MPEG audio compression and description

Georgios Tziritas Computer Science Department http://www.csd.uoc.gr/~tziritas

Spring 2018

Loudness relations

Equal loudness curves display the relationship between perceived loudness ("Phons", in dB) for a given stimulus sound volume ("Sound Pressure Level", also in dB), as a function of frequency

The range of human hearing is about 20 Hz to about 20 kHz

Spring 2018

Sound masking

A lower tone can effectively mask (make us unable to hear) a higher tone

A higher tone does not mask a lower tone well

The greater the power in the masking tone, the wider is its influence – the broader the range of frequencies it can mask.

As a consequence, if two tones are widely separated in frequency then little masking occurs

Frequency masking is studied by playing a particular pure tone at a loud volume, and determining how this tone affects our ability to hear tones nearby in frequency

Temporal masking

Effect of temporal masking depends on both time and closeness in frequency

Critical bands

- Critical bandwidth represents the ear's resolving power for simultaneous ٠ tones or partials. At the low-frequency end, a critical band is less than 100 Hz wide, while for high frequencies the width can be greater than 4 kHz
- Experiments indicate that the critical bandwidth:
 - for masking frequencies <500Hz: remains approximately constant in width (about 100 Hz)
 - For masking frequencies >500Hz: increases approximately linearly with frequency

Critical bands

Band No.	Center Freq. (Hz)	Bandwidth (Hz)	Band No.	Center Freq. (Hz)	Bandwidth (Hz)	Band No.	Center Freq. (Hz)	Bandwidth (Hz)
1	50	-100	10	1175	1080-1270	19	4800	4400-5300
2	150	100-200	11	1370	1270-1480	20	5800	5300-6400
3	250	200-300	12	1600	1480-1720	21	7000	6400-7700
4	350	300-400	13	1850	1720-2000	22	8500	7700-9500
5	450	400-510	14	2150	2000-2320	23	10,500	9500-12000
б	570	510-630	15	2500	2320-2700	24	13,500	12000-15500
7	700	630-770	16	2900	2700-3150	25	19,500	15500-
8	840	770-920	17	3400	3150-3700			
9	1000	920-1080	18	4000	3700-4400			

Key technologies

Acoustic masking

Computation as a function of frequency of signal / masking level Quantization step and bit allocation Transparent quality = inaudible error

Transform / subband coding

MPEG-1 audio compression

CD-Audio : 2 x 44100 samples/sec x 16 bits/sample = 1.41 Mbits/sec

	Transparent quality		Compression ratio
Layer I	384 kbits/sec	DCC	4
Layer II	192 kbits/sec	DAB, CD-I, DVD	8
Layer III	128 kbits/sec	ISDN, Internet, Satelite	12

Sampling rate : 32 kHz, 44.1 kHz, 48 kHz

Spring 2018

MPEG-1 compression (Layers I and II)

32 filters : 750 Hz για 48 kHz Low-pass filter and modulation using DCT Quantizer controlled by dynamic bit allocation Signal frames (8 ms / 24 ms for 48 kHz)

Spring 2018

MPEG-1 compression (Layer III) MP3

Modified DCT (50% block overlap, 6/18 coefficients) improved frequency analysis
Non-uniform quantization
32 Huffman code tables and "zero" intervals

MPEG-1 compression (Layer III) MP3

Sound Quality	Bandwidth	Mode	Compression	
			Ratio	
Telephony	3.0 kHz	Mono	96:1	
Better than	4.5 kHz	Mono	48:1	
Short-wave				
Better than	7.5 kHz	Mono	24:1	
AM radio				
Similar to	11 kHz	Stereo	26 - 24:1	
FM radio				
Near-CD	15 kHz	Stereo	16:1	
CD	> 15 kHz	Stereo	14 - 12:1	

MPEG-2 AAC compression

MPEG-2 AAC compression

Sampling rate 8 kHz – 96 kHz

Multi-channel audio signals

Limitation of the reconstruction error using an adaptive distribution of quantiztion errors by predictions in the frequency domain

MPEG-4 compression

Text-to-Speech 200-1200 bits/sec international phoneme alphabet Structure Audio Orchestra Language synthetic music and sound effects Harmonic Vector Excitation Coding (speech LPC) 2-4 kbits/sec at 8 kHz 4-16 kbits/sec at 8 kHz or 16 kHz Speech coding (CELP) 6-24 kbits/sec at 8 kHz or 16 kHz Audio coding (MPEG-4 AAC)

MPEG-4 AAC

Based on MPEG-2 AAC

Target bit rate : 24 kbits/sec/channel

Scalable encoding 24 kbits/s (mono), 40 kbits/s (stereo), 56 kbits/s (stereo) Vector quantization for better compression ratio Long delay prediction (for harmonic signals) 'Noise-like' signals are not transmitted Transmission error resilience

Speech signals

	Frequency bandwith Hz	Sampling rate kHz	bits/sample	kbits/sec
Telephone	200-3400	8	8	64
Wideband telephone	50-7000	16	8	128

High bit rate : 32 kbits/sec Medium bit rate : 8 kbits/sec Low bit rate : 4 kbits/sec Very low bit rate : 2 kbits/sec

Speech signals

Non-stationary signal, stationarity for short time inervals, 5-20 msec

- Voiced : periodic signals modulated pure frequencies (harmonics)
- Unvoiced : wideband, 'noise-like'

Speech signals

Analysis synthesis

Closed-loop optimization for excitation signal

Short delay prediction : speech modulation Long delay prediction : fundamental frequency Perceptual error weighting

Coded signals excitation (5 ms) Dictionary : 1024 vector of 40 components

MPEG-7 audio description

Segmentation Scaling

Low level descriptors (Signal / spectrum / timbre) High level descriptors (Schemes / tools)

MPEG-7 basic audio descriptors

Waveform **Envelope**

Power Temporally-smoothed

MPEG-7 basic spectral descriptors

8000

Spectrum envelope Logarithmic scale, spectrogram

Spectrum centroid

Spectrum spread

Spectrum flatness

Fundamental frequency

Harmonicity musical tones, vowels percussive sound noise, consonants

Silence

MPEG-7 timbral audio descriptors

Log attack time Temporal centroid

Spectral centroid (linear frequency scale) Harmonic spectral centroid Harmonic spectral deviation Harmonic spectral spread (normalized standard deviation) Harmonic spectral variation (temporal intervals)

MPEG-7 timbral audio descriptors

Spectrum basis Power spectrum representation

Spectrum projection

AudioSpectrumBasis

MPEG-7 high level descriptors

Signature scheme

Musical instrument timbre

Harmonic instrument: harmonic spectral centroid, harmonic spectral deviation, harmonic spectral spread,

harmonic spectral variation, attack time

Percussive instrument: attack time, temporal centroid, spectrum centroid

Melody (monophonique, notes and rythm) Melody contour description scheme Melody sequence description scheme

General Sound Recognition and Indexing : spectral basis statistical classification model

Spoken content description tools

Music classification

H. Blume et al., Huge music archives on mobile devices, IEEE Signal Processing Magazine, 2011.

Άνοιξη 2018