
[CS-475] Assignment 4: Mapping with Known

Poses

Michael Maravgakis
maravgakis@csd.uoc.gr

Release date: 05/04/2023
Deadline: 26/04/2023

1 Overview

In this assignment, you will design an occupancy grid mapping algorithm for the
turtlebot in gazebo. In the previous assignments you performed state estimation
and localization by either using a GPS module or utilizing the given map. Now,
we are assuming that the poses [x, y, θ]T of the robot are known (with high
accuracy) and the goal is to use those poses and the noisy scan measurements
to create the 2D map of the finite space that the robot moves. The turtlebot
is equipped with a lidar that can provide range measurements zt, where zt is
the scan at time t and it is pass-through/hit information (see section 3). In
order to create the occupancy grid, you can use the algorithms described in the
Probabilistic Robotics book, Tables 9.1 and 9.2.

2 Installation

In your zip file, you are provided with a ROS package named assign4/. As
always copy paste it to your ros workspace and compile. In case you need more
information, check out the previous assignments. This package contains a launch
file (”burger.launch”), that opens the gazebo simulation with the turtlebot and
a custom world. This ”room” is your workspace that you will need to map.
Also, when you run the launch file it will open an rviz window that will help
you visualize your results and also your measurements. In order to save time at
your first tries you can avoid opening the gazebo simulation GUI by setting the
"gui" parameter in the launch file to false and when you want to navigate the
robot with the teleop package to check if your algorithm works you can switch
it back on. As a reminder you can use:

1. $ roslaunch assign4 burger.launch

2. $ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

1

If everything is set up, when you run your launch file, the windows from the
image below should pop up.

Figure 1: Gazebo + Rviz

3 Implementation

This implementation is fairly easy when you understand what you need to do.
Imagine you have a laser that shoots a beam and you know the distance that the
beam traveled when it hit an object. You can use this information to extract
the following conclusions:

1. Between your laser and the distance that you measured there is empty
space

2. At the direction you are shooting and at range equal to the distance you
know there is an obstacle

3. Behind this obstacle you don’t have a clue what is happening

After you save this information you turn your laser a bit and you measure again.
This is exactly how a lidar sensor works. Now, I’ll walk you through on how to
implement this algorithm, but most of the coding is left up to you. In case, you
get stuck somewhere feel free to ask anytime.

First of all the data structures that you are going to use are the following:

1. sensor_msgs/LaserScan, contains the distance measurements from the
lidar

2

2. nav_msgs/OccupancyGrid, this will be the output message that will be
visualized from the rviz

3. nav_msgs/Odometry, will be used to extract the pose of the robot

The topics that will be subscribed/published are the /scan, /map, /odom ac-
cordingly. You are provided with some parameters at the beginning of your
node mapping.py, read them carefully. The size of the room is 6x6(m) and the
resolution 0.01 (m).

First, you will define the message and the publisher that will be responsible
for publishing your occupancy grid map. (use frame_id ="odom"). If you type
$ rosmsg show nav_msgs/OccupancyGrid, the following output will appear:

std msgs /Header header
u int32 seq
time stamp
s t r i n g f rame id

nav msgs/MapMetaData i n f o
time map load time
f l o a t 3 2 r e s o l u t i o n
uint32 width
uint32 he ight
geometry msgs/Pose o r i g i n

geometry msgs/Point p o s i t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

geometry msgs/Quaternion o r i e n t a t i o n
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
f l o a t 6 4 w

in t8 [] data

You will need to setup the following:

1. frame_id

2. resolution

3. width and height

4. origin position and orientation (0,0,0,1)

In my case, I set the origin position at (-3,-3,0), although this is not mandatory,
I suggest to do the same. The data list contains the information on whether
or not the cells are occupied. For each cell, it is 0 (white) if it’s free and 100
(black) if it’s occupied. Anything in between is how sure we are that this cell is

3

occupied or not, the more gray the more sure we are it is indeed occupied. For
example when you don’t have any information regarding the occupancy state of
a cell, the data part for that cell will be 50 (% probability)

After you define the occupancy grid move on to the initialization part, where
you set every cell as unknown (50). Try publishing your map and you should
see the following:

Figure 2: Initial grid (maybe different color)

Now, every time you get the position from the /odom topic, it is with respect
to the world frame, so the first thing that you’ll do is to translate each time the
robot’s position to the origin of your map. The robot is located at (-2,0) with
respect to world frame. After the translation, I suggest to navigate the robot
and check if the measurements are correct visually.

Finally, you will update the map. The update process is fairly simple but it
can get a bit confusing with the indices of the occupancy grid so I suggest to
draw an example where the robot has a certain orientation and trace a single
beam to check if your math makes sense. The only math prerequisite is simple
trigonometry. Also to avoid confusion convert the problem to binary at first,
meaning update the cells with either 0 or 100 (free or occupied). You will need
to use additional information from the /scan topic, not only the ranges, but also
the angle_min, angle_max etc. If the update part is done correctly, when you
publish your map you should see the following:

4

Figure 3: Initial results

After you move the robot around the map should get bigger and better.
Something like this:

Figure 4: Mapping with binary (ignore the greenish color template)

Although the map looks good as is, you can easily notice that it is far from
perfect and the noise only propagates over time and will be even worse later
on. The above steps to convert the problem to binary are not mandatory, but
implementing the algorithm this way at first makes it a bit more easier. At this
point you are almost done, the final step is to use the log-odds to extract a
more accurate probabilistic occupancy grid. Instead of 0 and 100, now the data

5

values of your grid can be anything in between. If everything is implemented
correctly the final result should look like this:

Figure 5: Final Result with log-odds

4 Submission

Sent your node (mapping.py) attached via email at: maravgakis@csd.uoc.gr
with subject "[CS-475] Assignment 4 submission" Don’t forget to mention
your name and registration number. The deadline is at 26/04/2023 23:59

6

