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Dimensionality Reduction

< Large number of features may give rise to overfitting if the features
are not appropriate and 1f the employed distributions are not
correctly estimated.

< Moreover, large number of features affects the design of the
classifier, due to space / time complexity issues.

<& Combination of features can be used to confront the
“dimensionality” problem

< Appropriate approaches:
Y Principal component analysis

& Fisher linear discriminant, etc.
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Figure 3.4: The “training data” (black dots) were selected from a quadradic function
plus Gaussian noise, i.e., f(z) = ax® + bx + ¢ + € where p(e) ~ N(0,02). The 10th
degree polynomial shown fits the data perfectly, but we desire instead the second-order
function f(x), since it would lead to better predictions for new samples.
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Principal Component Analysis (PCA)

Employed to represent a set of n d-dimensional vectors via the use of a
unique, [-dimensional vector, where [<d.

The optimal 1-D representation of the samples, in the least squares sense, is
their projection onto a line that passes from the mean of the samples and is
in the direction of the eigenvector of the scatter matrix that corresponds to
the largest eigenvalue!

In the case of I-dimensions, the optimal representation of the samples is the
[-eigenvectors of the scatter matrix, that correspond to the / largest
eigenvalues.



S Principal Component Analysis (PCA)
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Fisher Linear Discriminant (FLD)

PCA defines the minimum number of components that represent the
samples.

This representation is in the least squares sense. It does not however
ouarantee 1ts appropriateness with respect to classification.

Ideally we’d like to reduce dimensionality under the constraint of
maximizing separability of patterns.

Pattern separability maximization can be achieved by increasing
intercluster distances and decreasing intracluster distances. These
distances are calculated via the use of intercluster scatter matrices and
intracluster scatter matrices, respectively.

FLD is based on such a transformation.
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Fisher Linear Discriminant (FLD)
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< 2-D FLD maximizes the criterion function
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FLD in Larger Dimensions

< In a c-class problem, FLD can reduce dimension from d to c-1.
Obviously, c<d . As before, we need to estimate matrix W for the
following transformation:

y=WTx

& Note that dimensions will be as:

Y x: [d x m] where # is the number of samples and 4 the dimension of
each sample (number of features)

& W: [d x c-1], where ¢ is the number of classes
S y: [c-1 x m]



FLD in Larger Dimensions

< We start by defining the «inter» and «intra» scatter matrices as
follows, for the 1nitial feature space x:

Si = Z(X_mi)(x_mi)T = Sp=).5
xeD; i=1

D; 1s the sample set of class i Sy 1s the interclass scatter matrix

C
T
Sp = n;(m; —m)(m; —m)
i=1
n; 1s the number of samples in class i Sz 1s the intraclass scatter matrix

< In the transformed (y) space, the above matrices become
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FLD in Larger Dimensions

< FLD derives the transformation matrix W that maximizes the following
criterion function. Note that by maximizing this function the interclass distance
decreases (by minimizing interclass matrix) and the intraclass distance

increases (by maximizing intraclass matrix).

) Wisw

(W)= Sw| ‘WT SWW‘

< Turns out that, the columns of optimal W are the eigenvectors that
correspond to the largest eigenvalues of

SpW; = 4;:Syyw;



Wrap-Up

< Bayesian Decision Theory
< Maximum Likelihood and Bayesian Estimation
< Nonparametric Techniques
& Parzen Windows
Y K-n Nearest Neighbor
< Linear Discriminant Functions
Y Perceptron
& Relaxation Procedures
L MSE
Y Multicategory Generalization
< Dimensionality Reduction
Y Principal component analysis

U Fisher linear discriminant



