[CS-475] Assignment 5: Fast-SLAM

Michael Maravgakis
maravgakis@csd.uoc.gr

Release date: 03/05/2023
Deadline: 15/05/2023

1 Overview

In the last two assignments, you’ve implemented a particle filter for localization
and a mapping algorithm with known poses. For the former, you were provided
with a height map of the workspace, while for the latter, the ground truth pose
of the robot was handed to you. The goal of the map was to provide you with a
metric for calculating the weight of each particle in order to be able to separate
the most "popular” particles from the rest. For the mapping, knowing the pose
of the robot enabled you construct a map by measuring the distance of each
object with respect to the robot’s current position and orientation .

In real applications, having either a map or the exact pose of the robot, is
considered a luxury and quite often such information is not available. Suppose
you just have a robot with some sensors and you want the robot to navigate
autonomously in an unknown environment. The first task you need to figure out
is how to place the robot inside a map that you don’t even know its structure.
That’s where you need the Simultaneously Localization And Mapping (SLAM)
algorithm. There are numerous SLAM implementations but in this assignment
we are going to use the Fast-SLAM.

2 Installation

In your .zip file there is a package (assign5/) that you will need to copy to your
catkin workspace. Then compile your workspace: $ catkin_make

The environment is much similar as in assignment 4, you can run the simulation
by using:

$ roslaunch assignb burger.launch

In case you can’t see the new package, update the ros package manager:

$ rospack profile The first line of your node should be the following;:

1. Ubuntu 18.04 + ROS melodic: #! /usr/bin/env python

2. Ubuntu 20.04 + ROS noetic: #! /usr/bin/env python3

You will need to implement a ROS node(src/slam.py) for the FastSLAM
algorithm. You can reuse anything you’ve implemented so far. If you've com-
pleted the installation, you should see the following after you use roslaunch

(RViz and gazebo):

© Time
ROSTime: [57.28 | ROS Elapsed: [57.01 | Wall Time: 2065.07 | Wall Elapsed: 59.07 | | | Experimental

Reset | 31fps

Figure 1: Environment

3 Implementation

SLAM is a chicken-egg problem meaning that in order to localize the robot
you need a map and in order to create a map you need the pose of the robot.
FastSLAM is a modified combination of your previous 2 assignments, namely
particle filter and mapping. The idea is simple, you create the particle filter
and you assign a map to each particle and by using the belief of the map you
can calculate the weights and re-sample. Your implementation will be to reform
the particle filter algorithm from assignment 3 and add mapping with known
poses to each particle. This time the known pose is the belief of each particle’s
position. The fast slam algorithm in pseudo-code is the following;:

Algorithm 1 FastSLAM algorithm

function FASTSLAM (X;_1, uy, 2¢)
S0
for Every particle p in N do
xl[fk] +— MotionUpdate(uy, xyc_]l)

1:

2

3

4

5: wik] « SensorUpdate(zt, ac,[fk])
6

7

8

myf] + UpdateOccupancyGrid(z:, x][fk] , mgk_]l)

S+ X,
end for
9: LowVarianceResample(S)
10: end function

3.1 Initialization

You can assume that you know the size of the workspace beforehand(6m x 6m).
This information comes handy when you are initializing the size of the occupancy
grid and also initialize the poses of the particles (x,y,yaw). This information
makes the mapping problem static, i.e. you have one map fixed size and you
want to fill it along the way. In case you don’t even have that information you
will need to dynamically allocate space and expand the occupancy grid as you
go.

Do not get confused by the robot’s position inside the grid in RViz. The
algorithm will converge eventually at some point but every time you run the
algorithm it will be on a different point (with respect to origin). The only
thing that you need to care about is the particle’s estimation with respect to
the created map, meaning that translation and rotation of the whole occupancy
grid are irrelevant. You can see figure 2 where this are the maps created by 3
particles but all of them are correct because the particle has the same position
with respect to the local map.

At the initialization step, the map is defined as a 10x10(m) occupancy grid
but feel free to change this if you find something more suitable. You will need to
initialize the particles just like assignment 3 but this time you can assume that
all the particles are somewhere in the center of the map. This step is crucial
because if a particle is initialized at the edge it will not be able to create a map
with measurement that fall outside of the boundary box.

Finally, the FastSLAM algorithm is quite computationally intensive so use
only a few particles. (around 20 should be enough)

3.2 Motion Update

The input for this function is the displacement on x/y-axis and how much the
yaw (orientation) of the robot is changed. Do not forget that these measure-
ments are with respect to the origin (assume GPS). In your code these variables
are formalized as dx, dy & dyaw accordingly. In the motion update function

Figure 2: Results

you should update the position of each particle according to your control input.
You will need to write a transformation that does the following: Figures out
by how much the actual robot has moved in the direction that it is facing and

updates all the particles with that information.

Since the displacement is given to you with error you do not want to simply
update the all particles by di where i is x,y, or yaw. You should rather update
them by: di & random(—error, +error). What this does is takes into account
the erroneous measurement and tries to apply the idea that “the robot didn’t
move by exactly this value (di), but something close to that”. If you publish
the particles after this step, you should see all particles wiggle a bit. Try to
move the robot around and check if all the particles are following the path of
the robot.

3.3 Update Occupancy Grid

Although this step comes after the weight calculation, I suggest to implement
this first because you will actually need this in order to calculate weights and
also you can check if this step is done correctly. This part is actually pretty
straight-forward. You re-implement your previous assignment (Mapping with
known poses) for every particle. You consider each particle’s pose to be the real
one and you raytrace the beam. You loop your beam from minimum scan range
to your measurement’s range, for every angle and add the log free probability
to every cell except the measurement’s one where you add the log occupied.

Once you’ve implemented this part, you can check the robustness of it by
using only one particle and moving the robot around. Toggle off the noise (set
global variable ” ToggleNoise =0”) and you should observe the perfect (almost)
mapping. Now add one more particle and visualize its map, if the map is built up
such that the new particle is the actual robot you are good to go. (Remember
each time you can only view one map). The expected result at this point is
something like figure 2.

3.4 Update Weights

This function will update the weights for each particle given a scan measure-
ment (z;). This is a bit tricky because you will need to take into account
computational power and time required for this step. The way to compute the
weights is by comparing the already obtained map of each particle with the
given measurement. .
] _

wy _ld_zt“f'l (1)
where wk] is the weight of particle ¢ in time ¢, d is the calculated distances from
the particle’s map and z; is the current scan measurement. z; contains range
measurements on all direction (0-360) so what you need to do is calculate the
expected measurements by tracking down a hypothetical scan from the particle’s

new position and comparing to the real ones. More specifically:
|d — Zt| = \/(do — 20)2 + (dl — 21)2 + ...+ (d360 — 2360)2 (2)

In order to compute the d vector you will need to assume that any map cell
with a value greater than a certain threshold is occupied. For example, dj is the

distance between the particle and the first occupied cell in the direction that
the particle is facing. d3g will be computed using the same process but with the
first occupied cell in the direction of the particle + 30 degrees. (Do not forget
to normalize the weights to 1)

Toggle the noise ON and the navigate the robot around and print the weights,
you should see them differentiate. High weight means that the update step
where you add a random value to your measurement approximates better the
real displacement.

3.5 Low variance re-sampling

Low variance resampling is the process of picking up the good particles and
eliminate the bad ones. By good and bad I mean large and small weight. You
can find the algorithm at p.110, table 4.4 Probabilistic robotics. You will need
to reformulate the algorithm a bit to match the python numbering principals
(starting counting from 0 and not 1)

4 Results

If you’ve implement the algorithm correctly the result should be something like
the following (I have initialized the particles to be at the same position as the
robot):

Figure 3: Final result

6

Tips

. If you use the full scan measurement the algorithm will be painfully slow (if

it runs at all). You can subsample the scan measurements and instead of
taking 0-360 take for example -30 to 30 degrees measurements and discard
the rest. This will greatly help with the computation time that is needed
to be real-time.

. Adjust map_resolution to a value that makes the algorithm run real time

at your computer.

. Visualize and debug each individual step. You are graded for each task

separately

. Publish the map of the highest weight particle each time

. The template I gave you is just a sketch of my implementation. You can

re-write the whole code if you want from scratch. If so, keep it structured
and commented so it would be easy to read.

Submission

Sent your node (slam.py) attached via email at: maravgakis@csd.uoc.gr
with subject " [CS-475] Assignment 5 submission" Don’t forget to mention
your name and registration number. The deadline is at 15/05/2023 23:59

