
[CS-475] Assignment 4: Mapping with Known Poses

Changda Tian
cdtian@csd.uoc.gr

Release date: 09/04/2025
Deadline: 29/04/2025

1 Overview

In this assignment you are tasked with designing and implementing an occupancy grid
mapping algorithm for the Turtlebot using the Gazebo simulator. In previous assign-
ments, you have tackled state estimation and localization using either a GPS module or
a pre-provided map. Now the problem is to build a map of a finite workspace using the
robot’s known poses (assumed to be highly accurate) and noisy lidar measurements.

The Turtlebot is equipped with a 2D lidar sensor that provides range measurements
zt at time t. These measurements (referred to as pass-through/hit information) are used
to decide whether the grid cells in the robot’s environment are free or occupied. In this
assignment, you will first implement a simple binary mapping approach and then refine
your results using a log-odds (probabilistic) update method based on techniques from the
book Probabilistic Robotics (see Tables 9.1 and 9.2).

2 Theoretical Background

2.1 Occupancy Grid Mapping Fundamentals

Occupancy grid mapping is a technique in which the environment is discretized into a grid
of cells, each associated with a probability of being occupied. Given sensor measurements
and known robot poses, the mapping problem is formulated using Bayesian probability.
For a grid cell m, we wish to estimate:

p(m | z1:t, x1:t),

where z1:t and x1:t denote the history of sensor readings and robot poses, respectively.

2.2 Binary Occupancy Grid Mapping

The binary mapping approach is a simplified method where each grid cell is updated with
hard decisions:

• Free Space: Cells along a laser beam that are closer than the measured range are
set as free (e.g., a value of 0).

• Occupied Space: The cell corresponding to the endpoint of a laser beam (where
an obstacle is detected) is set as occupied (e.g., a value of 100).

1

To implement the binary method, the inverse sensor model is used in a simplified manner.
For each cell, a precomputed log-odds increment is applied:

∆l =

{
10× log pfree

1−pfree
if the cell is free,

10× log pocc
1−pocc

if the cell is occupied.

After updating, the cell values are clamped to the range [0, 100] to yield a clear binary
interpretation.

2.3 Log-Odds (Probabilistic) Occupancy Grid Mapping

While the binary method makes hard decisions, the log-odds method provides a more
refined probabilistic update. Instead of directly assigning binary states, each cell is main-
tained with a log-odds value:

l
(m)
t = log

p(m | z1:t, x1:t)

1− p(m | z1:t, x1:t)
.

This formulation allows an additive update:

l
(m)
t = l

(m)
t−1 + l(m | zt, xt)− l0,

where:

• l(m | zt, xt) is the inverse sensor model output in log-odds form.

• l0 = log p(m)
1−p(m)

is the prior (with l0 = 0 for a 50% initial probability).

To visualize the map, the log-odds value is converted back to a probability:

p(m | z1:t, x1:t) =
1

1 + exp
(
−l

(m)
t

) ,
which is then scaled to a 0–100 range.

3 Simulation Setup

3.1 ROS Package and Environment

You are provided with a ROS package named assign4/. To set up the simulation:

1. Copy the package into your ROS workspace.

2. Compile the workspace.

3. Launch the simulation using the provided launch file:

$ ros launch as s i gn4 burger . launch

4. To control the Turtlebot manually, use:

$ ros launch t u r t l e b o t 3 t e l e o p t u r t l e b o t 3 t e l e o p k e y . launch

In the simulation, the Gazebo environment represents a finite workspace (a 6x6 m room),
and Rviz is used to visualize your occupancy grid map.

2

Figure 1: Gazebo + Rviz

3.2 Topics and Data Structures

The node mapping.py will subscribe to and publish the following topics:

• /scan → sensor msgs/LaserScan (lidar readings)
• /odom → nav msgs/Odometry (robot pose)
• /map → nav msgs/OccupancyGrid (the occupancy grid to be visualized)

The OccupancyGrid message has the following fields:

std msgs /Header header
u int32 seq
time stamp
s t r i n g f rame id

nav msgs/MapMetaData i n f o
time map load time
f l o a t 3 2 r e s o l u t i o n
uint32 width
uint32 he ight
geometry msgs/Pose o r i g i n

geometry msgs/Point p o s i t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs/Quaternion o r i e n t a t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

in t8 [] data

3

It is recommended to set the map origin to (−3,−3, 0) so that the map aligns well with
the workspace.

4 Implementation Details

4.1 Initialization

• Map Parameters: Set the resolution (e.g., 0.01 m) and the map dimensions (6 m
by 6 m).

• Map Initialization:

– For binary mapping, initialize the occupancy grid with an intermediate value
(e.g., 50 on a scale from 0 to 100) to denote unknown occupancy.

– For log-odds mapping, initialize an internal map with a neutral value (0),
corresponding to a 50% probability.

• Message Setup: Create and configure the nav msgs/OccupancyGrid message
with the correct frame id (e.g., "odom"), resolution, width, height, and origin.

4.2 Coordinate Transformation

The robot’s pose is given with respect to the world frame. To update the occupancy
grid, translate these coordinates into map indices. If the map origin is (x0, y0) and
the resolution is r, then the cell indices (i, j) corresponding to a world point (x, y) are
calculated as:

i =

⌊
x− x0

r

⌋
, j =

⌊
y − y0

r

⌋
.

This transformation is essential for associating sensor measurements with the correct cell
in the occupancy grid.

4.3 Laser Scan Processing and Map Update

The mapping update is performed using two approaches:

1. Binary Update:

• Traverse each cell in the grid.

• Convert the cell index (i, j) to its world coordinate (xa, ya).

• Compute the Euclidean distance from the robot to the cell and the relative
bearing.

• Identify the corresponding laser scan measurement based on the bearing.

• If the cell lies before the detected obstacle, update it as free; if the cell is at
the obstacle, update it as occupied.

• Clamp cell values to the range [0, 100].

2. Log-Odds Update:

• Process the laser scan data (extracting angle min, angle max, and ranges).

4

• For each valid laser beam, update cells along the beam:

– Increment the log-odds of cells along the beam (free space) by adding a
negative value.

– Increment the log-odds of the cell at the measured obstacle by adding a
positive value.

• Convert the log-odds values to probabilities using:

p(m | z1:t, x1:t) =
1

1 + exp
(
−l

(m)
t

) ,
and scale them to the 0–100 range for display.

4.4 Visualization and Comparison in Rviz

Your implementation should publish two separate OccupancyGrid messages:

• One for the binary map (e.g., published on /map/binary).

• One for the log-odds (probabilistic) map (e.g., published on /map/logodds).

In Rviz, add two separate Map displays, one subscribing to /map/binary and the other
to /map/logodds, so that you can directly compare:

• The abrupt state changes in the binary map.

• The gradual, uncertainty-reflecting updates in the log-odds map.

5 Evaluation and Expected Results

Figure 2: Initial grid (shown in a neutral color to denote unknown occupancy)

5

Figure 3: Initial mapping results, demonstrating early updates (using either binary or
log-odds updates)

Figure 4: Binary mapping results

5.1 Visualization with Rviz

Once the occupancy grids are updated based on laser scans and robot movement, publish
them on separate topics (e.g., /map/binary and /map/logodds). In Rviz, the occupancy
grid displays should show:

• Initially, a grid with uniform color representing unknown occupancy.

• As the Turtlebot navigates, free cells appear in light colors (white) and occupied
cells in dark colors (black).

• The log-odds map will display a nuanced gradient, whereas the binary map will
show hard transitions.

6

Figure 5: Final Result with log-odds

5.2 Testing and Debugging

• Verify that the coordinate transformation correctly aligns the robot’s pose with the
grid.

• For each laser beam, sketch the intersection with grid cells to ensure correct updates.

• Compare the binary map and the log-odds map; the log-odds method should more
effectively reduce noise and reflect sensor uncertainty.

6 Submission

Send your node (mapping.py) as an attachment via email to: cdtian@csd.uoc.gr with
subject "[CS-475] Assignment 4 submission". Remember to include your name and
registration number. The deadline is 29/04/2025 23:59.

7

	Overview
	Theoretical Background
	Occupancy Grid Mapping Fundamentals
	Binary Occupancy Grid Mapping
	Log-Odds (Probabilistic) Occupancy Grid Mapping

	Simulation Setup
	ROS Package and Environment
	Topics and Data Structures

	Implementation Details
	Initialization
	Coordinate Transformation
	Laser Scan Processing and Map Update
	Visualization and Comparison in Rviz

	Evaluation and Expected Results
	Visualization with Rviz
	Testing and Debugging

	Submission

