(CS-475] Assignment 5: FastSLAM

Changda Tian
cdtian@csd.uoc.gr

Release: 30/04/2025
Deadline: 13/05/2025

1 Overview

In your previous assignments, you implemented two important components of mobile
robotics:

e A particle filter for localization (using a provided height map).

e A mapping algorithm with known (ground truth) robot poses, which enabled you
to build an accurate map by measuring distances from the robot.

In real-world applications, however, having either a pre-built map or accurate pose
measurements is often a luxury. When a robot is equipped only with onboard sensors, it
must learn its environment and simultaneously determine its own location. This is the
core challenge of Simultaneous Localization and Mapping (SLAM).

In this assignment, we will implement FastSLAM, a method that combines:

e A particle filter to represent multiple hypotheses about the robot’s pose.
e An occupancy grid mapping algorithm, which generates a map from sensor data.

Each particle maintains a hypothesis of both the robot’s pose and a corresponding
map. At every time step, the particle’s pose is updated with a motion model that includes
sensor noise, and its map is updated using new sensor readings. Then, a weight is assigned
to each particle according to how well its map explains the sensor measurements. Particles
with higher weights (the more “popular” ones) are retained during the resampling step.

For clarification, here are some key definitions:

e X;: The robot’s pose (position and orientation) at time ¢.

e u;: The control input (e.g., displacement and change in orientation) between ¢ — 1
and t.

e 2;: The sensor (e.g., laser scan) measurements at time t.
° wy] and m,[f]: The weight and map associated with the ith particle at time ¢, re-
spectively.

The following pseudo-code summarizes the FastSLAM algorithm:

Algorithm 1 FastSLAM Algorithm

1:
2
3
4
5:
6
7
8

9:

function FASTSLAM (X1, u, 2)

S+ 0

for each particle p € {1,..., N} do

m&p} < MotionUpdate(uy, x@l)

wE’] + SensorUpdate(z;, x][fp])
mEP} + UpdateOccupancyGrid(z, $£p], m,Ep_]l)
S« SU{z wP mPh

end for

LowVarianceResample(S)

10: end function

Key Equations

Below are some important equations used in FastSLAM:

2

1. Weight Calculation: For each particle, compare the expected sensor measure-

ments d (generated from the particle’s current map) with the actual measurements
z;. The particle weight is given by:

Wl 1
b lld=z+1

where the Euclidean norm is computed as:

M

1d =zl = | > (dj = z,)°

=1

Here, M represents the number of sensor beams (e.g., 360 for a full circle).

. Motion Update: The motion update accounts for the robot’s displacement in both

translation and rotation. Given the control input (dz, dy, df) and incorporating
random sensor noise: 4 4 '
2l =2+ Arcos(”,) + e,

v =yl + Arsin0l) + ¢,
o1 = 01" | + db + e,

Ar = +\/dx? + dy?,

and €, €,, € are small random noise terms representing measurement errors.

where

Installation

In the provided .zip file, you will find a package named assigns/. Follow the steps below
to prepare your environment:

1. Copy the assign5/ folder into your catkin workspace.
2. Compile your workspace using: $ catkin_make
3. Launch the simulation with: $ roslaunch assignb burger.launch

4. If the new package does not appear immediately, update the ROS package manager
using: $ rospack profile

5. If everything works, open another terminal and launch the turtlebot3_teleop node:
$ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

After launching, you should see both RViz and Gazebo visualizations, as shown in
Figure

O Time.
ROSTime: 5728 ROSElapsed: 57.01 WallTime: 206507 WallElapsed: 59.07 || Experimental
| Reset 3fps

Figure 1: Environment

3 Implementation Details

You are required to implement a ROS node (located at src/slam.py) that carries out
the FastSLAM algorithm. The following sections explain each module in detail.

3.1 Initialization
Map Initialization:

e The workspace dimensions are approximately 6 m x 6 m. This information is used
to initialize an occupancy grid map.

e For example, the map might initially be defined over an area of 10m x 10m (al-
lowing for some flexibility), with each grid cell initialized to an “unknown” value
(commonly 50).

Particle Initialization:
e Initialize N particles (recommended: ~ 20).

e Each particle is assigned a pose (z,y,6), which should be near the center of the
occupancy grid. This is crucial because particles starting at the map’s boundaries
may not receive sensor measurements that are within the grid.

e Each particle also maintains its own copy of the occupancy grid.

3.2 Motion Update

The motion update adjusts each particle’s pose based on the control inputs and includes
random noise to simulate real-world uncertainty.

e Obtain the displacement inputs dx, dy and change in orientation df from odometry
or GPS. These values describe the movement relative to a fixed global frame.

e Each particle’s new position is computed by:

xl[ﬂ — xy_l + Ar COS(QFL) T €a
yf} — ?/Fll + Ar Sin(eﬁl) + €y,
o = 0|+ df + e,

where

Ar = +\/dx? + dy?.

e The inclusion of €., €,, and € (small random noise values) ensures that the particles
do not move in perfect synchrony, which is a realistic representation of sensor and
actuator noise.

e Visualize the particles in RViz. If implemented correctly, you should see a slight
“wiggling” of particles reflecting the inherent uncertainty in the motion measure-
ments.

3.3 Occupancy Grid Update

Each particle updates its respective occupancy grid based on the latest laser scan mea-
surements.

e For each laser scan beam:
1. Start from the particle’s current position and “raytrace” along the beam’s

direction.

2. For grid cells along the beam path (from the minimum scan range up to but
not including the hit cell), update the log-odds to indicate free space.

3. For the cell corresponding to the endpoint where an obstacle is detected, up-
date with a log-odds value that indicates occupancy.

e The log-odds update can be represented as:

p(occupied | z)
1 — p(occupied | z)

L(cell) = log (

e To verify this module, first test with a single particle and disable the noise (i.e.,
set ToggleNoise = 0). A nearly perfect map should emerge. Once verified, add
additional particles and compare their individual maps.

3.4 Sensor Weight Update

The weight of each particle is a measure of how well its map matches the actual sensor
data.

e For each particle, simulate an expected laser scan using its current map. This
creates a vector d, where each element d; is the distance from the particle to the
nearest obstacle along the beam direction j.

e Compare this expected measurement d with the actual measurement z; obtained
from the sensor:

Id =zl = | > (dj — 2,)2

M
J=1

e Calculate the particle’s weight as:
wll = _ .
ffld -z + 1

e Finally, normalize the weights so that:

N
ngﬂ =1
i=1

3.5 Low Variance Resampling

This resampling step refines the particle set by keeping only the more probable hypothe-
ses.

e Construct a cumulative distribution function (CDF) from the normalized particle
weights.

e Generate a uniformly distributed random number v, € [0, %]
e For each particle index j € {0,1,..., N — 1}, choose a particle based on the CDF
using:

uj:uo—ki.

N

e Select the particle corresponding to u; and replicate it into the new particle set.
This process favors particles with higher weights.

For further details on low variance resampling, see Table 4.4 in Probabilistic Robotics
(p.110).

4 Results

When your FastSLAM implementation is working correctly, you should observe:

e Each particle’s occupancy grid map will gradually converge towards an accurate
representation of the environment.

e The individual maps may be shifted or rotated relative to each other due to the par-
ticle’s different estimated poses, but the local representation (i.e., the relationship
between the robot and surrounding obstacles) should be correct.

For instance, when particles are initialized near the robot’s true pose, you might see
occupancy grids similar to those in Figure [2}

Figure 2: Example occupancy grid maps generated by three individual particles. Al-
though each map’s global frame may differ, the relative configuration between the robot
and obstacles is correctly captured.

Finally, the particle with the highest weight, indicating the best match between pre-
dicted and actual sensor data, will have its occupancy grid published as the final map.

Figure 3: Final Result: Occupancy grid map published from the highest-weight particle.

5

6

Tips for Success

. Subsampling the Scan: Processing an entire 360° scan can be computationally

expensive. Consider using a smaller field-of-view (e.g., from -30° to 30°) to reduce
processing time.

. Map Resolution: Tweak the map_resolution parameter to balance the level of

detail and real-time performance.

. Step-by-Step Validation: Implement and validate each module (motion update,

occupancy grid update, weight update, and resampling) independently before inte-
gration.

. Visualization: Regularly publish both the particle poses and occupancy grids to

RViz. This will help you identify and correct errors in real time.

Submission

Email your ROS node file (slam.py) with subject: [CS-475] Assignment 5 Submission

to:

cdtian@csd.uoc.gr

Clearly mention your name and registration number. Submission deadline is

strictly:

13/05/2025, 23:59

	Overview
	Installation
	Implementation Details
	Initialization
	Motion Update
	Occupancy Grid Update
	Sensor Weight Update
	Low Variance Resampling

	Results
	Tips for Success
	Submission

