
CS-475 Assignment 1

Kalman Filter

Michael Maravgakis
maravgakis@csd.uoc.gr

Release date: 05/03/25
Deadline: 11/03/25

1 Introduction

In this assignment, we are going to help our turtlebot to localize itself by using
the Kalman Filter (KF). The Kalman filter allows us to combine a variety of
potentially erroneous/inaccurate sources and obtain an estimate about the state
of our robot that is more accurate than any individual source. Our robot has 2
sources of positional data:

1. It is equipped with a GPS sensor which returns the position of the robot
(x,y).

2. It has an IMU sensor that returns how much the robot has turned (yaw).

In a perfect world, we would just need the IMU sensor in order to perform
successful localization. In practice the wheels are subject to slip which may
cause the robot to believe it’s turned a different amount than it actually has;
this error accumulates over time (aka ”drift”). While GPS simply is not accurate
enough (its resolution isn’t high enough) on its own for the tasks we want our
robot to do. For the purpose of this assignment we’ll assume that all sensing
uncertainties can be modeled in terms of Gaussian white noise and therefore
the KF can be utilized to filter data streams and obtain more reliable estimates
about the robot’s position.

2 Setup

Copy the directory assign1 with its contents inside your workspace:

/home/<user_name>/475_ws/src

To run the simulation and visualize the data with rviz, simply compile your

1



workspace and run:
roslaunch assign1 burger.launch

Then you should see the robot moving and also the visualization of the IMU-
based odometry (dead-reckoning) and the GPS measurements. Everything is
ready for you regarding the package ”setup”, you don’t need to change anything
in the CMakeLists.txt or package.xml. Inside this package you will find the
launch/ folder, which contains the launch file (burger.launch). This file provides
a convenient way to start up multiple nodes and a master(roscore), as well as
other initialization requirements such as setting parameters.

3 Implementation

For this assignment, you will implement the Kalman Filter by fusing the noisy
measurements of the orientation and the GPS to get a more accurate state
estimate. Practically, you will need to code the mathematics from slide 17
of Bayes Filter Implementations presentation (2.kalman.ppt). Write your KF
inside the src/kalman.py script. Once you get the state estimate, you should
publish it using the Odometry type ros message. The measurement error of
your sensors is gaussian and for the GPS is 0.3m while for the IMU orientation
is 0.01rad.

Simulation

This time, instead of Gazebo (running on the background) you are going to use
the Rviz. Rviz is a powerful tool, built-in for ROS and helps with the visualiza-
tion of data. You can start the simulation by opening a terminal window and
type:

roslaunch assign1 burger.launch

Then, an Rviz window (displayed at Figure 1) should appear and the robot will
start moving forever with constant linear speed=0.3m/s. When you have
completed your implementation, Rviz will subscribe to the ”/kalman est”
topic and visualize the state of your robot. Start up the kalman node with the
command:
rosrun assign1 kalman.py

In the above image, the purple dots illustrate the noisy GPS measurements
and the red arrows the noisy odometry. Your kalman filter estimates will be
illustrated by green arrows when published to the appropriate topic.

2



Figure 1: Screenshot taken from Rviz

4 Submission

Send your node (kalman.py) attached via email at: maravgakis@csd.uoc.gr
Don’t forget to add at the top of the file your name and your registration number
as a comment. The subject of the email should be the following: [CS475]: As-
signment 1 submission. The deadline is due to Tuesday 11/03/2025 23:59

3


	Introduction
	Setup
	Implementation
	Submission

