Section 8
Leader Election in Rings

The Leader Election Problem

• Each process should eventually decide that it is either the leader or it is not the leader.
• Exactly one process should decide that it is the leader.
• The leader process may be responsible for achieving synchronization in future activities of the system:
 • token re-creation
 • recovery from deadlock
 • play the role of the root node in the construction of a spanning tree, etc.
The Leader Election Problem – More formally

• An algorithm is said to solve the leader election problem if it satisfies the following conditions:
 - The terminated states are partitioned into elected and not-elected states. Once a process enters an elected (respectively, not-elected) state, its transition function will only move it to another (or the same) elected (respectively, not-elected) state.
 - In every admissible execution, exactly one process (the leader) enters an elected state and all the remaining processes enter a not-elected state.

The Leader Election Problem

Assumptions

• Ring topology
• The n processes have a notion of left and right.
 - For every i, 1 ≤ i ≤ n, p_i’s channel to p_{i+1} is labeled 1, also known as left or clock-wise, and p_i’s channel to p_{i-1} is labeled 2, also known as right or counter-clock-wise (addition and subtraction here are modulo n).
Model – Rings

- An algorithm is **anonymous** if the processes do not have unique identifiers that can be used by the algorithm.
 - Every process has the same state machine.
- Otherwise, the algorithm is called **eponymous** (or **non-anonymous**).
- If \(n \) is not known to the algorithm, the algorithm is called uniform
 - The algorithm looks the same for every value of \(n \).
- In an anonymous non-uniform algorithm, for each value of \(n \), there is a single state machine, but there can be different state machines for different ring sizes.
 - \(n \) can be explicitly present in the code.

Leader Election in Anonymous Synchronous Rings

Theorem: There is no non-uniform anonymous algorithm for leader election in synchronous rings.

Lemma: For every round \(k \) of the admissible execution of an anonymous leader election algorithm in a ring, the states of all the processors at the end of round \(k \) are the same.

Proof: By induction on \(k \).

- **Base case:** Straightforward since all processes begin in the same state.
- **Induction Hypothesis:** Assume the lemma holds for round \(k-1 \).
- **Induction Step:** Since all processes are in the same state in round \(k-1 \), they all send the same messages \(m_l \) to the left and \(m_r \) to the right.
- In round \(k \), all processes receive message \(m_r \) on its left edge and \(m_l \) on its right; because they execute the same program, they are in the same state at the end of round \(k \).
Leader Election in Eponymous Asynchronous Rings

An $O(n^2)$ Algorithm

Description of the algorithm:

• Each process sends a message with its identifier to its left neighbor and then waits for messages from its right neighbor.
• When is receives such a message, it checks the identifier in the message:
 - If it is greater than its own identifier, it forwards the message to the left.
 - Otherwise, it shallows the message.
• If a processor receives a message with its own identifier, it declares itself a leader by sending a termination message to its left neighbor and terminating.
• A processor that receives the termination message, forwards it to the left and terminates as non-leader.

Communication Complexity?

• No process sends more than n messages.
• Is there an execution at which $\Theta(n^2)$ messages are sent?
An Algorithm with Communication Complexity $O(n \log n)$ - Main Ideas

- The k-neighborhood of a process p_i in the ring is the set of processes that are at distance at most k from p_i in the ring (either to the left or to the right).

Main Ideas

- The algorithm works in phases:
 - k^{th} phase, $k \geq 0$: a process tries to become a winner for the phase; a process becomes a winner if it has the largest id in its 2^k-neighborhood.
 - Only processes that are winners in the k^{th} phase continue to compete in the $(k+1)^{\text{st}}$ phase.

An Algorithm with Communication Complexity $O(n \log n)$ - Description

- In phase k, a process p_i that is a phase $k-1$ winner sends <probe> messages with its identifier to the 2^k-neighborhood (one in each direction).
- A <probe> is shallowed by a processor if it contains an identifier that is smaller than its own identifier.
- If the message arrives at the last process in the neighborhood, then that last process sends back a <reply> message to p_i.
- If p_i receives replies from both directions, it becomes a phase k winner, and it continues to phase $k+1$.
- A processor that receives its own <probe> message terminates the algorithm as the leader and sends a termination message around the ring.
An Algorithm with Communication Complexity $O(n \log n)$

Pseudocode

Algorithm 5 Asynchronous leader election: code for processor p_i, $0 \leq i < n$.

Initially, $asleep = true$

1: upon receiving no message:
2: if $asleep$ then
3: $asleep := false$
4: send $(\text{probe}, id, 0, 1)$ to left and right

5: upon receiving (probe, j, k, d) from left (resp., right):
6: if $j = id$ then terminate as the leader
7: if $j > id$ and $d < 2^k$ then // forward the message
8: send $(\text{probe}, j, k, d + 1)$ to right (resp., left) // increment hop counter
9: if $j > id$ and $d \geq 2^k$ then // reply to the message
10: send (reply, j, k) to left (resp., right) // if $j < id$, message is swallowed

11: upon receiving (reply, j, k) from left (resp., right):
12: if $j \neq id$ then send (reply, j, k) to right (resp., left) // forward the reply
13: else // reply is for own probe
14: if already received (reply, j, k) from right (resp., left) then
15: send $(\text{probe}, id, k + 1, 1) \Leftarrow le_{\sigma(k) \wedge \Delta(k)}$ // phase k winner

- A message of type $<\text{probe}>$ contains the id j of the process that sends it, the phase number k and a hop counter d.
- A message of type $<\text{reply}>$ contains the id j and the number of the current phase k.

P. Fatourou, CS486 – Principles of Distributed Computing
An Algorithm with Communication Complexity $O(n \log n)$ - Analysis

- **Lemma:** For each $k \geq 0$, the number of processes that are phase k winners is at most $n/(2^k+1)$.
- **Proof:**
 - Between two winners of phase k there are 2^k other processes in the ring.
- **Remarks**
 - There is just one winner after $\log(n-1)$ phases.
 - The total number of messages is:

 \[
 5n + \sum_{k=1}^{\lceil \log(n-1) \rceil + 1} 4 \times 2^k \times n/(2^k+1) < 5n + 8n(\log n + 2)
 \]
- **Theorem:** There is an asynchronous leader election algorithm whose message complexity is $O(n \log n)$.

Leader Election in Synchronous Rings

- The reception of no message in a round is a piece of information. Does this help?
- **An $O(n)$ Upper Bound**
- **The Non-Uniform Algorithm**
 - Elects the processor with the minimal identifier as the leader.
 - It works in phases, each consisting of n rounds.
 - In phase $i \geq 0$, if there is a processor with id i, it is elected as a leader and the algorithm terminates.
 - Phase i includes rounds $ni+1$, $ni+2$, ..., $ni+n$.
 - At the beginning of phase i, if a process has id i, and it has not terminated yet, the process sends a message around the ring and terminates as a leader.
 - If the process does not have id i, and it receives a message in phase i, it forwards the message and terminates as the non-leader.
Bibliography

These slides are based on material that appears in the following book:

• H. Attiya & J. Welch, Distributed Computing: Fundamentals, Simulations and Advanced Topics, Morgan Kaufmann, 1998 (Chapter 3)