* Each process should eventually decide that it
is either the leader or it is not the leader.

+ Exactly one process should decide that it is
the leader.

* The leader process may be responsible for
achieving synchronization in future activities
of the system:

« token re-creation

* recovery from deadlock

« play the role of the root node in the
construction of a spanning tree, etc.

P.Fatourou, CS486 — Principles of Distributed Computing

» An algorithm is said to solve the leader
election problem if it satisfies the
following conditions:

- The ferminated states are partitioned into
elected and not-elected states. Once a
process enters an elected (respectively,
not-elected) state, its transition function
will only move it to another (or the same)
elected (respectively, not-elected) state.

- In every admissible execution, exactly one
process (the leader) enters an elected
state and all the remaining processes enter
a not-elected state.

P.Fatourou, CS486 — Principles of Distributed Computing

Assumptions 1\
* Ring topology f)
* The n processes have ¢ % | *»

notion of left and righ,

- For every i, 1<i<n, p/'s channel o p,; is
labeled 1, also known as left or clock-wise,
and p;'s channel to p;; is labeled 2, also
known as right or counter-clock-wise
(addition and subtraction here are modulo
n).

P.Fatourou, CS486 — Principles of Distributed Computing

An algorithm is anonymous if the processes do
not have unique identifiers that can be used
by the algorithm.

- Every process has the same state machine.
Otherwise, the algorithm is called eponymous
(or non-anonymous).

If nis not known to the algorithm, the
algorithm is called uniform

- The algorithm looks the same for every value of n.
In an anonymous non-uniform algorithm, for
each value of n, there is a single state
machine, but there can be different state
machines for different ring sizes.

- n can be explicitly present in the code.

P.Fatourou, CS486 — Principles of Distributed Computing

Theorem: There is no non-uniform anonymous algorithm for leader

election in synchronous rings.

Lemma: For every round k of the admissible execution of an

Pr

anonymous leader election algorithm in a ring, the states of all
the processors at the end of round k are the same.

oof: By induction on k.

Base case: Straightforward since all processes begin in the
same state.
Induction Hypothesis: Assume the lemma holds for round k-1.

Induction Step: Since all processes are in the same state in
round k-1, they all send the same messages m, to the left and m,
to the right.

In round k, all processes receive message m, on its left edge and
m, on its right. because they execute the same program, they are
in the same state at the end of round k.

P.Fatourou, CS486 — Principles of Distributed Computing

An O(n?) Algorithm
Description of the algorithm:

Each process sends a message with its identifier to its left
neighbor and then waits for messages from its right
neighbor.

When is receives such a message, it checks the identifier in
the message:

- If it is greater than its own identifier, it forwards the

message to the left.

- Oftherwise, it shallows the message.
If a processor receives a message with its own identifier, it
declares itself a leader by sending a tfermination message to
its left neighbor and terminating.
A processor that receives the termination message, forwards
it to the left and terminates as non-leader.

P.Fatourou, CS486 — Principles of Distributed Computing

Communication Complexity?
* No process sends more than n messages.
» Is there an execution at which O(n?)

==

messages are sent? T
()./ B
s/ \\
2\-.\ /’
N\ S/

P.Fatourou, CS486 — Principles of Distributed Computing

* The k-neighborhood of a process p; in the ring
is the set of processes that are at distance
at most k from p; in the ring (either to the
left or to the right).

Main Ideas

* The algorithm works in phases:

- k'™ phase, k > 0: a process tries to become a
winner for the phase; a process becomes a winner
if it has the largest id in its 2kneighborhood.

- Only processes that are winners in the kth phase
continue to compete in the (k+1)s* phase.

P.Fatourou, CS486 — Principles of Distributed Computing

* Inphase k, a process p; that is a phase k-1 winner
sends <probe> messages with its identifier to the 2k-
neighborhood (one in each direction).

A <probe> is shallowed by a processor if it contains an
identifier that is smaller than its own identifier.

+ If the message arrives at the last process in the
neighborhood, then that last process sends back a
<reply> message to p;.

- If ﬁi receives replies from both directions, it becomes
a phase k winner, and it continues to phase k+1.

A processor that receives its own <probe> message
terminates the algorithm as the leader and sends a
termination message around the ring.

P.Fatourou, CS486 — Principles of Distributed Computing

KIQO}T!I)H\ 5 Asynchro}mus leader election: code for processor p;, 0 < 7 < n.

Initially, asleep = true

1: upon receiving no message:

2 if asleep then

3: asleep := falsc

4 send (probe,id,0,1) to left and right

5: upon receiving (probe, j,k,d) from left (resp., right):

6: if j = id then terminate as the leader

7 if j > idand d < 2* then // forward the message
8: send (probe, j,k,d + 1) to right (resp., left) // increment hop counter
9: if j > id and d > 2% then // reply to the message
10: send (reply, j,k) to left (resp., right)

/11f j < id, message is swallowed

1'1: upon receiving (reply.j.k) from lcft (resp., right):

12 il j # id then send (reply,j,k) to right (resp., left) // forward the reply
13: else // reply 1s for own probe
14 il already received (reply,j,k) from right (resp., left) then

15: send (probe,id,k + 1,1) ¥ lell and vight ! // phase k& winner

- A message of type <probe> contains the id j of the
process that sends it, the phase number k and a hop
counter d.

+ A message of type <reply> contains the id j and the
number of the current phClS€ k. P.Fatourou, CS486 — Principles of Distributed

Computing

Algorithm 5 Asynchronous leader election: code for processor p;, 0 < i < n.

Initially, asleep = true

1
2:
3.

5

13
123
13:

15:

upon receiving no message:
if asleep then
asleep = false
send {probe,id,0,1) to left and right

upon receiving (probe, j, k,d) from left (resp., right):
if j = id then terminate as the leader

if j > idand d < 2* then // forward the message
send (probe, j,k,d 4 1) to right (resp., left) // increment hop counter
if j > idand d > 2" then /l reply to the message

send (reply, j, k) to left (resp., right)
it j < id, message is swallowed

upon receiving (reply,j,k) from left (resp., right):
if j # id then send (reply,j,k) to right (resp., left) / forward the reply
clse /' reply is for own probe
if already received (reply, j, k) from right (resp., left) then
send (probe,id,k + 1,1) to leM and vight ! // phase k winner

8

P.Fatourou, CS486 — Principles of Distributed Computing

+ Lemma: For each k > 0, the number of processes that
are phase k winners is at most n/(2k+1).
* Proof:
- Between two winners of phase k there are 2k other processes
in the ring.
+ Remarks
- There is just one winner after log(n-1) phases.
- The total number of messages is:
- 5n+ Sum_{k=1}"{\lceil log(n-1) \rceil+1} 4*2k*n/(2k1+1)
< 5n + 8n(logn+2)
+ Theorem: There is an asynchronous leader election
algorithm whose message complexity is O(nlogn).

P.Fatourou, CS486 — Principles of Distributed Computing

The reception of no message in a round is a piece of information.
Does this help?

An O(n) Upper Bound

The Non-Uniform Algorithm
Elects the processor with the minimal identifier as the leader.
It works in phases, each consisting of n rounds.
In phasei> 0, if there is a processor with id i, it is elected as a
leader and the algorithm terminates.
Phase i includes rounds ni+1, ni+2, ..., ni+n.
At the beginning of phase i, if a process has id i, and it has not
terminated yet, the process sends a message around the ring and
terminates as a leader.
If the process does not have id i, and it receives a message in
rhadse i, it forwards the message and terminates as the non-
eader.

P.Fatourou, CS486 — Principles of Distributed Computing

Bibliography

These slides are based on material that
appears in the following book:

+ H. Attiya & J. Welch, Distributed
Computing: Fundamentals, Simulations

and Advanced Topics, Morgan Kaufmann,
1998 (Chapter 3)

