d \ge 2^k$ then // reply to the message
10:	send (reply, j, k) to left (resp., right)
	// if $j < id$, message is swallowed
11:	upon receiving $\langle \text{reply}, j, k \rangle$ from left (resp., right):
12:	if $j \neq id$ then send (reply, j, k) to right (resp., left) // forward the reply
13:	else // reply is for own probe
14:	if already received (reply, j,k) from right (resp., left) then
15:	send (probe, $id, k + 1, 1$) to left and right // phase k winner

An Algorithm with Communication Complexity O(nlogn) - Analysis

- Lemma: For each k ≥ 0, the number of processes that are phase k winners is at most n/(2^k+1).
- · Proof:
 - Between two winners of phase k there are 2^k other processes in the ring.
- Remarks
 - There is just one winner after log(n-1) phases.
 - The total number of messages is:
 - 5n + Sum_{k=1}^{\lceil log(n-1) \rceil+1} 4*2**n/(2*-1+1)
 < 5n + 8n(logn+2)</pre>
- **Theorem:** There is an asynchronous leader election algorithm whose message complexity is O(nlogn).

P.Fatourou, CS486 - Principles of Distributed Computing

Bibliography

These slides are based on material that appears in the following book:

 H. Attiya & J. Welch, Distributed Computing: Fundamentals, Simulations and Advanced Topics, Morgan Kaufmann, 1998 (Chapter 3)