PART II
Algorithms for Message-Passing Systems

Section 7
Introduction – Model – Basic Graph Algorithms
Formal Model for Message-Passing Systems

- There are n processes in the system: p_0, \ldots, p_{n-1}
- Each process is modeled as a state machine.
- The state of each process is comprised by its local variables and a set of arrays. For instance, for p_0, the state includes six arrays:
 - $\text{inbuf}_0[1], \ldots, \text{inbuf}_0[3]$: contain messages that have been sent to p_0 by p_1, p_2 and p_3, respectively, but p_0 has not yet processed.
 - $\text{outbuf}_0[1], \ldots, \text{outbuf}_0[3]$: messages that have been sent by p_0 to p_1, p_2, and p_3, respectively, but have not yet been delivered to them.

Formal Model of Message-Passing Systems

- The state of process p_i, excluding the $\text{outbuf}_i[l]$ components, comprises the accessible state of p_i.
- Each process has an initial state in which all inbuf arrays are empty.
- At each step of a process, all messages stored in the inbuf arrays of the process are processed, the state of the process changes and a message to each other neighboring process can be sent.
A configuration is a vector $C = (q_0, \ldots, q_{n-1})$ where q_i represents the state of p_i.

- The states of the outbuf variables in a configuration represent the messages that are in transit on the communication channels.
- In an initial configuration all processes are in initial states.

Computation event, $\text{comp}(i)$

- Represents a computation step of process p_i in which p_i’s transition function is applied to its current accessible state.

Delivery Event, $\text{del}(i,j,m)$

- Represents the delivery of message m from processor p_i to processor p_j (i.e., message m is placed in one of the inbuf buffers of p_j)

The behavior of a system over time is modeled as an execution, which is a sequence of configurations alternating with events.
Formal Model of Message-Passing Systems

- An execution must satisfy a variety of conditions.
 - Safety condition
 - Holds in every finite prefix of the execution (it states that nothing bad has happened yet)
 - Liveness condition
 - Holds a certain number of times (it states that eventually something good must happen)

Formal Model of Message-Passing Systems

Complexity Measures

- The message complexity of an algorithm for either a synchronous or an asynchronous message-passing system is the maximum, over all executions of the algorithm, of the total number of messages sent.
- The time complexity of an algorithm for a synchronous message-passing system is the maximum number of rounds, in any execution of the algorithm, until the algorithm has terminated.
Formal Model of Message-Passing Systems

Complexity Measures

Measuring the time complexity of asynchronous algorithms

- A timed execution is an execution that has a nonnegative real number associated with each event, which illustrates the time at which that event occurs.
- The times must start at 0, must be strictly increasing for each individual processor, and must increase without bound if the execution is infinite.
- We define the delay of a message to be the time that elapses between the computation event that sends the message and the computation event that processes the message.
- Assumption: The maximum message delay in any execution is one unit of time.
- The time complexity of an asynchronous algorithm is the maximum time until termination among all timed executions of the algorithm in which every message delay is at most one time unit.

Broadcast on a Spanning Tree

- A distinguished processor, \(p_r \), has a message \(<M>\) it wishes to send to all other processors.
- Copies of the message are to be sent along a tree which is rooted at \(p_r \), and spans all the processors in the network.
- The spanning tree is maintained in a distributed fashion:
 - Each processor has a distinguished channel that leads to its parent, as well as a set of channels that lead to its children.

Algorithm 1 Spanning tree broadcast algorithm.

Initially \(<M>\) is in transit from \(p_r \) to all its children in the spanning tree.

Code for \(p_r \):
1: upon receiving no message: // first computation event by \(p_r
2: \text{terminate}

Code for \(p_i \), \(0 \leq i \leq n - 1, i \neq r
3: \text{upon receiving } <M> \text{ from parent:}
4: \text{send } <M> \text{ to all children}
5: \text{terminate}
Broadcast on a Spanning Tree

State of process p_i, $i \in \{0, \ldots, n-1\}$
- a variable `parent`, which holds either a processor index or `nil`
- a variable `children`, which holds a set of processor indices
- a variable `terminated`, which indicates whether p_i is in a terminated state
- the `inbuf` and `outbuf` tables of p_i

Initial State
- all terminated variables are false.
- The `inbuf` tables are empty, for all processes.
- The `outbuf` tables are empty for all processes other than p_r; `outbuf_r[j]` contains M for all $j \in \text{children}_r$.

Complexities?
- Communication Complexity?
- Time Complexity?

Broadcast on a spanning tree - Time Complexity

Synchronous System
- **Lemma**: In every execution of the broadcast algorithm in the synchronous model, every process at distance t from p_r in the spanning tree receives `<M>` in round t.
- **Proof**: By induction on the distance t of a process from p_r.
 - $t = 1$. Each child of p_r receives `<M>` from p_r in the first round.
 - Assume that every process at distance $t-1 \geq 1$ from p_r receives the message `<M>` in round $t-1$.
 - Let p be any process in distance t from p_r. Let p' be the parent of p in the spanning tree. Since p' is at distance $t-1$ from p_r, by the induction hypothesis, p' receives `<M>` in round $t-1$. By the description of the algorithm, p receives `<M>` from p' in the next round.
Broadcast on a spanning tree - Time Complexity

Asynchronous System

- **Lemma**: In every execution of the broadcast algorithm in an asynchronous model, every process at distance \(t \) from \(p_r \) in the spanning tree receives \(<M> \) in time \(t \).
- **Proof**: By induction on the distance \(t \) of a process from \(p_r \).
- \(t = 1 \). From the description of the algorithm, \(<M> \) is initially in transit to each process \(p_i \) at distance 1 from \(p_r \). By the definition of time complexity for the asynchronous model, \(p_i \) receives \(<M> \) by time 1.
- Assume that every process at distance \(t-1 \geq 1 \) from \(p_r \) receives the message \(<M> \) by time \(t-1 \).
- Let \(p \) be any process in distance \(t \) from \(p_r \). Let \(p' \) be the parent of \(p \) in the spanning tree. Since \(p' \) is at distance \(t-1 \) from \(p_r \), by the induction hypothesis, \(p' \) receives \(<M> \) by time \(t-1 \). By the description of the algorithm, \(p \) receives \(<M> \) from \(p' \) by time \(t \).

Broadcast on a spanning tree

- **Theorem 1**: There is a synchronous broadcast algorithm with message complexity \(n-1 \) and time complexity \(d \), when a rooted spanning tree with depth \(d \) is known in advance.

- **Theorem 2**: There is an asynchronous broadcast algorithm with message complexity \(n-1 \) and time complexity \(d \), when a rooted spanning tree with depth \(d \) is known in advance.
Convergecast

Problem
- Collect information from the nodes of the tree to the root.
- Each processor p_i starts with a value x_i.
- We wish to forward the maximum value among these values to the root p_r.

Theorem: There is an asynchronous convergecast algorithm with message complexity $n-1$ and time complexity d, when a rooted spanning tree with depth d is known in advance.

Flooding and Building a Spanning Tree

Problem
- Broadcast without a preexisting spanning tree, starting from a distinguished processor p_r.

Solution
- **Flooding**
 - Assume that m is the number of edges and n is the number of processes. How many messages does the flooding algorithm send?
 - Can we modify the flooding algorithm to construct a spanning tree?
The F-SpanningTree Algorithm

Two steps in the construction of the spanning tree.

Correctness
Why is every node reachable from the root?
Why is there no cycle?
The F-SpanningTree Algorithm

- **Theorem:** There is an asynchronous algorithm to find a spanning tree of a network with m edges and diameter D, given a distinguished node, with message complexity $O(m)$ and time complexity $O(D)$.

- What kind of tree is the output of F-SpanningTree when the system is synchronous?

- **Theorem:** In every execution of F-SpanningTree in the synchronous model, the algorithm constructs a BFS tree rooted at p_r.

- What kind of tree can be the output of F-SpanningTree when the system is asynchronous?

Synchronous Systems

- We define a directed spanning tree of a directed graph $G = (V,E)$ to be a rooted tree that consists entirely of directed edges in E, all edges directed from parents to children in the tree, and that contains every vertex of G.

- A directed spanning tree of G with root node p_r is breadth-first provided that each node at distance d from p_r in G appears at depth d in the tree (that is at distance d from p_r in the tree).

- Every strongly connected digraph has a breadth-first directed spanning tree.

- Given that the G is a strongly connected directed graph and given that we have a distinguished node p_r, how can we design a synchronous algorithm that computes the directed BFS tree?

- How can a process learn which nodes are its children?

- What is the communication complexity of the algorithm in this case?

- What is the time complexity of the algorithm in this case?

- How can p_r learn that the construction of the spanning tree has terminated?
Constructing a Depth-First Search Spanning Tree for a Specified Root

Brief Description

- Each node maintains a set, called unexplored, of “unexplored” neighboring nodes and a set of nodes that will be its children in the constructed spanning tree.
- Initially, the root sends <M> to one of its neighbors and deletes this neighbor from unexplored.
- When a node \(p_i \) receives <M> for the first time from some node \(p_j \), \(p_i \) marks \(p_j \) as its parent node in the spanning tree. Then, \(p_i \) chooses one of the nodes in unexplored and forwards <M> to it. If \(p_i \) does not receive <M> for the first time, it sends a message of type <already> to \(p_j \) and removes \(p_j \) from unexplored. If unexplored is empty, \(p_i \) sends a message of type <parent> to its parent node.
- When a node \(p_i \) receives a message of type <parent> or <already>, it sends <M> to one of the nodes in unexplored. If \(p_i \) has received \(<M> \) or a message of type <parent> or <already> from all its neighbors, \(p_i \) terminates.

Algorithm 3 Depth-first search spanning tree algorithm for a specified root:

1. upon receiving no message:
 2. if \(p_j = p_i \) and parent = \(\emptyset \), then // root wakes up
 3. parent := \(p_i \)
 4. explore()

5. upon receiving \(<M>\) from \(p_j \):
 6. if parent = \(\emptyset \), then // \(p_i \) has not received \(<M>\) before
 7. parent := \(p_j \)
 8. remove \(p_j \) from unexplored
 9. explore()

11. else
 12. send <already> to \(p_j \) // already in tree
 13. remove \(p_j \) from unexplored

14. upon receiving <already> from \(p_j \):
 15. explore()

16. upon receiving <parent> from \(p_j \):
 17. add \(p_j \) to children
 18. explore()

19. procedure explore():
 20. if unexplored \(\neq \emptyset \), then
 21. let \(p_k \) be a processor in unexplored
 22. remove \(p_k \) from unexplored
 23. send \(<M>\) to \(p_k \)
 24. else
 25. if parent \(\neq p_i \), then send <parent> to parent
 26. terminate // \(p_i \)'s subtree rooted at \(p_i \) has been built
The DFS-ST Algorithm

Correctness
- **Lemma:** In every execution of DFS-ST in the asynchronous model, DFS-ST constructs a DFS tree of the network rooted at p_r.

Communication Complexity
- **Lemma:** The communication complexity of DFS-ST is $O(m)$.
- **Proof:** Each node/process sends $\langle M \rangle$ at most once in each of the edges that are incident to it.
- Each node that receives $\langle M \rangle$ sends at most one message as a response on each of the edges that are incident to it.
- Thus, the number of messages sent is at most $2m$.

<table>
<thead>
<tr>
<th>unexplored_0 = (2)</th>
<th>parent_0 = nil</th>
<th>children_0 = {}</th>
</tr>
</thead>
<tbody>
<tr>
<td>unexplored_1 = (0, 2)</td>
<td>parent_1 = nil</td>
<td>children_1 = {}</td>
</tr>
<tr>
<td>unexplored_2 = (0, 1, 3)</td>
<td>parent_2 = nil</td>
<td>children_2 = {}</td>
</tr>
<tr>
<td>unexplored_3 = (2)</td>
<td>parent_3 = nil</td>
<td>children_3 = {}</td>
</tr>
</tbody>
</table>
The DFS-ST Algorithm

Time Complexity

Lemma: The time complexity of DFS-ST is $O(m)$.

Proof

- Since the time p_r executes its first step and before p_r terminates, there is always exactly one message in transit.
- No more than two messages are ever send on each edge.
- There are m edges in the graph.

Theorem: There is an asynchronous algorithm to find a depth-first search spanning tree of a network with m edges and n nodes, given a distinguished node, with message complexity $O(m)$ and time complexity $O(m)$.

Constructing a DFS Spanning Tree without a Specified Root

How can we build a spanning tree when there is no distinguished node?

Brief Description

- Each processor that wakes up spontaneously attempts to build a DFS spanning tree with itself as the root, using a separate copy of DFS-ST.
- If two DFS trees try to connect to the same node, the node will join the DFS tree whose root has the higher identifier.
- p_m: the node with the maximal identifier among the nodes that wake up spontaneously.
Constructing a DFS Spanning Tree without a Specified Root

Correctness

- `<leader>` messages with leader id m are never dropped because of discovering a larger leader id, by definition of m.
- `<already>` messages with leader id m are never dropped because they have the wrong leader id.
- `<parent>` messages with leader id m are never dropped because they have the wrong leader id.
- Messages with leader id m are never dropped because the recipient has terminated.
- Thus, the instance of DFS-ST for leader id m completes, and correctness of DFS-ST implies correctness of Algorithm 4.

Message complexity?

Time complexity?
Constructing a DFS Spanning Tree without a Specified Root

- **Theorem**: Algorithm 4 finds a spanning tree of a network with \(m \) edges and \(n \) nodes, with message complexity \(O(nm) \) and time complexity \(O(m) \).

Bibliography

These slides are based on material that appears in the following books:

- H. Attiya & J. Welch, Distributed Computing: Fundamentals, Simulations and Advanced Topics, Morgan Kaufmann, 1998 (Chapter 1)