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The state of the art in data compression is arithmetic coding, not the better- 
known Huffman method. Arithmetic coding gives greater compression, is 
faster for adaptive models, and clearly separates the model from the channel 
encoding. 
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Arithmetic coding is superior in most respects to the 
better-known Huffman [lo] method. It represents in- 
formation at least as compactly-sometimes consid- 
erably more so. Its performance is optimal without 
the need for blocking of input data. It encourages a 
clear separation between the model for representing 
data and the encoding of information with respect to 
that model. It accommodates adaptive models easily 
and is computationally efficient. Yet many authors 
and practitioners seem unaware of the technique. 
Indeed there is a widespread belief that Huffman 
coding cannot be improved upon. 

We aim to rectify this situation by presenting an 
accessible implementation of arithmetic coding and 
by detailing its performance characteristics. We start 
by briefly reviewing basic concepts of data compres- 
sion and introducing the model-based approach that 
underlies most modern techniques. We then outline 
the idea of arithmetic coding using a simple exam- 
ple, before presenting programs for both encoding 
and decoding. In these programs the model occupies 
a separate module so that different models can easily 
be used. Next we discuss the construction of fixed 
and adaptive models and detail the compression 
efficiency and execution time of the programs, 
including the effect of different arithmetic word 
lengths on compression efficiency. Finally, we out- 
line a few applications where arithmetic coding is 
appropriate. 

Financial support for this work has been provided by the Natural Sciences 
and E@neering Research Council of Canada. 

UNIX is a registered trademark of AT&T Bell Laboratories. 

0 1987 ACM OOOl-0782/87/OtiOO-0520 750 

DATA COMPRESSION 
To many, data compression conjures up an assort- 
ment of ad hoc techniques such as conversion of 
spaces in text to tabs, creation of special codes for 
common words, or run-length coding of picture data 
(e.g., see [8]). This contrasts with the more modern 
model-based paradigm for coding, where, from an 
input string of symbols and a model, an encoded string 
is produced that is (usually) a compressed version of 
the input. The decoder, which must have access to 
the same model, regenerates the exact input string 
from the encoded string. Input symbols are drawn 
from some well-defined set such as the ASCII or 
binary alphabets; the encoded string is a plain se- 
quence of bits. The model is a way of calculating, in 
any given context, the distribution of probabilities 
for the next input symbol. It must be possible for the 
decoder to produce exactly the same probability dis- 
tribution in the same context. Compression is 
achieved by transmitting the more probable symbols 
in fewer bits than the less probable ones. 

For example, the model may assign a predeter- 
mined probability to each symbol in the ASCII 
alphabet. No context is involved. These probabilities 
can be determined by counting frequencies in repre- 
sentative samples of text to be transmitted. Such a 
fixed model is communicated in advance to both en- 
coder and decoder, after which it is used for many 
messages. 

Alternatively, the probabilities that an adaptive 
model assigns may change as each symbol is trans- 
mitted, based on the symbol frequencies seen so far 
in the message. There is no need for a representative 
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sample of text, because each message is treated as if Huffman coding were substituted. Nevertheless, 
an independent unit, starting from scratch. The en- since our topic is coding and not modeling, the illus- 
coder’s model changes with each symbol transmit- trations in this article all employ simple models. 
ted, and the decoder’s changes with each symbol Even so, as we shall see, Huffman coding is inferior 
received, in sympathy. to arithmetic coding. 

More complex models can provide more accurate 
probabilistic predictions and hence achieve greater 
compression. For example, several characters of pre- 
vious context could condition the next-symbol prob- 
ability. Such methods have enabled mixed-case Eng- 
lish text to be encoded in around 2.2 bits/character 
with two quite different kinds of model [4, 61. Tech- 
niques that do not separate modeling from coding 
so distinctly, like that of Ziv and Lempel (231, do 
not seem to show such great potential for compres- 
sion, although they may be appropriate when the 
aim is raw speed rather than compression per- 
formance [22]. 

The basic concept of arithmetic coding can be 
traced back to Elias in the early 1960s (see [l, 
pp. 61-621). Practical techniques were first intro- 
duced by Rissanen [16] and Pasco [15], and de- 
veloped further by Rissanen [17]. Details of the 
implementation presented here have not appeared 
in the literature before; Rubin [2O] is closest to our 
approach. The reader interested in the broader class 
of arithmetic codes is referred to [18]; a tutorial is 
available in [l3]. Despite these publications, the 
method is not widely known. A number of recent 
books and papers on data compression mention it 
only in passing, or not at all. 

The effectiveness of any model can be measured 
by the entropy of the message with respect to it, 
usually expressed in bits/symbol. Shannon’s funda- 
mental theorem of coding states that, given messages 
randomly generated from a model, it is impossible to 
encode them into less bits (on average) than the en- 
tropy of that model [21]. 

A message can be coded with respect to a model 
using either Huffman or arithmetic coding. The for- 
mer method is frequently advocated as the best pos- 
sible technique for reducing the encoded data rate. 
It is not. Given that each symbol in the alphabet 
must translate into an integral number of bits in the 
encoding, Huffman coding indeed achieves “mini- 
mum redundancy.” In other words, it performs opti- 
mally if all symbol probabilities are integral powers 
of %. But this is not normally the case in practice; 
indeed, Huffman coding can take up to one extra bit 
per symbol. The worst case is realized by a source 
in which one symbol has probability approaching 
unity. Symbols emanating from such a source con- 
vey negligible information on average, but require at 
least one bit to transmit [7]. Arithmetic coding dis- 
penses with the restriction that each symbol must 
translate into an integral number of bits, thereby 
coding more efficiently. It actually achieves the the- 
oretical entropy bound to compression efficiency for 
any source, including the one just mentioned. 

THE IDEA OF ARITHMETIC CODING 
In arithmetic coding, a message is represented by an 
interval of real numbers between 0 and 1. As the 
message becomes longer, the interval needed’to rep- 
resent it becomes smaller, and the number of bits 
needed to specify that interval grows. Successive 
symbols of the message reduce the size of the inter- 
val in accordance with the symbol probabilities gen- 
erated by the model. The more likely symbols re- 
duce the range by less than the unlikely symbols 
and hence add fewer bits to the message. 

Before anything is transmitted, the range for the 
message is the entire interval [0, l), denoting the 
half-open interval 0 5 x < 1. As each symbol is 
processed, the range is narrowed to that portion of it 
allocated to the symbol. For example, suppose the 
alphabet is (a, e, i, O, u, !I, and a fixed model is used 
with probabilities shown in Table I. Imagine trans- 

TABLE I. Example Fixed Model for Alphabet (a, e, i, o, u, !) 

Symbol Probability Range 

.2 LO, 0.2) 

.3 [0.2, 0.5) 

.l [0.5, 0.6) 

.2 [0.6,0.8) 

.l [0.8, 0.9) 

.l [0.9, 1.0) 
In general, sophisticated models expose the defi- 

ciencies of Huffman coding more starkly than simple 
ones. This is because they more often predict sym- 
bols with probabilities close to one, the worst case 
for Huffman coding. For example, the techniques 
mentioned above that code English text in 2.2 bits/ 
character both use arithmetic coding as the final 
step, and performance would be impacted severely 

mitting the message eaii!. Initially, both encoder 
and decoder know that the range is [0, 1). After 
seeing the first symbol, e, the encoder narrows it to 
[0.2, 04, the range the model allocates to this sym- 
bol. The second symbol, a, will narrow this new 
range to the first one-fifth of it, since a has been 
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allocated [0, 0.2). This produces [O.Z, 0.26), since the Figure la. The second symbol scales it again into the 
previous range was 0.3 units long and one-fifth of range [0.2, 0.26). But the picture cannot be contin- 
that is 0.06. The next symbol, i, is allocated [0.5, 0.6), ued in this way without a magnifying glass! Conse- 
which when applied to [0.2, 0.26) gives the smaller quently, Figure lb shows the ranges expanded to 
range [0.23, 0.236). Proceeding in this way, the en- full height at every stage and marked with a scale 
coded message builds up as follows: that gives the endpoints as numbers. 

Initially 1) 
After seeing e ;::2, 0.5) 

a p.2, 0.26) 
i [0.23, 0.236) 
i [0.233, 0.2336) 
! [0.23354, 0.2336) 

Figure 1 shows another representation of the en- 
coding process. The vertical bars with ticks repre- 
sent the symbol probabilities stipulated by the 
model. After the first symbol has been processed, the 
model is scaled into the range [0.2, 0.5), as shown in 

Suppose all the decoder knows about the message 
is the final range, [0.23354, 0.2336). It can -immedi- 
ately deduce that the first character was e! since the 
range lies entirely within the space the model of 
Table I allocates for e. Now it can simulate the oper- 
ation of the encoder: 

Initially P, 1) 
After seeing e [0.2, 0.5) 

This makes it clear that the second character is a, 
since this will produce the range 

After seeing a [0.2, 0.26), 

which entirely encloses the given range [0.23354, 
0.2336). Proceeding like this, the decoder can iden- 
tify the whole message. 

After 
seeing Nothing e a ’ ! 

U 

0 

i 

0 ri e 

a 

3 

FIGURE la. Representation of the Arithmetic Coding Process 

After 
seeing Nothing e a 
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0.5 

0.2 i 
a 

0.26 

0.2 i 

It is not really necessary for the decoder to know 
both ends of the range produced by the encoder. 
Instead, a single number within the range--for ex- 
ample, 0.23355-will suffice. (Other numbers, like 
0.23354, 0.23357, or even 0.23354321, would do just 
as well.) However, the decoder will face the problem 
of detecting the end of the message, to determine 
when to stop decoding. After all, the single number 
0.0 could represent any of a, aa, aaa, aaaa, . . . . To 
resolve the ambiguity, we ensure that each message 
ends with a special EOF symbol known to both en- 
coder and decoder. For the alphabet of Table I, ! will 
be used to terminate messages, and only to termi- 
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FIGURE lb. Representation of the Arithmetic Coding 
Process with the interval Scaled Up at Each Stage 
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/* ARITHMETIC ENCODING ALGORITHM. */ 

/* Call encode-symbol repeatedly for each symbol in the message. */ 
/* Ensure that a distinguished "terminator" symbol is encoded last, then */ 
/* transmit any value in the range [low, high). */ 

encode-symbol(symbo1, cum-freq) 
range = high - low 
high = low f range*cum-freq[symbol-11 
low = low f range*cum-freq(symbol1 

/* ARITHMETIC DECODING ALGORITHM. */ 

/* "Value" is the number that has been received. */ 
/* Continue calling decode-symbol until the terminator symbol is returned. */ 

decode-symbol(cum-freq) 
find symbol such that 

cum-freq[symbol] <= (value-low)/(high-low) < cum-freqrsymbol-11 
/* This ensures that value lies within the new l / 
;* (low, high) range that will be calculated by */ 
/* the following lines of code. */ 

range = high - low 
high = low t range*cum-freq[symbol-11 
1OW = low t range*cum-freq[symbol] 
return symbol 

FIGURE 2. Pseudocode for the Encoding and Decoding Procedures 

nate messages. When the decoder sees this symbol, 
it stops decoding. 

Relative to the fixed model of Table I, the entropy 
of the five-symbol message eaii! is 

-log 0.3 - log 0.2 - log 0.1 - log 0.1 - log 0.1 

= -log 0.00006 = 4.22 

(using base 10, since the above encoding was per- 
formed in decimal). This explains why it takes five 
decimal digits to encode the message. In fact, the 
size of the final range is 0.2336 - 0.23354 = 0.00006, 
and the entropy is the negative logarithm of this 
figure. Of course, we normally work in binary, 
transmitting binary digits and measuring entropy 
in bits. 

Five decimal digits seems a lot to encode a mes- 
sage comprising four vowels! It is perhaps unfortu- 
nate that our example ended up by expanding 
rather than compressing. Needless to say, however, 
different models will give different entropies. The 
best single-character model of the message eaii! is 
the set of symbol frequencies (e(O.2), a(0.2), i(O.4), 
!(0.2)), which gives an entropy of 2.89 decimal digits. 
Using this model the encoding would be only three 
digits long. Moreover, as noted earlier, more sophis- 
ticated models give much better performance 
in general. 

A PROGRAM FOR ARITHMETIC CODING 
Figure 2 shows a pseudocode fragment that summa- 
rizes the encoding and decoding procedures devel- 
oped in the last section. Symbols are numbered, 1, 2, 
3 . . . The frequency range for the ith symbol is 
from cum-freq[i] to cum-freq[i - 11. As i decreases, 
cum-freq[i] increases, and cum-freq[O] = 1. (The 
reason for this “backwards” convention is that 
cum-freq[O] will later contain a normalizing factor, 
and it will be convenient to have it begin the array.] 
The “current interval” is [Zozu, high), and for both 
encoding and decoding, this should be initialized 
to [O, 1). 

Unfortunately, Figure 2 is overly simplistic. In 
practice, there are several factors that complicate 
both encoding and decoding: 

Incremental transmission and reception. The encode 
algorithm as described does not transmit anything 
until the entire message has been encoded; neither 
does the decode algorithm begin decoding until it 
has received the complete transmission. In most 
applications an incremental mode of operation is 
necessary. 

The desire to use integer arithmetic. The precision 
required to represent the [low, high) interval grows 
with the length of the message. Incremental opera- 
tion will help overcome this, but the potential for 
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overflow and underflow must still be examined 
carefully. 

Representing the model so thnt it can be consulted 
efficiently. The representation used for the model 
should minimize the time required for the decode 
algorithm to identify the next symbol. Moreover, 
an adaptive model should be organized to minimize 
the time-consuming task of maintaining cumulative 
frequencies. 

arithmetic-coding-h 

Figure 3 shows working code, in C, for arithmetic 
encoding and decoding. It is considerably lmore de- 
tailed than the bare-bones sketch of Figure Z! Imple- 
mentations of two different models are given in 
Figure 4; the Figure 3 code can use either one. 

The remainder of this section examines the code 
of Figure 3 more closely, and includes a proof that 
decoding is still correct in the integer implementa- 
tion and a review of constraints on word lengths in 
the program. 

1 /' DECLARATIONS USED FOR ARITHMETIC ENCODING AND DECODING l / 
2 
3 
4 /* SIZE OF ARITHMETIC CODE VALUES. l / 
5 
6 #define Code-value-bits 16 /* Number of bits in a code value l / 
7 typedef long code-value: /* Type of an arithmetic code value l / 
a 
9 fdefine Top-value (((long)l<<Code_value_blts)-1) /* Largest code value l / 

10 
11 
12 /' HALF AND QUARTER POINTS IN THE CODE VALUE RANGE. l / 
13 
14 *define First-qtr (Top-value/ltl) /* Point after first quarter l / 
15 #define Half (Z'First-qtr) /* Point after first half "/ 
:6 Idefine Third-qtr (3’Firat-qtr) /* Point after third quarter l / 

mode1.h 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
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/' INTERFACE TO THE MODEL. '/ 

/' THE SET OF SYMBOLS THAT MAY BE ENCODED. l / 

#define No-of-chars 256 /* Number of character symbols '/ 
#define EOF-symbol (No-of-charetl) /* Index of EOF symbol '/ 

#define No-of-symbols (No-of-charstll /* Total number of symbols */ 

/' TRANSLATION TABLES BETWEEN CHARACTERS AND SYMBOL INDEXES. l / 

int char-to-index[No-of-chars]; /* To index from character '/ 
unsigned char index_to_char[No_of_symbols+l]: /* To character from index l / 

/* CUMULATIVE FREQUENCY TABLE. */ 

Idefine Max-frequency 16383 

int cum_frsq[No_of_symbols+l]; 

/* Maximum allowed frequency count l / 
/* 2a14 - 1 l / 
/* Cumulative symbol frequencies l / 

FIGURE 3. C Implementation of Arithmetic Encoding and Decoding 
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encode.c 

39 
40 
41 
42 
43 
44 
45 
46 
47 
40 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
17 
78 
79 
80 
Bl 
82 
83 
84 
85 
86 
81 
88 
a9 
90 
91 
92 
93 
94 

/' MAIN PROGRAM FOR ENCODING. l / 

#include <stdlo.h> 
#include "mode1.h" 

main0 
1 startmodel~): 

start-outputlng-bitsO; 
start-encodingo; 
for (::I ( 

int ch; lnt symbol; 
ch - getc(stdin); 
If (ch--EOF) break; 
symbol- char-to.-lndex[ch]; 
encode-symbol(symbol,cum-freq); 
update-model(symbo1); 

1 
encode_symbol(EOF_~symbol,cum_freq); 
done-encoding(); 
done-outputinebitso; 
exit (0) : 

arithmetic encode.c - 

/* Set up other modules. l / 

/' Loop through characters. l / 

/* Read the next character. l / 
/* Exit loop on end-of-file.*/ 
/* Translate to an index. l / 
/* Encode that symbol. l / 
/* Update the model. l / 

/* Encode the EOF symbol. l / 
/* Send the last few blts. l / 

/* ARITHMETIC ENCODING ALGORITHM. */ 

finclude "arithmetic-cod1ng.h" 

static vold bll-plus-follov(); /* Routine that follows ‘/ 

/' CURRENT STATE OF THE ENCODING. '/ 

static code value low, high; /* Ends of the current code region */ 
static long-bits-to-follow; /* Number of opposite bits to output after l / 

/* the next bit. '/ 

/* START ENCODING A STREAM OF SYMBOLS. l / 

start-encoding0 
I low - 0; 

hiah - Top-value; 
bits to follow - 0; 

1 -- 

/* Full code range. '/ 

/* No bits to follow next. l / 

/* ENCODE A SYMBOL. l / 

encode-symhoI(symbol,cum-freq) 
int symbol: /* Symbol to encode '/ 
int cum-freql]: /* Cumulative symbol frequencies '/ 

I long range; /' Size of the current code region l / 
range - (long) (high-low)+l; 
high - low + /* Narrow the code region l / 

(ranye'cum-freq[symbol-ll)/cum-freq[O)-1: /* to that allotted to this l / 
low - low + /' symbol. l / 

~ranpe*cum~freq(symbol))/cum~freq(O); 

FIGURE 3. C Implementation of Arithmetic Encoding and Decoding (continued) 

]une 1987 Volume 30 Number 6 Communications of the ACM 525 



95 

96 
97 

98 

99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 

136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 

for (:;I I 
if (high<Half) I 

bit~plus~follow(0); 
I 
else if (low>-Half) ( 

bit~plus~follow(1): 
low -- Half: 
high -* Half: 

I 
else if (low>-Flrst qtr 

sc hiQh<ThirdIqtr) ( 
bits-to-foliow t* 1; 
low -- First-qtr; 
high -- First-qtr; 

1 
else break: 
low * 2'low; 
high * 2*hightl; 

/' Loop to ouLput bits. '1 

/* Output 0 if In low half. l / 

/* Output 1 if in hiQh half.*/ 

/+ Subtract offset to top. */ 

/* Output an opposite bit l / 
/. later if in middle half. ./ 

/* Subtract offset to middle'/ 

/+ Otherwise exit loop. '1 

/* Scale up code range. l / 

/' FINISH ENCODING THE STREAM. l / 

done-encoding0 
I bits-to-follow +* 1: /* Output two bits that '1 

if (low<First-qtr) bit~plus~follow(0): /' Select the quarter that l / 
else bit-plus-follow(l): /* the current code range l / 

1 /* contains. '/ 

/* OUTPUT BITS PLUS FOLLOWING OPPOSITE BITS. l / 

static void bitglus-foIlow(blt) 
int bit: 

f output-bitcbit); 
while (bits-to-follow>O) i 

output-bit (Ibit); 
bits to-follow -* 1; 

1 - 

/* Output the bit. l / 

/* Output bits-to-follow l / 
/* opposfte bits. Set '/ 
/' bits-to-follow to zero. l / 
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decode.c 

/* MAIN PROGPAM FOR DECODING. */ 

#include <stdio.h> 
(include "mode1.h" 

main () 
I start-model 0 : 

start-inpUtinQ-bitso; 
start-decodingo: 
for (;;) ( 

lnt ch: int symboi; 
symbol - decode-symbolicurn-freq): 
if (symbol**EOF symbol) break; 
ch * lndex_to_c?;ar[symbolJ; 
putc(ch,stdout): 
update-model(symbo1); 

1 
exit. (0) ; 

1 

/* Set up other modules. '/ 

/* Loop through characters. '/ 

/* Decode next symbol. '/ 
/' Exit loop if EOF symbol. 'I 
/* Translate to a character.*/ 
/' Write that character. '/ 
/* Update the model. l / 

FIGURE 3. C Implementation of Arithmetic Encoding and Decoding (continued) 
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155 
156 
157 
158 
159 

160 
161 

162 

163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 

180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 

arithmetic decode.c - 

-- -- 

/* ARITHMETIC DECODING ALGORITHM. l / 

#include “arithmetic-cod1ng.h” 

/' CURRENT STATE OF THE DECODING. l / 

static code value value; 
static code:value low, high; 

/* Currently-seen code value 
/* Ends of current code replan 

l / 
‘/ 

/* START DECODING A STREAM OF SYMBOLS. '/ 

Start-deC”di”Q() 

( lnt i: 
value - 0; 
for (1 - 1; I<-Code-value-bits; it+) ( 

value - 2'value,lnput_bit(); 
1 
low " 0: 
hiQh - Top-value; 

1 

/* Input bits to flll the l / 
/* code value. l / 

/* Full code ranpe. l / 

/* DECODE THE NEXT SYMBOL. l '/ 

lnt decode-symbol (cum-freq) 
int cwn-freq[ I; /* Cumulative symbol frequencies l / 

! lO”Q ra”Qe; /* Size of current code region l / 
int cum; /* Cumulative frequency calculated ‘/ 

int symbol: /* Symbol decoded l / 
ra”Qe - (lO"Q)(hlQh-1oW)tl; 
cum - /* Flnd cum freq for value. l / 

(((lonQl(value-lou)tl)*cum~freq[O]-l)/ranQe: 
for ~eyn!bol - 1; cum-fraq[symbolJ%wm; symboltt) ; /* Then find symbol. l / 
hiQh - low t /* Narrow the code reQlon l / 

(ranQe*cum-freq[symbol-ll)/cum-freq[O]-1; /* to that allotted to this l / 
low - low t 

(ra"Qe'cum~freq[symbo1])/cum~freq[O]; 
for I::1 ( 

if (hiQh<Half) I 
/’ nothing l / 

1 
else If (low>-Half) ( 

value -- Half; 
low -- Half: 

hlQh -- Half; 

else if (low>-First-qtr 
‘L hiQh<Thlrd-qtr) ( 

value -- First-qtr; 
low -- First-qtr; 
high -- First-qtr; 

1 
else bxeak: 

low - 2*1ow: 
high - 2'hiQhtl: 
value - 2*valuetlnput_bit(): 

1 
relucn symbol; 

t 

/* symbol. l / 

/* Loop to QOt rld of bits. l / 

/’ Expand low half. '/ 

/* Expand hlph half. '/ 

/* Subtract offset to top. *I 

/* Expand middle half. l / 

/* Subtract offset to mIddlr*/ 

/* Otherwise exit loop. l / 

/* Scale up code range. l / 
/* Move in next input blt. l / 

FIGURE 3. C Implementation of Arithmetic Encoding and Decoding (continued) 
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bit-input-c 

216 

217 
218 
219 
220 
221 

222 

223 
224 

225 
226 
227 

228 

229 

230 

231 

232 
233 
234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 
245 
246 

247 
248 
249 
250 
251 
252 
253 
254 
255 

256 

/* BIT INPUT ROUTINES. "/ 

+include <stdlo.h> 
flnclude "arithmetic-cod1ng.h" 

‘/ /' THE BIT BUFFER. 

static int buffer: 
static lnt blts_to-go: 
static lnt garbage-bits: 

/* INITIALIZE BIT INPUT. */ 

St6rt_inpUting_blt6() 

l bits-to-go - 0; 
garbage-bits - 0: 

1 

/* Bits waiting to be input l / 
/* Number of bits still in buffer l / 
/* Number of bit6 past end-of-file ‘/ 

/* Buffer starts out with l / 
/* no bits in it. l / 

/* INPUT A BIT. l / 

int input-bit0 
( lnt t: 

if (bits-to-go--O) 1 /* Read the next byte if no '/ 
buffer - getc(stdln): /* bit6 are left in buffer. *'/ 
if (buffer--EOF) ( 

garbage-bits t- 1; /* Return arbitrary bits*/ 

if (garbage~,blts>Code~value~blts-2) 1 /* after eof, but check l / 

fprlntf(stderr,“Bad input flle\n’j; /* for too many such. l / 
exit (-1); 

) 
1 
bits-to-go - 8: 

1 
t - buffer&l; 
buffer a>- 1; 
bits-to-go -* I: 
return t; 

/* Return the next bit from l / 
/* the bottom of the byte. l / 

FIGURE 3. C Implementation of Arithmetic Encoding and Decoding (continued) 

528 Communications of the ACM June 1987 Volume 30 Number 6 



bit-output.c 

257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
215 
276 
277 
270 
279 
200 
281 
282 
283 
204 
285 
286 
287 
288 
209 
290 
291 
292 
293 
294 

/* BIT OUTPUT ROUTINES. '/ 

#include <stdlo.h> 

/" THE BIT BUFFER. */ 

static int buffer: /* Bits buffered for output 
static int bits-to-go; /* Number of bits free in buffer 

/* INITIALIZE FOR BIT OUTPUT. l / 

start_.outputing-..bits() 
1 buffer - 0; 

bitS_tO-QO- 8; 
) 

/* OUTPUT A BIT. l / 

output-blt(bit) 
lnt bit: 

( buffer >>- 1; 
if (bit) buffer I- 0x00; 
bits-to-go -- 1; 
if (bits-to-go--O) ( 

putc(buffer,stdout): 
bits-to-go - 8; 

t 
t 

l / 
l / 

/* FLUSH OUT THE LAST BITS. l / 

done-outputlng-bits0 
putc(buffer>>blts_to-go,stdout): 

/* Buffer Is empty to start '/ 
/' with. l / 

/* Dot bit In top of buffer.*/ 

/* Output buffer if It 1s l / 
/' now full. l / 

FIGURE 3. C Implementation of Arithmetic Encoding and Decoding (continued) 
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fixed-model. c 

1 
2 

4 
5 
6 
7 
a 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
40 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 

/* THE FIXED SDDRCE MODEL l / 

finclude 'mode1.h' 

int freq[No-of-symbolstlj - ( 
0, 
1. 1, 1. 1. 1, 1, 1, 1, 1, 1, 124, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

/* I l + $ t ( 1 l + / l / 
1236, 1, 21, 9, 3, 1, 2:, 15, 2, 2, 2, 1, 7b, 19, 60, 1, 

/'012 3 4 5 6 7 S 9:;C - > ?*/ 
15, 15, 8, 5, 4, 7, 5, 4, 4, 6, 3, 2, 1, 1, 1, 1, 

/*@ A B C D E F C H I J K L M N O*/ 
1, 24, 15, 22, 12, 15, 10, 9, 16, 16, 8, 6, 12, 23, 13, 11, 

/'P Q R S T U V W X Y Z [ \ I .. l / 
14, 1, 14, 26, 29, 6, 3, 11, 1, 3, 1, 1, 1, 1, 1, 5, 

/* ' b 
1, 49:. 85, 17;, 

d 
232, 74:, 

f h i j k 1 m 0 l / 
127, ll:, 293, 418, 6, 39, 250, 139, 42:, 446. 

/*p q r 8 t x Y ( I ) - */ 
111, 5, 388, 375, 531, 159, 5:, 91, 12, 101, f. 2, 1, 2, 3. 1. 

1. 1. 1, 1, 1, 1. 1, 1. 1. 1. 1, 1. 1. 1. 1, 1, 
1, 1, 1, 1, 1, 1. 1, 1. 1, 1. 1, 1. 1. 1, 1. 1. 
1. 1. 1. 1, 1, 1, 1, 1. 1, 1. 1, 1, 1, 1, 1. 1, 
1, 1, 1. 1. 1, 1, 1, 1, 1. 1. 1. 1, 1, 1, 1, 1, 
1. 1. 1. 1, 1, 1, 1, 1, 1. 1, 1. 1. 1. 1. 1. 1. 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1. 1, 1, 1, 1, 1, 1. 1. 
1, 1, 1, 1, i, I, I, I, 1, 1, 1, 1, 1, I, I, 1, 

1’ , 

/* INITIALIZE THE MODEL. '/ 

start-model0 
! lnt 1: 

for (i - 0; i<No-of-chars: it+) ( 
char-to-index[i] - itl; 
index_to-char[i+l) - i; 

I 

/* Set up tables that l / 
/* translate between symbol l / 
/* indexes and characters. l / 

cum-freq[No-of-symbols] - 0; 
for (1 - No-of-symbols; i>O; i--l ( /* Set up cumulative 

cum-freq[i-lj - cum-freq[i] t freq(iJ; /* frequency counts. 
I 

l / 
'/ 

if (cum-freq[Ol > Max-frequency) abort0; /* Check counts within limit*/ 

/* UPDATE THE MODEL TO ACCOUNT FOR A NEW SYMBOL. 'I 

update-model (symbol) 
lnt symbol; 

I 
I 

/* Do nothing. l / 
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adaptive-mode1.c 

1 
2 
3 
4 
5 
6 
7 
0 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
21 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
40 
49 
50 
51 
52 
53 

/* THE ADAPTIVE SOURCE MODEL l / 

#include "modo1.h" 

int freq]No-of-symbolstl]: /+ symbol frequencies l / 

/' INITIALIZE THE MODEL. l / 

start-model0 
I int i: 

for (i - 0; i<No-of-chars; it+) ( 
char-to-index[l] - itl: 
index-to-char[itl] - i: 

I 
for (i - 0; i<-No-of-symbols; it+) ( 

freq[i] - 1; 
cum-freq[i] - No-of-symbols-i; 

t 
freq[O] - 0; 

t 

/* Set up tables that l / 
/* translate between symbol l / 
/* indexes and characters. l / 

/* Set up initial frequency l / 
/* counts to be one for all l / 
/* symbols. l / 

/* Freq[Ol must not be the l / 
/* same as freq[l]. l / 

/' UPDATE THE MODEL TO ACCOUNT FOR A NEW SYMBOL. '/ 

update~model(symbo1) 
int symbol: /* Index of new symbol '1 

( lnt 1; /* New index for symbol l / 
if (cum-freq]O]--Max-frequency) ( /* See if frequency count8 l / 

int cum; /* are at thslr maxlawn. l / 
cum - 0: 
for (1 - No-of-symbols; la-O; i--) ( /* If so, halve all the l / 

freq[i] - (freq(i]+1]/2: /* counts (keeplng them l / 
cum-freq[l] - cum; /* non-zero). l / 
cum t- freq[l]; 

t 
t 
ior (i - symbol; freq(i]--freq[i-1): l--l : /* Find symbol's new Index. l / 
if (i<symbol) ] 

int ch-i, ch-symbol : 
ch-i - index-to-char[i]; /* Update the translation l / 
ch-symbol - index-to-char[aymbol]; /* tables lf the symbol has l / 
index-to-char[i] - ch-symbol: /* moved. l / 
index-to-char[symbol] - ch-1; 
char-to-index]ch-i] - symbol: 
char-to-in' 

I 
freq[i] +- 1; 
while (i>O) ( 

i -- 1: 
cum-freq]! 

t 
t 

dex[ch-symbol] - i; 

1 t- 1; 

/* Increment the frequency l / 
/* count for the symbol and l / 
/* update the cumulative l / 
/* frequencies. '/ 

FIGURE 4. Fixed and Adaptive Models for Use with Figure 3 (continued) 
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Representing the Model 
Implementations of models are discussed in the next 
section; here we are concerned only with the inter- 
face to the model (lines 20-38). In C, a byte is repre- 
sented as an integer between 0 and 255 (a char). 
Internally, we represent a byte as an integer be- 
tween 1 and 257 inclusive (an index), EOF being 
treated as a 257th symbol. It is advantageous to sort 
the model into frequency order, so as to minimize 
the number of executions of the decoding loop 
(line 189). To permit such reordering, the char/index 
translation is implemented as a pair of tables, 
index-to-char[] and char-to-index[]. In one of our 
models, these tables simply form the index by adding 
1 to the char, but another implements a more com- 
plex translation that assigns small indexes to fre- 
quently used symbols. 

The probabilities in the model are represented as 
integer frequency counts, and cumulative counts are 
stored in the array cum- freq[]. As previously, this 
array is “backwards,” and the total frequency count, 
which is used to normalize all frequencies, appears 
in cum - fre9 [O]. Cumulative counts must not exceed 
a predetermined maximum, Max- frequency, and the 
model implementation must prevent overflow by 
scaling appropriately. It must also ensure that neigh- 
boring values in the cum- freq [ ] array differ by at 
least 1; otherwise the affected symbol cannot be 
transmitted. 

Incremental Transmission and Reception 
Unlike Figure 2 the program in Figure 3 repre- 
sents low and high as integers. A special data type, 
code-value, is defined for these quantities, together 
with some useful constants: Top-value, representing 
the largest possible code-value, and First-qtr, Half, 
and Third-@, representing parts of the range 
(lines 6-16). Whereas in Figure 2 the current inter- 
val is represented by [low, high), in Figure 3 it is 
[low, high]; that is, the range now includes the value 
of high. Actually, it is more accurate (though more 
confusing) to say that, in the program in Figure 3, 
the interval represented is [low, high + 0.11111 . .o). 
This is because when the bounds are scaled up to 
increase the precision, zeros are shifted into the low- 
order bits of low, but ones are shifted into high. Al- 
though it is possible to write the program to use a 
different convention, this one has some advantages 
in simplifying the code. 

As the code range narrows, the top bits of low and 
high become the same. Any bits that are the same 
can be transmitted immediately, since they cannot 
be affected by future narrowing. For encoding, since 
we know that low 5 high, this requires code like 

for (;;I { 
if (high < Half) [ 

output-bit(O); 
low = 2*1ow; 
high = 2*high+l; 

I 
else if (low I Half) ( 

output-bit(l); 
low = 2*(low-Half); 
high = 2*(high-Half)+l; 

I 
else break; 

I 

which ensures that, upon completion, low < Half 
I high. This can be found in lines 95-113 of 
encode-symbol (1, although there are some extra com- 
plications caused by underflow possibilities (see the 
next subsection). Care is taken to shift ones in at the 
bottom when high is scaled, as noted above. 

Incremental reception is done using a number 
called value as in Figure 2, in which processed 
bits flow out the top (high-significance) end and 
newly received ones flow in the bottom. Initially, 
start-decoding0 (lines 168-176) fills value with re- 
ceived bits. Once decode-symbol () has identified the 
next input symbol, it shifts out now-useless high- 
order bits that are the same in low and high, shifting 
value by the same amount (and replacing lost bits by 
fresh input bits at the bottom end): 

for (;;) 1 
if (high < Half) ( 

value = 2*value+input_bit( ); 
low = 2*1ow; 
high = 2*high+l; 

I 
else if (low > Half) ( 

value = 2*(value-Half)+input-bit(); 
low = 2*(low-Half); 
high = 2*(high-Half)+l; 

I 
else break; 

t 

(see lines 194-213, again complicated by precautions 
against underflow, as discussed below). 

Proof of Decoding Correctness 
At this point it is worth checking that identification 
of the next symbol by decode-symbol () works 
properly. Recall from Figure 2 that decode-symbol () 
must use value to find the symbol that, when en- 
coded, reduces the range to one that still includes 
value. Lines 186-188 in decode-symbol0 identify the 
symbol for which 
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cum-freq[symbol] 

~ 

i 

(value - low + 1) * cum-freq[O] - 1 
high - low + 1 1 

< cum-freq[symbol- 11, 

where L J denotes the “integer part of” function that 
comes from integer division with truncation. It is 
shown in the Appendix that this implies 

low + (high - low + 1) * cum-freq[symboZ] 

i cum-freq[O] 1 

lV5lOW 

+ (high - low + 1) * cum-freq[symbol- l] 

L cum-freq[O] J ’ 

_ 1 

so that value lies within the new interval that 
decode-symbol () calculates in lines 190-193. This is 
sufficient to guarantee that the decoding operation 
identifies each symbol correctly. 

Underflow 
As Figure 1 shows, arithmetic coding works by scal- 
ing the cumulative probabilities given by the model 
into the interval [low, high] for each character trans- 
mitted. Suppose low and high are very close to- 
gether-so close that this scaling operation maps 
some different symbols of the model onto the same 
integer in the [low, high] interval. This would be 
disastrous, because if such a symbol actually oc- 
curred it would not be possible to continue encod- 
ing. Consequently, the encoder must guarantee 
that the interval [low, high] is always large enough 
to prevent this. The simplest way to do this is 
to ensure that this interval is at least as large as 
Max- frequency, the maximum allowed cumulative 
frequency count (line 36). 

How could this condition be violated? The bit- 
shifting operation explained above ensures that low 
and high can only become close together when they 
straddle Half. Suppose in fact they become as close 
as 

First-qtr I low < Half I high c Third-qtr. 

Then the next two bits sent will have opposite polar- 
ity, either 01 or 10. For example, if the next bit turns 
out to be zero (i.e., high descends below Half and 
[0, Half] is expanded to the full interval), the bit 
after that will be one, since the range has to be 
above the midpoint of the expanded interval. Con- 
versely, if the next bit happens to be one, the one 
after that will be zero. Therefore the interval can 
safely be expanded right now, if only we remember 
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that, whatever bit actually comes next, its opposite 
must be transmitted afterwards as well. Thus lines 
104-109 expand [First-qtr, Third-qtr] into the whole 
interval, remembering in bits-to- follow that the 
bit that is output next must be followed by an oppo- 
site bit. This explains why all output is done via 
bit-plus- foZZow() (lines 128-135), instead of directly 
with output-bit(). 

But what if, after this operation, it is still true that 

First-qtr I low < Half I high < Third-qtr? 

Figure 5 illustrates this situation, where the current 
[low, high] range (shown as a thick line) has been 
expanded a total of three times. Suppose the next bit 
turns out to be zero, as indicated by the arrow in 
Figure 5a being below the halfway point. Then the 
next three bits will be ones, since the arrow is not 
only in the top half of the bottom half of the original 
range, but in the top quarter, and moreover the top 
eighth, of that half-this is why the expansion can 
occur three times. Similarly, as Figure 6b shows, if 
the next bit turns out to be a one, it will be followed 
by three zeros. Consequently, we need only count 
the number of expansions and follow the next bit by 
that number of opposites (lines 106 and 131-134). 

Using this technique the encoder can guarantee 
that, after the shifting operations, either 

or 

low < First-qtr < Half I high (14 

low < Half < Third-qtr I high. (lb) 

Therefore, as long as the integer range spanned by 
the cumulative frequencies fits into a quarter of that 
provided by code-values, the underflow problem 
cannot occur. This corresponds to the condition 

Max- frequency 5 
Top-value + 1 + 1 

4 

which is satisfied by Figure 3, since Max- frequency 
= 214 - 1 and Top-value = 216 - 1 (lines 36, 9). More 
than 14 bits cannot be used to represent cumulative 
frequency counts without increasing the number of 
bits allocated to code-values. 

We have discussed underflow in the encoder only. 
Since the decoder’s job, once each symbol has been 
decoded, is to track the operation of the encoder, 
underflow will be avoided if it performs the same 
expansion operation under the same conditions. 

Overflow 
Now consider the possibility of overflow in the 
integer multiplications corresponding to those of 
Figure 2, which occur in lines 91-94 and 190-193 
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FIGURE 5. Scaling the Interval to Prevent Underflow 

of Figure 3. Overflow cannot occur provided the 
product 

fits within the integer word length available, 
since cumulative frequencies cannot exceed 
Max- frequewy. Rarjge might be as large as Top-value 
+ 1. so the largest possible product in Figure 3 is 
2”‘(2’4 - 1). which is less than 2”“. Long declarations 
are used for code-zwlue (line 7) and range (lines 89, 
183) to ensure that arithmetic is done to 32-bit preci- 
sion. 

Constraints on the Implementation 
The constraints on word length imposed by under- 
flow and overflow can be simplified by assuming 
that frequency counts are represented in f bits, and 
code-zwlurs in c bits, The implementation will work 
correctly provided 

fsc-2 
f+CSp, 

the precision to which arithmetic is performed. 

In most C implementations, p = 31 if long integers 
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are used, and p = 32 if they are unsigned long. In 
Figure 3, f = 14 and c = 16. With appropriately 
modified declarations, unsigned long arithmetic with 
f = 15 and c = 17 could be used. In assembly lan- 
guage, c = 16 is a natural choice because it expedites 
some comparisons and bit manipulations (e.g., those 
of lines 65-113 and 164-213). 

If p is restricted to 16 bits, the best values possible 
are c = 8 and f = 7, making it impossible to encode a 
full alphabet of 256 symbols, as each symbol must 
have a count of at least one. A smaller alphabet (e.g., 
the 26 letters, or 4-bit nibbles) could still be handled. 

Termination 
To finish the transmission, it is necessary to send a 
unique terminating symbol (EOF-symbol, line 56) 
and then follow it by enough bits to ensure that the 
encoded string falls within the final range. Since 
done-encoding0 (lines 116-123) can be sure that low 
and high are constrained by either Eq. (la) or (lb) 
above, it need only transmit 01 in the first case or 10 
in the second to remove the remaining ambiguity. It 
is convenient to do this using the bit-plus- foZZow() 
procedure discussed earlier. The input- bit () proce- 
dure will actually read a few more bits than were 
sent by output-bit(), as it needs to keep the low end 
of the buffer full. It does not matter what value these 
bits have, since EOF is uniquely determined by the 
last two bits actually transmitted. 

MODELS FOR ARITHMETIC CODING 
The program in Figure 3 must be used with a 
model that provides a pair of translation tables 
index-to-char[] and char-to-index[], and a cumula- 
tive frequency array cum - freq [ 1, The requirements 
on the latter are that 

0 cum-freq[i - l] 2 cum-freq[i]; 
l an attempt is never made to encode a symbol i for 

which cum-freq[i - l] = cum-freq[i]; and 
l cum- freq [0] 5 Max- frequency. 

Provided these conditions are satisfied, the values in 
the array need bear no relationship to the actual 
cumulative symbol frequencies in messages. Encod- 
ing and decoding will still work correctly, although 
encodings will occupy less space if the frequencies 
are accurate. (Recall our successfully encoding eaii! 
according to the model of Table I, which does not 
actually reflect the frequencies in the message.) 

Fixed Models 
The simplest kind of model is one in which symbol 
frequencies are fixed. The first model in Figure 4 
has symbol frequencies that approximate those of 
English (taken from a part of the Brown Corpus [12]). 

However, bytes that did not occur in that sample 
have been given frequency counts of one in case 
they do occur in messages to be encoded (so this 
model will still work for binary files in which 
all 256 bytes occur). Frequencies have been normal- 
ized to total 8000. The initialization procedure 
start-model () simply computes a cumulative version 
of these frequencies (lines 48-51), having first initial- 
ized the translation tables (lines 44-47). Execution 
speed would be improved if these tables were used 
to reorder symbols and frequencies so that the most 
frequent came first in the cum _ freq [ ] array. Since 
the model is fixed, the procedure update-model 0, 
which is called from both encode.c and decode.c, is 
null. 

An exact model is one where the symbol frequen- 
cies in the message are exactly as prescribed by the 
model. For example, the fixed model of Figure 4 is 
close to an exact model for the particular excerpt of 
the Brown Corpus from which it was taken. To be 
truly exact, however, symbols that did not occur in 
the excerpt would be assigned counts of zero, rather 
than one (sacrificing the capability of transmitting 
messages containing those symbols). Moreover, the 
frequency counts would not be scaled to a predeter- 
mined cumulative frequency, as they have been in 
Figure 4. The exact model can be calculated and 
transmitted before the message is sent. It is shown 
by Cleary and Witten [3] that, under quite general 
conditions, this will not give better overall compres- 
sion than adaptive coding (which is described next). 

Adaptive Models 
An adaptive model represents the changing symbol 
frequencies seen so fur in a message. Initially all 
counts might be the same (reflecting no initial infor- 
mation), but they are updated, as each symbol is 
seen, to approximate the observed frequencies. Pro- 
vided both encoder and decoder use the same initial 
values (e.g., equal counts) and the same updating 
algorithm, their models will remain in step. The en- 
coder receives the next symbol, encodes it, and up- 
dates its model. The decoder identifies it according 
to its current model and then updates its model. 

The second half of Figure 4 shows such an adap- 
tive model. This is the type of model recommended 
for use with Figure 3, for in practice it will outper- 
form a fixed model in terms of compression effi- 
ciency. Initialization is the same as for the fixed 
model, except that all frequencies are set to one. 
The procedure update-model (symbol) is called by 
both encode-symbol () and decode-symbol () (Figure 3, 
lines 54 and 151) after each symbol is processed. 

Updating the model is quite expensive because of 
the need to maintain cumulative totals. In the code 
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of Figure 4, frequency counts, which must be main- 
tained anyway, are used to optimize access by keep- 
ing the array in frequency order-an effective kind 
of self-organizing linear search [9]. Update-model0 
first checks to see if the new model will exceed the 
cumulative-frequency limit, and if so scales all fre- 
quencies down by a factor of two (taking care to 
ensure that no count scales to zero) and recomputes 
cumulative values (Figure 4, lines 29-37). Then, if 
necessary, update-model () reorders the symbols to 
place the current one in its correct rank in the fre- 
quency ordering, altering the translation tables to 
reflect the change. Finally, it increments the appro- 
priate frequency count and adjusts cumulative fre- 
quencies accordingly. 

PERFORMANCE 
Now consider the performance of the algorithm of 
Figure 3, both in compression efficiency and execu- 
tion time. 

Compression Efficiency 
In principle, when a message is coded using arith- 
metic: coding, the number of bits in the encoded 
string is the same as the entropy of that message 
with respect to the model used for coding. Three 
factors cause performance to be worse than this in 
practice: 

(1) message termination overhead; 
(2) the use of fixed-length rather than infinite- 

precision arithmetic; and 
(3) scaling of counts so that their total is at most 

Max- frequency. 

None of these effects is significant, as we now show. 
In order to isolate the effect of arithmetic coding, the 
model will be considered to be exact (as defined 
above). 

Arithmetic coding must send extra bits at the 
end of each message, causing a message termina- 
tion overhead. Two bits are needed, sent by 
done-encoding() (Figure 3, lines 119-123), in order to 
disambiguate the final symbol. In cases where a bit 
stream must be blocked into 8-bit characters before 
encoding, it will be necessary to round out to the 
end of a block. Combining these, an extra 9 bits may 
be required. 

The overhead of using fixed-length arithmetic oc- 
curs because remainders are truncated on division. 
It can be assessed by comparing the algorithm’s per- 
formance with the figure obtained from a theoretical 
entropy calculation that derives its frequencies from 
counts scaled exactly as for coding. It is completely 
negligible-on the order of lop4 bits/symbol. 

The penalty paid by scaling counts is somewhat 
larger, but still very small. For short messages (less 
than 214 bytes), no scaling need be done. E:ven with 
messages of 105-lo6 bytes, the overhead was found 
experimentally to be less than 0.25 percent of the 
encoded string. 

The adaptive model in Figure 4 scales down all 
counts whenever the total threatens to exceed 
Max- frequency. This has the effect of weighting re- 
cent events more heavily than events from earlier in 
the message. The statistics thus tend to track 
changes in the input sequence, which can be very 
beneficial. (We have encountered cases where limit- 
ing counts to 6 or 7 bits gives better results than 
working to higher precision.) Of course, this depends 
on the source being modeled. Bentley et al. [2] con- 
sider other, more explicit, ways of incorporating a 
recency effect. 

Execution Time 
The program in Figure 3 has been written for clarity 
rather than for execution speed. In fact, with the 
adaptive model in Figure 4, it takes about 420 PS per 
input byte on a VAX-11/780 to encode a text file, 
and about the same for decoding. However, easily 
avoidable overheads such as procedure calls account 
for much of this, and some simple optimizations in- 
crease speed by a factor of two. The following altera- 
tions were made to the C version shown: 

(1) 

(2) 

(3) 

(4) 

The procedures input-bif(), output-bit(), and 
bit-plus- follow() were converted to macros to 
eliminate procedure-call overhead. 
Frequently used quantities were put in register 
variables. 
Multiplies by two were replaced by additions 
(C ‘I,=“). 
Array indexing was replaced by pointer manip- 
ulation in the loops at line 189 in Figure 3 and 
lines 49-52 of the adaptive model in Figure 4. 

This mildly optimized C implementation has an 
execution time of 214 ps/252 ps per input byte, for 
encoding/decoding 100,000 bytes of English text on 
a VAX-11/780, as shown in Table II. Also given are 
corresponding figures for the same program on an 
Apple Macintosh and a SUN-3/75. As can be seen, 
coding a C source program of the same length took 
slightly longer in all cases, and a binary object pro- 
gram longer still. The reason for this will be dis- 
cussed shortly. Two artificial test files were included 
to allow readers to replicate the results. “Alphabet” 
consists of enough copies of the 26-letter alphabet to 
fill out 100,000 characters (ending with a partially 
completed alphabet). “Skew statistics” contains 
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TABLE II. Results for Encoding and Decoding 100,000-Byte Files 

VAX-H/788 Macintosh 512 K SUN-3175 

Encode time Decodetlme Encode time oeclxletlme Encode time oecodetime 
w (I4 (ccs) (as) (PS) b4 

Mildly optimized C implementation 
Text file 57,718 214 
C program 82,991 230 
VAX object program 73,501 313 
Alphabet 59,292 223 
Skew statistics 12,092 143 

Carefully optimized assembly-language implementation 
Text file 57,718 104 
C program 62,991 109 
VAX object program 73,501 158 
Alphabet 59,292 105 
Skew statistics 12,092 63 

262 687 
288 729 
406 950 
277 719 
170 507 

98 121 
105 131 
145 190 
105 130 

70 85 

135 194 243 46 58 
151 208 266 51 65 
241 280 402 75 107 
145 204 264 51 65 

81 126 160 28 36 

Notes: Times are measured in microseconds per byte of uncompressed data. 
The VAX-l l/760 had a floating-point accelerator, which reduces integer multiply and divide times. 
The Macintosh uses an E-MHz MC66000 with some memory wait states. 
The SUN-3175 uses a 16.67-MHz MC66020. 
All times exclude I/O and operating-system overhead in support of l/O. VAX and SUN figures give user time from the UNIX* time command; 

on the Macintosh, l/O was explicitly directed to an array. 
The 4.2BSD C compiler was used for VAX and SUN; Aztec C 1.06g for Macintosh. 

TABLE III. Breakdown of Timings for the VAX-U/780 
Assembly-Language Version 

10,000 copies of the string aaaabaaaac; it demon- 
strates that files may be encoded into less than one 
bit per character (output size of 12,092 bytes = 
96,736 bits). All results quoted used the adaptive 
model of Figure 4. 

A further factor of two can be gained by repro- 
gramming in assembly language. A carefully opti- 
mized version of Figures 3 and 4 (adaptive model) 
was written in both VAX and M68000 assembly lan- 
guages. Full use was made of registers, and advan- 
tage taken of the Is-bit code-value to expedite some 
crucial comparisons and make subtractions of Half 
trivial. The performance of these implementations 
on the test files is also shown in Table II in order 
to give the reader some idea of typical execution 
speeds. 

The VAX-11/780 assembly-language timings are 
broken down in Table III. These figures were ob- 
tained with the UNIX profile facility and are accu- 
rate only to within perhaps 10 percent. (This mech- 
anism constructs a histogram of program counter 
values at real-time clock interrupts and suffers from 
statistical variation as well as some systematic er- 
rors.) “Bounds calculation” refers to the initial parts 
of encode-symbol () and decode-symbol () (Figure 3, 
lines 90-94 and 190-l%), which contain multiply 
and divide operations. “Bit shifting” is the major 
loop in both the encode and decode routines 
(lines 96-113 and 194-213). The cum calculation in 
decode-symbol (1, which requires a multiply/divide, 
and the following loop to identify the next symbol 
(lines 187-189), is “Symbol decode.” Finally, “Model 

Encods time Decode the 
(PSI (4 

Text file 
Bounds calculation 
Bit shifting 

Model update 
Symbol decode 
Other 

32 
39 
29 

- 

4 
104 

31 
30 
29 
45 

0 
135 

C program 
Bounds calculation 
Bit shifting 
Model update 
Symbol decode 
Other 

30 28 
42 35 
33 36 

- 51 
4 

109 
1 

151 

VAX object program 
Bounds calculation 
Bit shifting 
Model update 
Symbol decode 
Other 

34 31 
46 40 
75 75 

- 94 
3 

158 
1 

241 

update” refers to the adaptive update-model () proce- 
dure of Figure 4 (lines 26-53). 

As expected, the bounds calculation and model 
update take the same time for both encoding and 
decoding, within experimental error. Bit shifting was 
quicker for the text file than for the C program and 
object file because compression performance was 
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better. The extra time for decoding over encoding is 
due entirely to the symbol decode step. This takes 
longer in the C program and object file tests because 
the loop of line 189 was executed more often (on 
average 9 times, 13 times, and 35 times, respec- 
tively). This also affects the model update time be- 
cause it is the number of cumulative counts that 
must be incremented in Figure 4, lines 49-52. In the 
worst case, when the symbol frequencies are uni- 
formly distributed, these loops are executed an aver- 
age of 128 times. Worst-case performance would be 
improved by using a more complex tree representa- 
tion for frequencies, but this would likely be slower 
for text files. 

SOME APPLICATIONS 
Applications of arithmetic coding are legion. By lib- 
erating coding with respect to a model from the mod- 
eling required for prediction, it encourages a whole 
new view of data compression [19]. This separation 
of function costs nothing in compression perfor- 
mance, since arithmetic coding is (practically) opti- 
mal with respect to the entropy of the model. Here 
we intend to do no more than suggest the scope of 
this view by briefly considering 

(1) adaptive text compression, 
(2) nonadaptive coding, 
(3) compressing black/white images, and 
(4) coding arbitrarily distributed integers. 

Of course, as noted earlier, greater coding efficien- 
cies could easily be achieved with more sophisti- 
cated models. Modeling, however, is an extensive 
topic in its own right and is beyond the scope of this 
article. 

Adaptive text compression using single-character 
adaptive frequencies shows off arithmetic coding 
to good effect. The results obtained using the pro- 
gram in Figures 3 and 4 vary from 4.8-5.3 bits/char- 

acter for short English text files (103-lo4 bytes) to 
4.5-4.7 bits/character for long ones (105-lo6 bytes). 
Although adaptive Huffman techniques do exist 
(e.g., [5, i’]), they lack the conceptual simplicity of 
arithmetic coding. Although competitive :in compres- 
sion efficiency for many files, they are slower. For 
example, Table IV compares the performance of the 
mildly optimized C implementation of arithmetic 
coding with that of the UNIX compact program that 
implements adaptive Huffman coding using a similar 
model. (Compact’s model is essentially the same for 
long files, like those of Table IV, but is better for 
short files than the model used as an example in this 
article.) Casual examination of compact in’dicates that 
the care taken in optimization is roughly lcomparable 
for both systems, yet arithmetic coding hallves exe- 
cution time. Compression performance is somewhat 
better with arithmetic coding on all the example 
files. The difference would be accentuated with 
more sophisticated models that predict symbols with 
probabilities approaching one under certain circum- 
stances (e.g., the letter u following 9). 

Nonadaptive coding can be performed adthmeti- 
tally using fixed, prespecified models like that in 
the first part of Figure 4. Compression performance 
will be better than Huffman coding. In order to mini- 
mize execution time, the total frequency count, 
cum- freq[O], should be chosen as a power of two so 
the divisions in the bounds calculations (Figure 3, 
lines 91-94 and 190-193) can be done as shifts. En- 
code/decode times of around 60 ps/90 PS should 
then be possible for an assembly-language imple- 
mentation on a VAX-11/780. A carefully written im- 
plementation of Huffman coding, using table lookup 
for encoding and decoding, would be a bit faster in 
this application. 

Compressing black/white images using arithmetic 
coding has been investigated by Langdon and 
Rissanen [14], who achieved excellent results using 

TABLE IV. Comparison of Arithmetic and Adaptive Huffman Coding 

Arithmeticcadlng Adaptive Huffman coding 

22 
Encodetime Deco&time Encode time oscodetime 

(4 (f4 St b4 CS) 
Text file 57,718 214 262 57,781 550 414 
C program 62,991 230 288 63,731 596 441 
VAX object program 73,546 313 406 76,950 822 606 
Alphabet 59,292 223 277 60,127 598 411 
Skew statistics 12,092 143 170 16,257 215 132 

Notes: The mildly optimized C implementation was used for arithmetic coding. 
UNIX compact was used for adaptive Huffman coding. 
Times are for a VAX-l l/780 and exclude I/O and operating-system overhead in support of I/O. 
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a model that conditioned the probability of a pixel’s 
being black on a template of pixels surrounding it. 
The template contained a total of 10 pixels, selected 
from those above and to the left of the current one 
so that they precede it in the raster scan. This cre- 
ates 1024 different possible contexts, and for each 
the probability of the pixel being black was esti- 
mated adaptively as the picture was transmitted. 
Each pixel’s polarity was then coded arithmetically 
according to this probability. A 20-30 percent im- 
provement in compression was attained over earlier 
methods. To increase coding speed, Langdon and 
Rissanen used an approximate method of arithmetic 
coding that avoided multiplication by representing 
probabilities as integer powers of %. Huffman cod- 
ing cannot be directly used in this application, as it 
never compresses with a two-symbol alphabet. Run- 
length coding, a popular method for use with two- 
valued alphabets, provides another opportunity for 
arithmetic coding. The model reduces the data to a 
sequence of lengths of runs of the same symbol (e.g., 
for picture coding, run-lengths of black followed by 
white followed by black followed by white . . .). The 
sequence of lengths must be transmitted. The CCITT 
facsimile coding standard [ll] bases a Huffman code 
on the frequencies with which black and white runs 
of different lengths occur in sample documents. A 
fixed arithmetic code using these same frequencies 
would give better performance: adapting the fre- 
quencies to each particular document would be 
better still. 

Coding arbitrarily distributed integers is often called 
for in use with more sophisticated models of text, 
image, or other data. Consider, for instance, the lo- 
cally adaptive data compression scheme of Bentley 
et al. [2], in which the encoder and decoder cache 
the last N different words seen. A word present in 
the cache is transmitted by sending the integer 
cache index. Words not in the cache are transmitted 
by sending a new-word marker followed by the 
characters of the word. This is an excellent model 
for text in which words are used frequently over 
short intervals and then fall into long periods of dis- 
use. Their paper discusses several variable-length 
codings for the integers used as cache indexes. 
Arithmetic coding allows any probability distribution 
to be used as the basis for a variable-length encod- 
ing, including-among countless others-the ones 
implied by the particular codes discussed there. It 
also permits use of an adaptive model for cache in- 
dexes, which is desirable if the distribution of cache 
hits is difficult to predict in advance. Furthermore, 
with arithmetic coding, the code spaced allotted to 
the cache indexes can be scaled down to accommo- 

date any desired probability for the new-word 
marker. 

APPENDIX. Proof of Decoding Inequality 

Using one-letter abbreviations for cum- freq, 
symbol, low, high, and value, suppose 

c[s] 5 
L 

(V-Z + 1) x c[O] - 1 

h-I+1 1 

< c[s - 11; 

in other words, 

c[s] 5 
(v - I + 1) x c[O] - 1 

-& 
r (1) 

5 c[s - l] - 1, 

where 

r=h-l+l, 
1 

OSEIT-. 
r 

(The last inequality of Eq. (1) derives from the 
fact that c[s - l] must be an integer.) Then we 
wish to show that I ’ I v I h’, where 1’ and h’ 
are the updated values for low and high as defined 
below. 

(v - I + 1) X c[O] - 1 ( I : r 
- 

CPI [ 
-e 

r 1 
from Eq. (l), 

5v+l-- 
w ’ 

so 1’ 5 v since both v and 1’ are integers and 
c[O] > 0. 

(b) h’-‘+L’X:;“o,“J-I 

z-z+T 
CPI [ 

(v - I + 1) x c[O] - 1 + 1 _ c _ 1 
r 1 

from Eq. (1) 
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