
CS-475 Assignment 0

Introduction to ROS

Michael Maravgakis
maravgakis@csd.uoc.gr

Release date: 17/02/25
Deadline: 28/02/25

1 Introduction

This assignment is a tutorial on how to setup and use the Robot Operating
System ROS. You will install ROS Noetic and then you will add the turtlebot3
robot to the built-in simulated environment, Gazebo. The goal is to get familiar
with the core concepts and tools of ROS.

2 Installation

In order for ROS Noetic to work, it needs to be installed on top of Ubuntu
20.04. So you need to install Ubuntu 20.04 first. Choose one of the following
options :

1. (Recommended) Install Ubuntu 20.04 as your main operating system (or
dual boot). Follow these instructions:
https://phoenixnap.com/kb/install-ubuntu-20-04

2. (OK) Install Ubuntu 20.04 in WSL (prefered) or VM. Download the Desk-
top image (.iso) from https://releases.ubuntu.com/focal/ and then follow
the tutorial tutorial: https://linuxhint.com/install ubuntu virtualbox 2004/.

3. (Not recommended) You can skip the installation of Ubuntu and work
with ROS online.Use the contrust, online ROS platform
The online ROS platform is https://www.theconstructsim.com/ where you
are required to create a free account.

Now that you have installed Ubuntu 20.04, follow the ROS instructions to
install ROS noetic, http://wiki.ros.org/noetic/Installation/Ubuntu (Install the
full desktop version). After the installation, it is highly suggested to practice on
the beginner tutorials from: http://wiki.ros.org/ROS/Tutorials especially the
”Writing a Simple Publisher and Subscriber (Python)”

1

https://phoenixnap.com/kb/install-ubuntu-20-04
https://releases.ubuntu.com/focal/
https://linuxhint.com/install_ubuntu_virtualbox_2004/
https://www.theconstructsim.com/
http://wiki.ros.org/noetic/Installation/Ubuntu
http://wiki.ros.org/ROS/Tutorials

3 Setup turtlebot3

Assuming that you have installed ROS and followed some of the tutorials, now
you should be a bit familiar with the file structure and some of the key concepts
of ROS(nodes,topics,msg, etc.)

Figure 1: turtlebot 3

Follow the instructions bellow in order to create a fresh workspace and in-
stall the turtlebot there.

Use a terminal to navigate to your home directory and then:

$ mkdir -p 475_ws/src

$ cd 475_ws/src

If you already do not have git installed, you can use:

$ sudo apt install git

Clone the turtlebot repositories to your workspace:

$ git clone --branch noetic --single -branch

https :// github.com/ROBOTIS -GIT/turtlebot3_simulations.git

2

$ git clone --branch noetic --single -branch

https :// github.com/ROBOTIS -GIT/turtlebot3.git

$ sudo apt-get install ros-noetic-turtlebot3-msgs

Compile the project:

$ cd ..

$ catkin_make

In order for your system to see the new ROS workspace, you need to source
the devel/setup.bash file every time you open a new terminal window by using:
$ source /home/<usr_name>/475_ws/devel/setup.bash

I suggest to just add this line at the bottom of your .bashrc and never have
to deal with it again. The .bashrc file is located at your home directory, you
need to modify it as a superuser:

$ sudo gedit .bashrc

Add the following lines at the and of the file:

source /home/<usr_name>/475_ws/devel/setup.bash

export TURTLEBOT3_MODEL=burger

The latter is just needed in order to specify the robot we are going to use.
Save and exit!
Open a new terminal window and run $ rospack profile, this practically up-
dates the packages for ROS. Now that everything is in place, you can spawn the
robot inside the simulation environment by using:

$ roslaunch turtlebot3_gazebo turtlebot3_empty_world.launch

You should be able to see the turtlebot located at the origin (0,0,0) inside
an empty world. In general you can use the roslaunch command to run any
.launch files. The general use is:
$ roslaunch <package_name> <name_of_launchfile>

When you type $roslaunch <package_name>$ if you press the TAB button
twice, it displays all the launch files contained in the package. In genera, the
names are pretty descriptive on what each file actually does when you launch it
so you can decide on the spot what would you like to run. I suggest to navigate

3

and test different environments (e.g. turtlebot3_house.launch). Note that
the more complicated the environment is, the more time you have to wait in
order to load it.

4 Create a package

Finally, the only thing that remains is for you to create a package and then a
node that subscribes and publishes to a topic.
Use this to create a package after you’ve navigated to the src/ folder of your
workspace:
$ catkin_create_pkg <Package Name> rospy nav_msgs std_msgs

The rospy, nav msgs, std msgs arguments are the dependencies of your pack-
age. Navigate to your new package/src/ and there create a <name>.py file,
where <name> is your registration number, this will be the name of your node.
In order for a python script to get installed properly and use the right python
interpreter, you need to add to the end of the CMakeLists.txt the following
lines:

catkin_install_python(PROGRAMS src/<name>.py

DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}

)

Replace the <name> with whatever you’ve chosen as your node name. This
makes sure that python scripts get installed properly, and use the right python
interpreter.

5 Compute Distance

The purpose of your node is to extract the necessary information from the
/odom topic and calculate the 2D distance between the robot and the world
frame (0,0,0). Then, you will need to publish the calculated distance to another
topic with a name of your choice.

To run your node you will need to use the rosrun command:
$ rosrun <name_of_your_package> <name_of_your_node>

Move the robot around by using the teleop launch file and then subscribe to
your created topic and see if you get the expected results. You can move the
robot by running:
$ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

(Follow the prompt instruction on how to move it)

4

6 Tips

1. Use: rostopic type <topic_name> to find out what type of message a
topic uses

2. Run $ rosmsg show <general_class/specific_type> to easily see the
data structure of the message.(e.g. rosmsg show std_msgs/Float32)

3. To get only one message from a topic you can use the
rospy.wait_for_message(’topic_name’,msg_type,timeout=None)

7 Submission

Send your node (<registration number>.py) attached via email at: mar-
avgakis@csd.uoc.gr Don’t forget to mention your name and registration num-
ber. The deadline is at 28/02/25

5

	Introduction
	Installation
	Setup turtlebot3
	Create a package
	Compute Distance
	Tips
	Submission

