Terry A. Welch, Sperry Research Center*

Data stored on disks and tapes or transferred over com-
munications links in commercial computer systems generally
contains significant redundancy. A mechanism or procedure
which recodes the data to lessen the redundancy could possibly
double or triple the effective data densitites in stored or com-
municated data. Moreover, if compression is automatic, it can
also aid in the rise of software development costs. A transparent
compression mechanism could permit the use of ‘‘sloppy’’ data
structures, in that empty space or sparse encoding of data would
not greatly expand the use of storage space or transfer time; how-
ever, that requires a good compression procedure.

Several problems encountered when common compression
methods are integrated into computer systems have prevented
the widespread use of automatic data compression. For example
(1) poor runtime execution speeds interfere in the attainment of
very high data rates; (2) most compression techniques are not
flexible enough to process different types of redundancy; (3)
blocks of compressed data that have unpredictable lengths pre-
sent storage space management problems. Each compression

* This article was written while Welch was employed at Sperry Research Center; he
is now employed with Digital Equipment Corporation.

8 0018-9162/84/0600-0008301.00 © 1984 IEEE

strategy poses a different set of these problems and, consequent-
ly, the use of each strategy is restricted to applications where its
inherent weaknesses present no critical problems.

This article introduces a new compression algorithm that is
based on principles not found in existing commercial methods.
This algorithm avoids many of the problems associated with
older methods in that it dynamically adapts to the redundancy
characteristics of the data being compressed. An investigation
into possible application of this algorithm yields insight into the
compressibility of various types of data and serves to illustrate
system problems inherent in using any compression scheme. For
readers interested in simple but subtle procedures, some details
of this algorithm and its implementations are also described.

The focus throughout this article will be on transparent com-
pression in which the computer programmer is not aware of the
existence of compression except in system performance. This
form of compression is “‘noiseless,”’ the decompressed data is an
exact replica of the input data, and the compression apparatus is
given no special program information, such as data type or usage
statistics. Transparency is perceived to be important because put-
ting an extra burden on the application programmer would cause

COMPUTER

development costs which would often exceed the value of
compression. As illustrated in Figure 1, compression is
viewed as being very similar to a communications channel
in that it codes a sequence of bytes into an artificiai format
for improved physical handling and later decodes the com-
pressed image back into a replica of the original message.

The data compression described by this model is a
reversible process that is unlike other forms of ‘‘data com-
pression”’ —such as data reduction or data abstraction—in
which data is deleted according to some relevance cri-
terion.

This article focuses on compression of both text and
numeric data—intermixed—in commercial computer ap-
plications. Whereas previous articles have placed par-
ticular emphasis on text compression in their discussions
of compression algorithms for computer data, !-3 this arti-
cle will cover more of the systems aspects of integrating a
compression algorithm into a computer system with high-
performance storage devices.

INPUT

SYMBOLS COMPRESSION gngﬂ:RESSED

—>]

STREAM CODES

OF

CHARACTERS
DATA STORAGE,

MEDIUM { cOMMUNICATIONS

LINES

OUTPUT

SYMBOLS CODES

«—— DECOMPRESSION [«

ORIGINAL

DATA

Figure 1. A model for a compression system that per-
forms transparent compression.

Types of redundancy

Four types of redundancy can be found in commercial
data. Redundancy here is confined to what is observable in
a data stream (without knowledge of how the data is to be
interpreted). Redundancy in the form of unused data or
application-specific correlations are not considered here.
For illustration, types of redundancy will be described as
they might be found in two kinds of files: English text and
manufacturing parts inventory records (see Figure 2). The
redundancy categories described are not independent, but
overlap to some extent.

Character distribution. In a typical character string,
some characters are used more frequently than others.
Specifically, in eight-bit ASCII representations nearly
three-fourths of the possible 256-bit combinations may
not be used in a specific file. Consequently, nearly two bits
of each eight-bit packet might be saved, for a possible
25-percent space/time savings. In English text, the
characters occur in a well-documented distribution, with e
and “‘space’’ being the most popular. In an inventory
record, numeric values are very common—the existence of
binary or packed-decimal numbers can shift the statis-
tics—and constraints on field definition can cause
character distributions to vary significantly from file to
file. For example, the choice of whether to use alphabetic
or numeric values to identify warehouse sites can shift the
distribution in the inventory file. Likewise, the extent to
which descriptive text appears in the inventory records will
influence the average number of bits needed per character.

Character repetition. When a string of repetitions of a
single character occurs, the message can usually be en-
coded more compactly than by just repeating the character
symbol. Such strings are infrequent in text, occurring as
blank spaces in place of tabs or at the end of lines.
However, in formatted business files, unused space is very
common. An inventory record will frequently have strings
of blanks in partially used alphabetic fields, strings of
zeros in high-order positions of numeric fields, and
perhaps strings of null symbols in unused fields. Graphical
images, especially the line drawings of business graphics,
are mostly composed of homogeneous spaces, and their

PART NAME: HEX NUT % x 20 — ENGLISH CHARACTER
DESCRIPTION: STEEL, STANDARD THREAD OCCURRENCE DISTRIBUTION
COLOR CODE: « BLANK FIELD

VARIABLE-LENGTH TEXT

WAREHOUSE: 45" STREET <€—

STORAGE SITE: 4R9

<~

SAME NAME FREQUENTLY
REOCCURS IN THIS FILE.

-

QUANTITY IN STOCK: 0020
REORDER POINT: 0010

NUMERIC FIELDS
LIMITED VARIETY OF CHARACTERS

Figure 2. Types of redundant code in a manufacturing parts inventory record.

June 1984

10

increasing integration into textual data can pose a com-
pression challenge.

High-usage patterns. Certain sequences of characters
will reappear with relatively high frequency and can
therefore be represented with relatively fewer bits for a net
saving in time/space. In English, a period followed by two
spaces is more common than most other three-character
combinations and could therefore be recoded to use fewer
bits. Many letter pairs, such as ZE, are more common than
the individual letter probabilities would imply and might
therefore be recoded with fewer bits than the two-charac-
ter symbols used together. Likewise, unlikely pairs, such
as GC, would be encoded with very long bit combinations
to achieve better bit utilization. In particular instances of
text, certain key words will be used heavily. For example,
the word ‘‘compression’’ appears frequently in this article;
consequently, if this article were made into a system file,
the word ‘‘compression’” would warrant use of a shorter
code. In inventory records, certain identifiers such as
warehouse names are extensively reused. Numeric fields
contain preferred sequences in the sense that they contain
only sequences of digits, with no letters or special symbols
intermixed. These could be encoded at less than four bits
per digit, rather than the five to eight bits needed for
general text.

Positional redundancy. If certain characters appear
consistently at a predictable place in each block of data,
then they are at least partially redundant. An example of
this is a raster-scanned picture containing a vertical line;
the vertical line appears as a blip in the same position in
each scan, and could be more compactly coded. In inven-
tory files, certain record fields may almost always have the
same entry, such as a ‘‘special handling” field which
almost always has ‘‘none’’ in it. Text, on the other hand,
has virtually no positional redundancy in it.

These four types of redundancy overlap to some extent.
For example, many inventory numeric fields will contain
small integers preponderantly. These could be compressed
as a small group of frequently used sequences (the in-
tegers), as instances of zero strings in front of the integer
values, as a weighting of the character frequency distribu-
tion toward zeros, or as a positional bias, in that particular
fields will almost always have numeric values with many
high-order zeros. The point here is that almost any com-
pression mechanism can exploit that type of redundancy.

The intent here is not to precisely analyze the com-
ponents of redundancy, but rather to provide a better view
of the opportunities and challenges for a compression
algorithm.*

*Other types of redundancy exist, beyond those listed here, for example in
digitized voice waveforms. There is extensive redundancy in voice, but
much of it is best seen in the frequency domain rather than the time domain.
Some voice data collected can be eliminated by dropping unnecessary preci-
sion in certain contexts, but this technique should be seen as data reduction
rather than data compression because it is not reversible. In general, the
methods used to compress alphanumeric data are not useful on voice, and
vice versa (except perhaps for blank interval encoding).

Methods of compression

The preceding discussion of redundancy types provides
a basis for comparing several practical compression meth-
ods. More theoretical comparisons are provided by Storer
and Szymanki. 4

Huffman coding. The most popular compression meth-
od is to translate fixed-size pieces of input data into
variable-length symbols. The standard Huffman encoding
procedure prescribes a way to assign codes to input sym-
bols such that each code length in bits is approximately

log, (symbol probability)

where symbol probability is the relative frequency of oc-
currence of a given symbol (expressed as a probability).
For example, if the set of symbols (the input ensemble) is
chosen to be the one-byte ASCII characters (a very typical
case) and if the blank character is used one-eighth of the
time, then the blank character is encoded into a three-bit
symbol. If the letter Z is found to occur only 0.1 percent of
the time, it is represented by 10 bits.

In normal use, the size of input symbols is limited by the
size of the translation table needed for compression. That
is, a table is needed that lists each input symbol and its cor-
responding code. If a symbol is one eight-bit byte (as is
common), then a table of 256 entries is sufficient. Such a
table is quite economical in storage costs but limits the
degree of compression achieved. Single-character en-
coding can cope with character distribution redundancy,
but not the other types. Compression could be improved
by using input symbols of two bytes each, but that would
require a table of 64K entries at a cost that might not be
warranted. Parsing the input data into symbols that are
not byte-aligned such as 12 bits, is not likely to improve
compression effectiveness and would complicate system
design.

A second problem with Huffman encoding is the com-
plexity of the decompression process. The length of each
code to be interpreted for decompression is not known un-
til the first few bits are interpreted. The basic method for
intepreting each code is to interpret each bit in sequence
and choose a translation subtable according to whether the
bit is a one or zero. That is, the translation table is essen-
tially a binary tree. Operationally, then, a logic decision is
made for each code bit. In working with a disk drive that
has a 30M-bps transfer rate, the decompression logic must
cycle at that rate or faster to avoid creating a system bottle-
neck. Decompression at that rate is possible but not sim-
ple. In general, decompression with variable-length sym-
bols gives a cost/performance disadvantage whenever the
data volume is high.

A third problem with Huffman encoding is that we need
to know the frequency distribution for the ensemble of
possible input symbols. In the normal case of single-
character symbols, character frequency distribution in the
data stream is the type of distribution use. Such a distribu-
tion is known and is probably reasonably stable for Eng-
lish text. However, the distributions for data files are very
application specific and files such as object code, source
code, and system tables will have dissimilar characteristic
distributions. While it might be possible to have a set of

COMPUTER

generic translation tables to cover these various cases,
problems arise in having the decompressor use the same set
of tables as the compressor. A common solution is to
analyze each data block individually to adapt the character
distribution uniquely to that block. We must make two
passes over the data: (1) a pass to count characters and per-
form a sort operation on the character table, and (2) a pass
for encoding. The derived translation table must be con-
veyed with the compressed data, which detracts from the
compression effectiveness and/or strongly restricts the size
of the translation table. This adaptable approach is accept-
able if high transfer rates through the compressor are not
required and if the data blocks being compressed are very
large relative to the size of the translation table.

Run-length encoding. Sequences of identical characters
can be encoded as a count field plus an identifier of the
repeated character. This approach is effective in graphical
images, has virtually no value in text, and has moderate
value in data files. The problem with run-length encoding
for character sequences intermixed with other data is in
distinguishing the count fields from normal characters,
which may have the same bit pattern. This problem has
several solutions, but each one has disadvantages. For ex-
ample, a special character might be used to mark each run
of characters, which is fine for ASCII text, but not for ar-
bitrary bit patterns such as those in binary integers.
Typically, three characters are needed to mark each char-
acter run, so this encoding would not be used for runs of
three or fewer characters.

Programmed compression. While programmed com-
pression does not meet the transparency constraint desir-
able for general-use systems, it is discussed here to show
the types of techniques used. The programming is general-
ly done by the applications programmer or data manage-
ment system. In formatted data files, several techniques
are used. Unused blank or zero spaces are eliminated by
making fields variable in length and using an index struc-
ture with pointers to each field position. Predictable field
values are compactly encoded by way of a code table—
such as when warehouse names are given as integer codes
rather than as alphabetic English names. Each field has its
own specialized code table that deals with positional
redundancy. Since programmed compression cannot ef-
fectively handle character distribution redundancy, it is a
nice complement to Huffman coding.

Programmed compression has several serious disadvan-
tages. It introduces increased program development ex-
penses; the type of decompression used requires a knowl-
edge of the record structure and the code tables; the choice
of field sizes and code tables may complicate or inhibit
later changes to the data structure making the software
more expensive to maintain. Perhaps most important,
programmers will tend to avoid the decompression process
because it is relatively slow and, therefore, will work with
data in main memory in its compressed format, which
confuses and complicates the application program.

Adaptive compression. The Lempel-Ziv>¢ and related
algorithms’ convert variable-length strings of input sym-

June 1984

bols into fixed-length (or predictable length) codes. The
symbol strings are selected so that all have almost equal
probability of occurrence. Consequently, strings of fre-
quently occurring symbols will contain more symbols than
a string having infrequent symbols (see example in Table
1). This form of compression is effective at exploiting
character frequency redundancy, character repetitions,
and high-usage pattern redundancy. However, it is not
generally effective on positional redundancy.

This type of algorithm is adaptive in the sense that it
starts with an empty table of symbol strings and builds the
table during both the compression and decompression
processes. These are one-pass procedures that require no
prior information about the input data statistics and ex-
ecute in time proportional to the length of the message.
This adaptivity results in poor compression during the in-
itial portion of each message; as a result, the message must
be long enough for the procedure to build enough symbol
frequency experience to achieve good compression over
the full message. On the other hand, most finite im-
plementations of an adaptive algorithm lose the ability to
adapt after a certain amount of the message is processed.
If the message is not homogeneous and its redundancy
characteristics shift during the message, then compression
efficiency declines if the message length significantly ex-
ceeds the adaptive range of the compression implementa-
tion.

Table 1. A compression string table with alphanumeric
character strings that are encoded into 12-bit codes. In
this example, infrequent letters, such as Z, are assigned
individually to a 12-bit code. Frequent symbols, such as
space and zero, appear in long strings which in practice
can exceed 30 characters in length. Good compression is
achieved when a long string is encountered in the input, it
is replaced by a 12-bit code, effecting significant space
savings.

SYMBOL

STRING CODE
A 1
AB 2
AN 3
AND 4
AD 5
Z 6
D 7
DO 8
DOB 9
B 10
[11
BBB 12
BBy 13
BBBBY 14
LWL 15
0 16
00 17
000 18
0000 19
00001 20
5 4095

b =blank character

1"

12

The compression procedure discussed here is called the
LZW method. A variation on the Lempel-Ziv procedure, 5
it retains the adaptive properties of Lempel-Ziv and
achieves about the same compression ratios in normal
commercial computer applications. LZW is distinguished
by its very simple logic, which yields relatively inexpensive
implementations and the potential for very fast execution.
A typical LZW implementation operates at under three
clock cycles per symbol and achieves acceptably good
compression on messages in the magnitude of ten thou-
sand characters in length.

Compression parameters. The preceding discussion of
redundancy and compression can be summarized by point-
ing out the parameters that influence the choice of a com-
pression strategy. The redundancy type found in a certain
application is important, but predictability of redundancy
type is also important. An adaptive capability in a com-
pression procedure would be of little benefit for applica-
tions with predictable redundancy such as in English text,
but it would be valuable for business files. System data
transfer rates determine if a one-pass procedure is needed
for speed, or if the greater overhead of a two-pass ap-
proach can be justified by better compression results. The
length of the message being transmitted or retrieved has
some importance because adaptive techniques are awk-
ward or ineffective on short messages.

It is more difficult to analyze the compression costs that
reflect human involvement. Nonadaptive algorithms re-
quire prior knowledge of the data characteristics, which
are perhaps provided by manual classification of messages
into categories having preanalyzed redundancy profiles.
Of course, programmed compression offers the greatest
density improvement at the cost of very high development
and software maintenance costs.

The focus of this article is on the problems found in con-
ventional data storage in commercial computer systems.
In that application, the high data transfer rates of
magnetic disks preclude extensive runtime overhead, while
the diversity of the data stored essentially requires an
adaptive procedure. The use of short segments on a disk
complicates the use of an adaptive approach, but this is
becoming less important as data block sizes on disk are in-
creasing. The LZW method seems to satisfy these re-
quirements better than other compression approaches.
Therefore, its characteristics will be used in the following
discussion, which points out the opportunities and prob-
lems of compression in data storage.

Table 2. Compression results for a variety of data types.

DATATYPE COMPRESSION RATIO

English Text 1.8
Cobol Files 2106
Floating Point Arrays
Formatted Scientific Data
System Log Data
Program Source code
Object Code

— NN =

.0
A
6
3
5

Observed compression results

Effectiveness of compression is expressed as a ratio
relating the number of bits needed to express the message
before and after compression. The compression ratio used
here will be the uncompressed bit count divided by the
compressed bit count. The resulting value, usually greater
than one, indicates the factor of increased data density
achieved by compression. For example, compression that
serves to eliminate half the bits of a particular message is
presented as achieving a 2.0 compression ratio, indicating
that two-to-one compression has been achieved.

Compression ratios, developed by software simulation,
are given in Table 2 for several data types. Many of these
observations came from compression of backup/recovery
tapes from a Sperry Univac 1100/60 machine used in a
scientific environment. Most of the samples involved
several different files and covered 106 to 107 bytes each to
provide meaningful averages. Several versions of Lempel-
Ziv compression algorithms were used; however, since the
various algorithms produced results that were consistent
to within a few percent, no attempt is made here to
distinguish the specific algorithm used for each case.

English text. Text samples for compression were ob-
tained from ASCII word processing files in a technical en-
vironment. Results were reasonably consistent for simple
text, at a compression ratio of 1.8. Many word processing
files, however, compressed better than that when they con-
tained figures, formatted data, or presentation material
like viewgraphs. Surprisingly, long individual documents
did not compress better than groups of short documents,
indicating that the redundancy is not due very much to
correlation in content. For comparison, Rubin? achieves
up to a 2.4 ratio using more complex algorithms. Pechura3
observed a 1.5 ratio using Huffman encoding. These com-
parisons are not very reliable, since the subject texts may
have dissimilar properties.

Cobol files. A significant number of large Cobol files
from several types of applications were compressed, pro-
ducing widely variable results. Compression depends on
record format, homogeneity across data records, and the
extent of integer usage. These were eight-bit ASCII files,
so the integer data would compress very well. A side ex-
periment showed that one third to two thirds of the space
in some of these files appeared as strings of repeated iden-
tical characters, indicating a high fraction of blank space.
After allowing for that much blank space, there normally
was a further two-to-one compression within the useful
data. Restricted character usage probably caused two
thirds of this latter two-to-one compression, with repeated
character patterns giving the rest.

Floating point numbers. Arrays of floating point
numbers look pretty much like white noise and so they
compress rather poorly. The fractional part is a nearly ran-
dom bit pattern. The exponent does yield some compres-
sion when most of the numbers have the same magnitude.
Some floating point arrays expand by 10 percent going
through the compression algorithm, when the exponents

COMPUTER

vary widely. Expansion under an adverse data pattern can
occur under almost any adaptive compression method.
Randomized bit patterns usually cause this effect, since
there are no redundancy savings to offset the overhead
that is inherent in coding the choice of parameter values
explicit or implicit in the procedure.

Formatted scientific data. Most data used by Fortran
programs tended to compress about 50 percent. This data
included input data, primarily integers. It also included
print files, which were ASCII coded. Most of these files
are short, so our 20-file sample did not encompass a large
quantity of data.

System log data. Information describing past system ac-
tivity, such as job start and stop times, is mostly formatted
integers and is therefore reasonably compressible. This log
data is used for recovery and constitutes perhaps 10 per-
cent of the data stored on backup/recovery tapes. It tends
to be in a tightly packed, fixed-length format, so the com-
pression achieved is due to null fields and repetition in the
data values.

Programs. Source code can be compressed by a factor
of better than two. It can be compressed better than text
because words are frequently repeated and blank spaces
are introduced by the source code format. Highly struc-
tured programming yields source code with greater com-
pressibility than the average 2.3 factor cited here. Object
code, on the other hand, consists of arbitrary bit patterns
and does not compress as well. Uneven usage of op codes
and incomplete utilization of displacement fields would
account for most of the compression achieved. Relocat-
able code and absolute code differ in compressibility
depending on the treatment of blanking for empty variable
areas. Actual program files in a development organization
were found to be mixtures of source, relocatable, and ab-
solute codes. These mixed files were compressed on the
average by a factor of two.

Character size. Sometimes data is recorded in nonstan-
dard character sizes. Our Sperry 1100/60 has a 36-bit word
and so, at times, has six-bit, eight-bit, and nine-bit data.
The measurements cited in Table 2 were compressed using
nine-bit characters throughout. When eight-bit ASCII
symbols were being stored in nine-bit bytes, the compres-
sion results were adjusted to reflect results as if they had
been observed on an eight-bit byte. That is, the observed
compression was 9/8 greater than the numbers shown in
Table 2. The compressed data stream is virtually the same
regardless of whether the source data was in eight-bit or
nine-bit symbols, since length of the compressed image
depends on the number of symbols encountered rather
than their encoding. Six-bit data compressed surprisingly
well when compressed on a nine-bit basis, because
repeated patterns, such as blank spaces, are word aligned
and have the same pattern on each occurrence, even
though that pattern is not meaningful when viewed on
nine-bit increments. As a side experiment, nine-bit data
was compressed as if it were eight-bit characters. Poorer
but not unacceptably poor compression resulted. For ex-
ample, a set of nine-bit files which compressed four-to-one

June 1984

as nine-bit input symbols compressed about 2.8-to-one
when processed as a sequence of eight-bit chunks. All of
this evidence indicates that compression can be effective
even when dealing with mixed character types.

Recovery tapes. Computer backup/recovery tapes
(called secure tapes at Sperry) contain copies of active user
files. As such, each tape exposes a cross section of data
used in its system, although that profile of active files may
differ from the profile of all files found on the system
disks. Compressing these tapes with the LZW algorithm
has produced something less than a two-to-one space re-
duction in a scientific installation and slightly better than a
two-to-one reduction in a program-development-oriented
installation. From these results, we might expect a three-
to-one reduction in transaction-oriented systems where
formatted data predominates.

System considerations

The availability of an appropriate compression method
does not assure an effective system. Several problems
occur when integrating compression into existing com-
puter systems. These are described here in terms of both
problem type and impact on specific computer peripherals.

Unpredictable message length. The length of a com-
pressed image for a given message is unpredictable because
it depends on the content of the message. We have no
assurance prior to compression that a message will com-
press at all; in some cases it may even expand a little.
Therefore, the space allocated for the compressed image
must be at least as big as the space allocated for the original
message; this requirement is a complication on allocated
devices such as a disk. Further, an update to a data record
that alters just a few characters can change the compressed
size and may result in a required change in allocation—
even for minor update operations. Unpredictability in
length also impacts bandwidth requirements; as a result,
data path capacities have to be overdesigned to handie
peak demands.

Error tolerance. A characteristic of most reversible
compression systems is that if one bit is altered in the com-
pressed image, much of the message is garbled. Therefore,
a given error rate may be acceptable for the transmission
of uncompressed data, but the same rate may be unaccept-
able for compressed data. Special efforts to detect errors
are needed, especially to catch any errors in the compres-
sion and decompression processes. Note that a parity bit
added to each data character before compression would be
removed as redundancy by the compression process, sO
character parity has no value in checking the compressor.
Cyclic checks over the entire message are effective, how-

ever.
This intolerance to errors often limits the use of com-

pression. For example, digitized speech can tolerate occa-
sional bit losses, but compression turns these errors into
serious losses. On the other hand, since most commercial
data storage devices, such as disk and tape, have accept-
ably low error rates and there is no attempt to use their

13

data with errors present, compression works well in these
circumstances.

Block size. Any compression method that adapts to the
statistics of the subject data and has a finite implementa-
tion will have compression effectiveness sensitive to message
length. Short blocks are penalized by a start-up overhead
needed to convey subject statistics. Huffman encoding
methods, for example, must send a translation table with
the message to give the encoding for each character.
Lempel-Ziv methods are inefficient in early sections of the
message, until character strings are encountered that
repeat earlier strings. A typical LZW implementation uses
12-bit codes with eight-bit input symbols; early inputs
cause one code per symbol yielding a 50-percent expansion
in the start-up portion of the message.

Large blocks suffer a loss in efficiency because the block
lacks stable statistics; this is a typical occurrence in com-
mercial computer data. For example, program develop-
ment files may contain intermixed blocks of source code,
relocatable object code, and load modules of machine
code. A translation table built from redundancy statistics
on the source code will perform poorly on the object code,
which has much different bit patterns. Note that much of
the published theory in the compression field assumes ar-
bitrarily large translation tables and ergodic data sources,
neither of which occur in practice.

Figure 3 shows typical curves of compression efficiency
versus block length for an LZW implementation. Note
that compression efficiency is determined by the com-

Figure 3. The effect of block size on compression efficiency.

14

pressed block size and, as such, is related to the input
block size factored by the compression ratio. The curve
shown may be moved vertically up or down without loss of
meaning; the two-to-one compression ratio curve is shown
here for illustration. The diagonal lines indicate fixed in-
put block sizes as they would map into compressed block
sizes. Note that data which compresses very well needs to
be handled in larger blocks to obtain the highest compres-
sion efficiency.

The highest efficiency point shown in Figure 3—about
6K eight-bit bytes after compression—is implementation-
dependent and can be adjusted. However, since this curve
matches a very convenient implementation, it will be com-
mon practice.

System location for compression. When using compres-
sion on computer peripherals, a significant system con-
sideration occurs in deciding where to implement compres-
sion in the I/0 path of Figure 4: in the device controller,
channel, or central processor. If the compression opera-
tion is executed in the device, it would be transparent to
software and its implementation could be adapted to
device characteristics. The compression operation in-
herently requires some buffering because its rate of putting
out compressed data varies widely, depending on instan-
taneous compression ratios. That is, some pieces of a
message compress better than others and a highly com-
pressible piece would produce a few output codes in place
of numerous input symbols. To reduce the variation in the
compressed data rate, a buffer of a few hundred codes
would be of value. If implemented in the device controller,
this buffering requirement might cause cost problems.
Another problem is in channel bandwidth. If data com-
pressible by a factor of three to one is sent to a 3M-bytes
per-second device, the channel must deliver 9M bytes per
second. This peak rate requirement is variable—depend-
ing on compression ratio—so 1/O channel sizing can no
longer be calculated directly from device transfer rates.

If compression is executed in the channel, it would be
visible to operating system software and would require full
message buffering in the channel controller (not a tradi-
tional design, but a reasonable one). The OS would issue
separate operations for compression and I/0 transfer, giv-
ing it a chance to see the size of compressed images before
the data is transferred to a device. Because of data storage
requirements, this approach would probably be useful
only on selector channels. It does allow the device bus
transfer rate to be better utilized because compressed data
moves from channel to device, but it also complicates
channel and OS designs.

If compression occurs in the central processor, it would
be made available to application software and would bea
main-memory-to-main-memory operation. This type of
compression would improve I/0 channel utilization but
would increase the main memory cycles required. Invoked
optionally by various software packages such as the data-
base manager, this type of compression would not require
changes to the OS.

Disk storage. Compression on disk is feasible because
the internal data format on disk is generally invisible to

COMPUTER

users and can therefore be altered to accommodate com-
pression. The potential for an effectively doubled or tri-
pled data transfer rate on or off disk is very appealing for
large computers. Problems can occur, however, with the
choice of block size and space allocation procedures.

Traditionally, disks have been used in part to read and
write fairly small blocks of characters, such as 80-charac-
ter records. There are several undesirable ways to do this
under a compression systems that involve storing transla-
tion tables, but that complicates the system. Fortunately,
the present trend in disk subsystem design is to block data
to achieve large records on disk and, consequently, better
utilize disk bandwidth. This approach requires a buffer
memory in the disk controller and often accompanies a
caching system for the disk. The use of large blocks in-
troduces some write problems—in read-before-write
access-time loss and in recovery provisions—but these
drawbacks are present even in caching without compres-
sion and so are acceptable.

Traditionally, the OS directly controls space allocation
on disk by keeping a map of available space and checking
each new write request against the map to determine when
and where space is available. If compression is used in a
mode transparent to the OS, this direct control is no longer
possible. The alternatives are (1) to have the OS be aware
of compression and map compressed images into disk
space and (2) to move space allocation into the disk con-
troller. Both approaches have disadvantages that will pre-
vent quick incorporation of compression into disk storage.

Tape storage. Tapes seem to be a good prospect for
compression because space allocation is not involved (the
OS makes no attempt to determine the size of a tape before
it is filled) and data block sizes have usually been quite
large in practice. Problems occur, however, in read-
backwards operations and in intersystem compatibility.

Read backwards, a commonly required capability in a
tape system, involves reading data blocks as a character
stream in reverse order. Adaptive compression is inherent-
ly a one-way procedure, so reversed data blocks must be
stored in full before decompression can begin. If compres-
sion occurs in the tape controller, buffering must be exe-
cuted there also, which is not normal in tape subsystems.

Tapes are commonly used for intersystem data ex-
change, so the use of compression can cause compatibility
problems. While most high-performance compression will
probably be executed in hardware, it is always possible to
decompress with software. Consequently, if occasional
tapes are carried to systems without compression hard-
ware, they can be read (slowly) through software decom-
pression. Compression gives all the system appearances of
having a higher density tape drive, except that higher
media density cannot be reversed using software.

Communications. For years, compression has been
commonly used in special communications applications
such as facsimile. Adaptive compression has a block size
problem in general computer communications, however,
because typical interactive use involves messages of a few
hundred characters or smaller. Compression looks very at-
tractive for transferring large files. For communications
use, software can be ignorant of the existence of compres-
sion, so implementing it in the line controller is ap-
propriate.

System-wide application. As the preceding sections im-
ply, the problem with providing compression throughout
a computer system is the divergence in methods needed for
each device. Communications compression is best im-
plemented in the device controller, tape compression is
perhaps best in the 1/0 channel, and disk compression is
best in the processor. Each application involves certain
system difficulties that inhibit immediate utilization of
compression and the dissimilarity of those difficulties will
probably further delay an integrated system-wide com-
pression capability.

LZW compression algorithm

The LZW algorithm is organized around a translation
table, referred to here as a string table, that maps strings of
input characters into fixed-length codes (see example in
Table 1). The use of 12-bit codes is common. The LZW
string table has a prefix property in that for every string in
the table its prefix string is also in the table. That is if string
wK, composed of some stririg w and some single character
K, isin the table, then wis in the table. K is called the exten-
sion character on the prefix string w. The string table in
this explanation is initialized to contain all single-character
strings.

The LZW string table contains strings that have been
encountered previously in the message being compressed.
It consists of a running sample of strings in the message, so
the available strings reflect the statistics of the message.

LZW uses the ‘‘greedy’’ parsing algorithm, where the
input string is examined character-serially in one pass, and
the longest recognized input string is parsed off each time.
A recognized string is one that exists in the string table.
The strings added to the string table are determined by this
parsing: Each parsed input string extended by its next in-
put character forms a new string added to the string table.
Each such added string is assigned a unique identifier,
namely its code value. In precise terms this is the
algorithm:

Initialize table to contain single-character strings.
Read first input character — prefix string w

MAIN

INSTRUCTION |
N MEMORY

PROCESSOR

v

\ 4

1/0 <
CHANNEL

DEVICE <
CONTROLLER

DEVICE

A 4

Figure 4. A computer |/O data path from the instruction processor to devices such as tape or disk.

June 1984

15

Step: Read next input character K
If no such K (input exhausted): code (w) —output; EXIT
If wK exists in string table: wK —w; repeat Step.
else wK not in string table: code (w) —output;
wK—string table;
K—w; repeat Step.

At each execution of the basic step an acceptable input
string w has been parsed off. The next character K is read
and the extended string wK is tested to see if it exists in the

Table 3. A string table for the example in Figure 5. The string table is
initialized with three code values for the three characters, shown
above the dotted line. Code values are assigned in sequence to new
strings.

STRING ALTERNATE

TABLE TABLE
a 1 a 1
b 2 b 2
o 3 Cc 3
ab 4 1b 4
ba 5 2a 5
abc 6 4c 6
cb 7 3b 7
bab 8 5b 8
baba 9 8a 9
aa 10 1a 10
aa 1 10a 11
aaaa 12 11a 12
INPUT
SYMBOLS a b ab c b ab ab a aaa a a a
OUTPUT 172 35 8 T 70 1 -
CODES

7 9 1

NEW STRING 4 6 8 10 EVE
ADDED TO
TABLE

Figure 5. A compression example. The input data, being read from left
to right, is examined starting with the first character a. Since no
matching string longer than a exists in the table, the code 1 is output
for this string and the extended string ab is put in the table under code
4. Then b is used to start the next string. Since its extension ba is not
in the table, it is put there under code 5, the code for b is output,and a
starts the next string. This process continues straightforwardly.

INPUT 1 2 4 3 5 8 1 10 1"
CODES v v v v v v v v
a b 1b c 2a 5b a 1a 10a
v v v v v
a b 2a a 1a
v v
OUTPUT b a
DATA a b ab c ba bab a aa aaa
STRING 4 6 8 10
ADDED -
TO TABLE 5 7 9 1

Figure 6. A decompression example. Each code is translated by recur-
sive replacement of the code with a prefix code and extension
character from the string table (Table 3). For example, code 5 is re-
placed by code 2 and a, and then code 2 is replaced by b.

16

string table. If it is there, then the extended string becomes
the parsed string w and the step is repeated. If wK is not in
the string table, then it is entered, the code for the suc-
cessfully parsed string w is put out as compressed data, the
character K becomes the beginning of the next string, and
the step is repeated. An example of this procedure is
shown in Figure 5. For simplicity a three-character alpha-
bet is used.

This algorithm makes no real attempt to optimally select
strings for the string table or optimally parse the input
data. It produces compression results that, while less than
optimum, are effective. Since the algorithm is clearly quite
simple, its implementation can be very fast.

The principal concern in implementation is storing the
string table. To make it tractable, each string is repre-
sented by its prefix string identifier and extension
character, so each table entry has fixed length. Table 3 in-
cludes this alternative form of the table for the compres-
sion example of Figure 5. This form is well suited for
hashing methods, and some type of hashing is likely to be
used until true associative memories are available in this
size.

Decompression. The LZW decompressor logically uses
the same string table as the compressor and similarly con-
structs it as the message is translated. Each received code
value is translated by way of the string table into a prefix
string and extension character. The extension character is
pulled off and the prefix string is decomposed into its
prefix and extension. This operation is recursive until the
prefix string is a single character, which completes decom-
pression of that code (see Figure 6 for an example). This
terminal character, called here the final character, is the
left-most character of the string, being the first character
encountered by the compressor when the string was parsed
out.

An update to the string table is made for each code
received (except the first one). When a code has been
translated, its final character is used as the extension
character, combined with the prior string, to add a new
string to the string table. This new string is assigned a
unique code value, which is the same code that the com-
pressor assigned to that string. In this way, the decom-
pressor incrementally reconstructs the same string table
that the compressor used.

This basic algorithm can be stated as follows:

Decompression: Read first input code —CODE —OLDcode;
with CODE =code(K), K —output;
Next Code: Read next input code — CODE — INcode;
If no new code: EXIT. else:
Next Symbol: If CODE =code(wK): K—output;

code(w) —CODE;
Repeat Next Symbol
Else if CODE =code(K): K —output;
OLDcode, K—string
table;
INcode —OLDcode;
Repeat Next Code.

Unfortunately, this simple algorithm has two compli-
cating problems. First, it generates the characters within
each string in reverse order. Second, it does not work for
an abnormal case. String reversal is straightforward and
can be done in several ways. For this description, a push-

COMPUTER

down.LIFO stack for output characters, is assumed, which
will be emptied out at the end of each string.

The abnormal case occurs whenever an input character
string contains the sequence KwKwK, where Kw already
appears in the compressor string table. The compressor
will parse out Kw, send code (Kw), and add KwK to its
string table. Next it will parse out KwK and send the just-
generated code (KwK). The decompressor, on receiving
code (KwK), will not yet have added that code to its string
table because it does not yet know an extension character
for the prior string. This case is seen in Figure 5 and Table
3 when code 8 is generated; when the decompressor re-
ceives code 8 it has only just put code 7 in its string table
and code 8 is unknown to it. When an undefined code is
encountered, the decompressor can execute translation
because it knows this code’s string is an extension of the
prior string. The character to be put out first would be the
extension character of the prior string, which will be the
final character of the current string, which was the final
character of the prior string, which was the most recently
translated character. With these complications remedied,
the algorithm is as follows:

Decompression: First input code — CODE —OLDcode;
with CODE =code(K), K—output;
K—FINchar;

Next Code: Next input code — CODE —INcode;
If no new code: EXIT
If CODE not defined (special case):
FINchar —output;
0LDcode — CODE;
code(OLDcode, FINchar)—INcode;
Next Symbol: |F CODE =code(wK): K—stack,

code(w) —CODE;
Go to Next Symbol;
If CODE =code(K): K—output;
' K—FINchar,
Do while stack not empty:
Stack top —output; POP stack;

OLDcode, K—string table;

INcode —OLDcode;

Go to Next Code;

Note that the string table for decompression is accessed
directly by code value, so no hashing is needed. The basic
next-symbol step is a simple RAM lookup that produces
one output character. In normal implementations, the
final single-character code translation does not require a
RAM read but is concurrent with a RAM write cycle. Asa
result, it is reasonably easy to achieve an implementation
that consistently produces one output character per clock
cycle.

Implementation. The principal implementation deci-
sion is choosing the hashing strategy for the compression
device. As with any hashing system, the load factor in the
table affects search lengths. LZW usually uses 12-bit codes
and therefore requires up to 4096 table locations. Using an
8K RAM for the table gives a maximum load factor of 0.5,
which produces short average search lengths. Further, a
few entries can be lost from the table with only mild
degradation of the compression ratio, so codes with long
searches can be forgotten. A typical implementation
averages about 1.5 RAM accesses per input symbol as a
compromise between speed, RAM size, and compression

June 1984

efficiency loss. Each output code also requires about the
same time, counting the write cycle for the extended string.

The RAM access time principally determines the clock
cycle. Every cycle involves a RAM read (or write) followed
by RAM output comparison and the setup of a new ad-
dress for a new cycle. For high-performance devices a
50-ns RAM might be used, yielding a cycle time of perhaps
65 to 75 ns. Of course, slower logic can be used for lower
data rates. The logic structures for decompression are
essentially the same as those for compression, so the clock
rate will be the same.

Typical hardware structures for compression and de-
compression are shown in Figures 7 and 8, respectively.
The basic flow diagrams are not explained here, but are
shown to indicate the general character and extent of the
data-path logic. The accompanying control logic is a sim-
ple state machine with a half-dozen states in each case. The
hardware and software implementations of LZW are
Sperry proprietary.

Compression performance depends on the compression
ratio of the data being processed. As a rule of thumb, it
will take 1.5 cycles per input character and per output
code, depending on the hash system used. For eight-bit
characters and 12-bit symbols:

character rate (1.5 + (compression ratio) ~!) = cycle rate

Consequently, if a clock rate of 15 MHz is used at two-to-
one compression, input data can be processed at 7.5M
characters per second. Often more critical, however, is the
output transfer rate, since this often feeds a real-time
device such as a disk.

output byte rate (1 + 1.5(compression ratio)) = cycle rate

To feed a 4M-bytes-per-second disk using a 15-MHz
clocked compressor, a compression ratio of only 1.83 can
be sustained; any higher compression ratio would starve
the output. To feed a 4M-bytes-per-second disk at a com-
pression ratio of three, a 45-ns clock cycle or a hash
strategy that gives an average search length of one cycle
per character would be required. Since those are tight con-
straints, this indicates the performance boundaries of the
system.

Note that decompression is substantially faster than
compression, so its performance is not normally a bottle-
neck.

Software implementation of LZW is possible but signif-
icantly slower. Compression speed is very sensitive to the
hash calculation time in the inner loop. Software hashing
is relatively slower and less effective than hardware
hashing, and generally needs to be hand-coded in machine
language. A typical tight coding will average around 40
memory cycles per character and code, so compression
speeds of 75K bytes per second are seen on a 1 MIPs
machine.

Algorithm variations. Several variations on the basic
LZW algorithm just described are possible. The mecha-
nism to reverse output strings could be built with a circular
buffer or straight RAM instead of a stack. The latter
would require the decompressor string table to contain a
length count for each string. Logically, this is easily ac-
complished but adds complexity.

17

18

The compression string table could be initialized to have
only the null string. In that case, a special code is necessary
for the first use of each single-character string. This ap-
proach improves compression if relatively few different
symbols occur in each message.

The length of codes used in compressed data can be
varied to improve compression early in the message. The
first codes contain less information because the string
table is relatively empty. With the table initialized to eight-
bit characters, the first 256 codes need only nine bits, the
next 512 codes need 10 bits, and so on. For example, a ten-
thousand character message at two-to-one compression
would see a seven-percent improvement in compression
ratio using increasing length codes. However, this ap-
proach significantly increases logic complexity in both the
compressor and decompressor.

INITIALIZATION
COUNTER

(7]
7]
w
o«
=
=]
<<
=
<<
=5

HASH
FUNCTION

CHARACTER
REGISTER

Figure 7. A compressor implementation.

CODE
COUNTER

The code assignment method could vary from the se-
quential assignment used in the preceding examples. One
interesting alternative is to use the (hash) address of the
string location in the compressor’s RAM. This saves com-
pressor memory width but requires the decompressor to
use the same hashing function to generate code values.
Decompression then becomes sensitive to compression im-
plementation techniques, which is a serious disadvantage.
This problem is especially hard for software decompres-
sion because it is usually difficult to duplicate a good hard-
ware hash function in software.

On the whole, the LZW algorithm as initially described,
with 12-bit codes, appears to be a widely suitable system;
other variations would appear only in special applications.

TherLzw algorithm described here solves several prob-
lems that hinder the use of compression in commercial

PRIOR CODE NEW CODE

At B o

CODE
COMEARE COUNTER

CODE NUMBER
REGISTER

PRIOR CODE

CHARACTER

RAM ADDRESS

CODE REGISTER 1
CODE REGISTER 2

A
I
|
|
t
|

FINAL
CHARACTER

Figure 8. A decompressor implementation.

COMPUTER

computer systems. It adapts to the type of data being pro-
cessed, so it needs no programmer guidance or preanalysis
of data. Its simplicity permits very high speed execution, as
appropriate to current disk and tape transfer rates. The
resulting compression—an expected two-to-three times in-
crease in data density in commercial computer systems—is
good enough to be competitive with other methods and, in
fact, compares very well in general because it exploits
several types of redundancies. Unfortunately, other
system-level problems inherent to the use of adaptive com-
pression may prevent its widespread use. These include the
unpredictability of compressed image size, the need for
character stream buffering, and some constraints on
minimum message length. %

Acknowledgments

Several members of the Sperry Research Center have
contributed to this data compression effort. Stanley Teeter
programmed several versions of the LZW algorithm and
collected the data reported in this article. Willard Eastman
and Martin Cohn worked on predecessor Lempel-Ziv im-
plementations that illustrated the value of this approach.
The efforts of Ted Bonn, in supporting and encouraging
this work, are particularly appreciated.

References

1. H. K. Reghbati,
Techniques,”’
71-76.

“An Overview of Data Compression
Computer, Vol. 14, No. 4, Apr. 1981, pp.

2. F. Rubin, ‘“Experiments in Text File Compression,’’
Comm. ACM, Vol. 19, No. 11, Nov. 1976, pp. 617-623.

3. M. Pechura, “File Archival Techniques Using Data Com-
pression,”” Comm. ACM, Vol. 25, No. 9, Sept. 1982, pp.
605-609.

4. J. A. Storer and T. G. Szymanki, ‘‘Data Compression via
Textual Substitution,’” J. ACM, Vol. 29, No. 4, Oct. 1982,
pp. 928-951.

5. J.Zivand A. Lempel, ‘‘A Universal Algorithm for Sequen-
tial Data Compression,”’ IEEE Trans. Information Theory,
Vol. IT-23, No. 3, May 1977, pp. 337-343.

6. J. Ziv and A. Lempel, ‘“‘Compression of Individual Se-
quences via Variable-Rate Coding,’’ IEEE Trans. Informa-
tion Theory, Vol. IT-24, No. 5, Sept. 1978, pp. 5306.

7. 'M. Rodeh, V. R. Pratt, and S. Even, ‘‘Linear Algorithm for
Data Compression via String Matching,”” J. ACM, Vol. 28,
No. 1, Jan. 1981, pp. 16-24.

Terry A. Welch is a senior manager for
Digital Equipment Corporation, now on
assignment in Austin, Texas, as DEC
liaison to MCC’s advanced computer ar-
chitecture program. Prior to joining DEC
in 1983, he was manager of computer ar-
chitecture research at the Sperry Research
Center, Sudbury, Massachusetts, for seven
years. Previously he taught at the Universi-
Z ﬁ ty of Texas at Austin and worked in com-
puter design at Honeywell in Waltham, Massachusetts.
His BS, MS, and PhD degrees were received from MIT in elec-
trical engineering. Welch is a senior member of IEEE and is active
in various IEEE-CS activities.

Questions about this article can be directed to the author at
MCC, 9430 Research Blvd., Austin, TX 78759.

SOFTWARE ENGINEERS

DELIVERING
THE ADVANTAGE

At McDonnell Douglas, tough assignments are the rule. And superior careers are the reward.

McDONNELL DOUGLAS
ASTRONAUTICS COMPANY represents
the highest tradition of success in real-time
defense systems development and tactical
missile programs. For software engineers,
this means exceptional responsibilities in
providing the Free World with the vital
advantage of superior capability. These
career areas reflectan environment where
the state-of-the-art is the starting point
forchallenge.

OPERATIONAL FLIGHT SOFTWARE.
Projects focus on embedded missile and
satellite applications. A minimum of 5
years of experience with real-time control
systems is required.

SHIP MISSILE COMMAND AND LAUNCH
SOFTWARE. Responsibilities involve
performance analysis and requirements
and verification requirements. At least5
years of experience with displays and

would be helpful.

science is necessary in either area.

and affordable pleasures. If you are

your professional objectives to:

Attention: Director of Electronics
Post Office Box 516

Department 62-BY-53

St. Louis, Missouri 63166

MCDONNELL DOUGLAS

An Equal Opportunity Employer
U.S. Citizenship Required

CORPORATION

operating systems is required. Familiarity
with Ada software design methodologies

A BS in electrical engineering or computer

These positions are accompanied by
excellent salaries and benefits and the
sparkling lifestyle of St. Louis, a city of
metropolitan excitement, community spirit

seeking the company with an unmatched

capacity for accelerating your career,
forward your resume and a statement on

MCDONNELL DOUGLAS CORPORATION

