
CS-475 Assignment 3

Particle Filter

Michael Maravgakis
maravgakis@csd.uoc.gr

Release date: 26/03/2025
Deadline: 06/04/2025

1 Overview

In this assignment you will learn how to localize your robot by using the Particle
Filter algorithm. Particle filter can work even if the noise is not gaussian (unlike
KF and EKF) but it is more computationally demanding. In the previous as-
signments you used a GPS module and IMU rotation measurements to estimate
the state of the robot with respect to the world frame. Now, you are provided
with a custom made room and a drone that can navigate inside by using the
teleop node. Instead of GPS you will use the provided height map of the room
and displacement measurements of the drone.

Figure 1: Custom workspace + drone

1



2 Installation

In your .zip file, you will find the assign3/ package, copy and paste it inside a
catkin workspace and then download the following package:
$ git clone https://github.com/tahsinkose/sjtu-drone.git

After you’ve download the packages for the assignment navigate to:
$ cd <path>/assign3/worlds/

Open new_world.world, replace "/home/michael/475_ws" at lines 740 and 762
with your own ”/home/<username>/<workspace>/”
Finally, modify the following file:
/sjtu-drone/include/plugin_drone.h

and change:
- #include "ignition/math4/ignition/math.hh"

+ #include "ignition/math6/ignition/math.hh"

Compile your workspace:
$ catkin_make

Use $ rospack profile to update ros file system, for ROS to find the new
packages. To check if everything is fine, run:

$ roslaunch assign3 drone.launch

Gazebo and Rviz windows will open (give it some time for the first run) and
you should see the drone inside the custom room from figure 1 (drone spawns at
the corner). For this assignment you will need both Rviz and Gazebo to work
simultaneously. Gazebo will be used for navigation and Rviz for visualization
of your results. Finally the launch file opens the teleop node that will be used
to move the drone in the environment. The window from figure 2 will pop up.
Navigate in the environment after you take off by pressing ”Z” in the poped-up
window.

Figure 2: Teleop controls

2



3 Information and measurements

You will have to fill the code inside particles.py in order to implement the
particle filter. The goal is your particles to estimate the 2D position (x,y) of
your drone inside the room. The message that will be used in order to create,
update and visualize your particles is geometry_msgs/PoseArray, keep z=1
and [qx,qy,qz,qw] = [0,0,0,1], only update x and y. Also make sure that your
PoseArray message has always the attribute msg.header.frame_id = ’map’.
The size of the room is (8m,15m). The measurements that are provided and
can be utilized to create your algorithm are:

Height map

The height_map of the room contains the height of a specific point inside the
room. So, height_map[x_i,y_i] = Height_of_that_point. Be careful, x_i,
y_i are indices inside the grid that represent the positions of x and y in meters.
The resolution of the grid is something you will find useful in order to convert
meters to grid cells. The resolution is 0.01, e.g. the point (5,3) in meters is
(500,300) inside the height map. In the following image I’ve made a visualization
of the height map of the room to make things more clear. The bottom right

Figure 3: Height map

corner can be considered as (0,0). X-axis runs from bottom to top and Y-axis
from left to right. The white pixels represent the distance from ground not
equal to zero. Although the room contains only cubical boxes, note that the
problem is not binary (height either one or zero), I’ve encoded the height from

3



the center of the box to the edges to decrease. This information will not affect
you, it was done in order to avoid binary weights. You can imagine each box to
be a mountain with its center being the top.

Displacement

You are provided with 2 displacement measurements namely dx,dy. These
represent the difference between the previous and the current position of the
drone at x and y axis respectively. IMPORTANT: Because the orientation of
the robot is not monitored avoid rotating the yaw of the robot, so use WASD
to navigate around but don’t change its heading.

Range finder

The range_finder variable contains the measurement of a radar that can esti-
mate (with noise) the vertical distance below the drone. Lets say that the drone
flies above a box at height 6m from the ground. The height of the box is 1m,
so the range finder will give you a measurement around 5m.

Actual height

The actual_height variable contains information regarding the vertical dis-
tance between the drone and the ground in meters.

4 Implementation

The steps that you need to take are the following:

1. Initialize particles: Firstly, define your message type that will represent
the particles. Then, randomly distribute all the particles inside the room.
(tip: You can use random.uniform(low lim,high lim)

2. Initialize weights

3. (Loop starts)

4. Sample particles: From the already existing particles distribution, pick
randomly N of them. (tip: displace them a bit e.g. -0.1,+0.1 from their
current position)

5. Update particles: Use your displacement measurements to update the
position of all your particles. In case that one of new particle’s position
gets out of the bounds of the room you can assign to it random values.

6. Calculate weights: You’ll need to find a metric that evaluates and assigns
a weight to all particles given the current measurements and the height
map. This metric should quantify the estimated distance vs the measured
distance.

4



7. Resample particles: You can use the low variance resampling algorithm to
eliminate some of the lower weight particles. (Probalistic Robotics book)

5 Measurements

In the given code, there are some functions inside a DO NOT MODIFY block.
You should use these functions to get your measurements and not subscribe to
any rostopics.

1. def create_height_map(resolution) creates and returns the height map
in an array form. (use it once as the height map does not change

2. def get_measurement(x, y) Given the previous position (x,y) returns
the dx and dy with some error.

3. def find_vertical_distance(height_map, resolution). Given the
heigh map and its resolution, it returns two measurements: i) The dis-
tance between the drone and the closest vertical object and ii) The height
of the drone above ground.

6 Results

If you’ve implemented the algorithm correctly you will need to navigate to the
room for a while in order for the algorithm to converge (not too long). In the
following figure you can see that although the algorithm has not converged yet,
is on the right way since it has eliminated all possible positions except the top
of the boxes. This is the initial output of the algorithm if the drone is sitting
on top of a box when you run the algorithm (after a few iterations):

Figure 4: Initial output

If you move the robot around, the particles that can not fit will be eliminated
sooner or later and the expected result during navigation will be:

5



Figure 5: Converged particle filter

7 Submission

Sent your node (particles.py) attached via email at: maravgakis@csd.uoc.gr
with subject "[CS-475] Assignment 3 submission" Don’t forget to mention
your name and registration number. The deadline is at 06/04/2025 23:59

6


	Overview
	Installation
	Information and measurements
	Implementation
	Measurements
	Results
	Submission

