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Linear Discriminant Functions

Goal: Formulate linear —with respect to feature vector x- discriminant
functions that define hyperplanes as decision surfaces.

Why? Simple form, straightforward implementation, optimal for Gaussian
pdfs.

How: Formulate the parameter (weights) estimation problem as an
optimization of a criterion (cost) function.

What is the criterion function? A real valued function of the weights
(parameters) that is amenable to minimization, e.g. probability of mis-
classification during training.

How hard is to accomplish? In the general case, it 1s hard to formulate a
linear classifier that minimizes error.

So what? Employ alternative criteria (simple functions of the weights) and
iterative optimization methods (e.g. gradient descent).
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Decision Surfaces

Weight vector, w, defines the orientation of the
decision hyperplane and the threshold weight, w,
defines its relative position with respect to the
origin.

g(x)=w'x+w, =0




QA Discriminant Functions and
N\ Decisfion Surfaces

If x; and x5 are both on the decision surface, then

w'x1 +wo = w'x2 + wo

w normal to any vector on the hyperplane,
hence normal to the hyperplane

wi(x; — x3) =0,




A The multi-class Case

Linear Machine: x inw;, if g(x)>gi(x)

Decision boundaries: Hi: g(x)=gi(x) 2> (W-w)x + (Wyw;) =0
- part of hyperplane normal to vector w;-w;

Distance of x from H;: (9(x)-gi(x)) /|| w-w{|
- differences in weight vectors play a role.

Convex decision regions.




Linearly Separable Classes:
Vectors and Solution Regions
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Optimization Procedures

» Task: Find a that satisfies the set of linear inequalities a’y, >0 for all
i=1,...,n.

» How an appropriate solution is found?

Y Define a criterion function, [(@), and minimize it to obtain @ as a solution
vectof.

Y Accordingly, we transform the exhaustive search problem to that of
minimizing a real-valued function.

» How is J(a) minimized?
& Select an initial point @, and compute [(a,).
Y Compute the derivative of [(a,): V](a,).

% Find the next point @, in the direction of steepest descent, -V J(a,),
using a step 7J(&), that 1s, the learning rate or the stepsize.



Steepest Descent Algorithm

Algorithm 1. Steepest Descent

1 begin initialize a, threshold 6, m(0)>0, k=0
2 do k € k+1

3 a € a—n((k)VJ(a)

J(a) 4 until n(k)VJ(a)[< O
5 return a
! 6 end a,., =a,—nVJ@a,)

Issues:

»>»How to choose criterion function?
>How to choose learning rate 7n(k)?
»Convergence in local/global minimum?

»Convergence rate/speed/smoothness?
»>»Termination criterion?

4 2"2 a3 - a




YR :
o :i Newton Descent Algorithm

Algorithm 2. Newton Descent

1 begin initialize a, threshold 0
2 a € a-H'VJ(a)

3 until |[H'VJ(a) < 6

4 return a

5 end A=A~ Hk_lv‘](ak)

H, = [82J(a)/6ai8aj]

a:ak

Red: Steepest Descent
Black: Newton Descent

Newton: greater improvement in each
step at the computational cost of the
inversion of the Hessian matrix A.




Perceptron Criterion

> Choices of the Criterion Function

G A first choice: No of erroneously classified training samples.
However: non-continuous function, hence non-differentiable.

& A better choice: The perceptron critrerion function:

t
J,@=2[-a'y)
Y<Y
where #f(a) is the set of training samples that are erroneously classified by a.

G If “/(a) is empty, then J,(@)=0. Given a’y<0 wheny erroneously classified,

In(a) is never negative and becomes zero when a is a solution vector.

& Geometric interpretation: I,(a) is proportional to the sum of the distances of

the erroneously classified samples from the decision boundary.
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Batch Perceptron Algorithm

& After differentiating: VJ (a)= @Jp = Z —y
’ 0a; | 15
Y Recursive formulation: a(k+1)=a(k)+nk) Z y
VY

where 7 is the set of erroneously classified samples by a;.

O Next weight vector (w.v.) estimated as the sum of the current wv. and a multiple

of the sum of the erroneously classified samples.

Algorithm 3. Batch Perceptron

1 begin initialize a, criterion €, m(0)>0, k=0

2 do k € ktl

3 a<a+ n(k)zye% y
4 until ‘n(k)zye% y‘ <0
5 return a

o end




ARNE Batch Perceptron Steps
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Fixed-Increment
Single-Sample Perceptron

» Instead of applying the weight vector a(k) to all samples and then
correcting it based on the 7 set of the erroneously classified samples, we

use the samples one at a time and update or not the weight vector based on
the classification result.

» Moreover, if we employ a constant step #(k), then we derive the
following algorithm:

Algorithm 4. Fixed-Increment Single-Sample Perceptron

1 begin initialize a, k=0

2 do k € (k+1) mod n

3 If y* is misclassified by a, then a € a + y*
4 until all patterns properly classified

5 return a

6 end

Circular order of samples (green signifies the erroneously classified training samples):

Yy Y;s W4 Y2 Ys 1 Y4
> VY Y yYyvyye=v Y1 ¥ 2 ¥



Convergence




Variable-Increment Perceptron
with Margin

» Use the samples one at a time and update the weight vector a(k) when
its inner product with y* is less than a preset threshold b: a(k)y*< b.

» Moreover, if we employ a variable step n(k), we get the following
algorithm:

Algorithm 5. Variable-Increment Perceptron w. Margin
1 begin initialize a, threshold 6, margin b, n(0), k=0

2 do k € (k+1) mod n

3 if a'y*<b, then a € a + n(k)y*
4 until a‘y*>b for all k

5 return a

6 end

m

Convergence Conditions: U(k ) >0, lim Z 77(k )
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Relaxation Procedures

> Criterion Function:

2
2y vl
where 7f(a) is the set of samples for which ay <.

J (a) =2 Z(aty_b)z

G If “/(a) is empty, then J,(a)=0. ] (@) can never become negative and is zero if
and only if a@’y>/ for all the training samples.

U Gradient Vector:

a'y—b
J, (a) = L}a} > =y

= |yl

bay

% Update Rule: a(k+1)=a(k)+n(k) )’ o
VY y




AN Batch Relaxation with Margin

Algorithm 6. Batch Relaxation with Margin

1 begin initialize a, margin b, n(0), k=0

2 do k € (k+1) mod n

3 =1}

4 =0

5 do j € j+1

6 if a'y*<b, then append y’ to 7
7 until j=n

8 aca+nh)) b”;ﬁ';yy

9 until 5@:{}
10 return a
11 end




2% 3‘«% _ , . .
S Single-Sample Relaxation with Margin

Algorithm 7. Single-Sample Relaxation with Margin
1 begin initialize a, margin b, n(0), k=0

2 do k € (k+1) mod n
3 if a'y*<b, then a<—a+77(k)myk

4  until aty*>b for all y*

5 return a

o end

At each step, weight vector a(k), is moved towards
the hyperplane a‘y*=b by a fraction, n(k), of its
distance, r(k), from that.

n(k)<1 -> underrelaxation
n(k)>1 -> overrelaxation
0<n(k)<2 for convergence




Minimum Square-Error — MSE

» Goal: Good performance in both cases, linearly separable and non-linearly
separable.

» How: Criterion that involves all patterns. Moreover,
Y Before: Find @ such as a’y>0 for each pattern y.,.
& Now: Find a such as a’y;=b; for each pattern y, (b; positive constants).

» Accordingly: Instead of solving a problem of linear inequalities, solve one of
linear equations.

> Notations:

—— — ——

Y b dy

; b a
1
Y .= Y2 b = ’ a. =
nxd : nx1 . dxl

Pattern Matrix yt Vector of positive b Vector of a,

| =" "] constants - "-|  weights = 0 -

» Formulation: Find a such as: Ya=b.



Minimum Square-Error — MSE

» Commonly n>d+ 1, number of patterns > dimensions = overdetermined
system, hence no exact solution.

» Therefore: Minimization of the square of the error vector length,
e=Ya-b:

» Formulation:

VJS (a) p— O p— YtYa — Ytb Normal Equations

» If Y'Y can be inverted,

a=(Y'Y)'Y'b

v
Pseudo-inverse




Widrow-Hoff
(Least-mean squares-LMS)

» J.(a) can be minimized via recursive algorithms that do not require matrix
inversions.

» Tangent vector: VJ (a)=2Y" (Ya — b)
> Basic recursive formulae: a(k+1)=a(k)+nk)Y’ (b — Ya(k))

» By employing one sample at a step, the Widrow-Hoff (LMS) algorithm is
derived:

AAySépLOpogc 8. Widrow-Hoff (LMS)
1 begin initialize a, b, xpiLtfpto 6, n(), k=0

2 do k € (k+1) mod n

3 a<a+ n(k)(bk — atyk>yk
1 wntil  [p(k)(b, —a'y" | <6
5 return a

6 end




Ho-Kashyap Method

» Perceptron and Relaxation procedures find separating Weight Vectors when
the samples are linearly separable, but do not converge for non-separable
classes. X; %

» Least-mean squares offers always a solution
vector (the one that minimizes ||Ya-bl|?) which is
not necessarily separating vector in the separable
case. —

» The Ho-Kashyap algorithm recursively solves the minimization problem:

minJ,(a,b) =[Ya-b[" sz b>0

» Algorithmically it achieves b not to converge to 0, by setting all the positive
components of the tangent vector V}, J; equal to zero.



RN Ho-Kashyap Algorithm
< yap Alg

Algorithm 9. Ho-Kashyap
1 begin initialize a, b, n()<1l, threshold b,;,, Kkupax

2 do k € (k+1) mod n

3 e <€ Ya-b

4 e” & (et|el)/2

5 b <€ b + 2n(k)e”

6 a ¢ (YY) 'Y'b

7 if Abs(e)< Dbpi, then return a, b and exit

8 until k= k.,

9 print “No solution found”
10 end




Multiple Classes
Kesler Structure

» Goal: Linear separation of multiple classes:

If y~aw,, then a,/y-a/y>0 forall j=2,...c

» The system of ¢-/ 1nequahtles can be described as:
The ¢d-D Welght vector @ classifies correctly all c-1/ cd—D patterns #;,,

Wizseees By (1 1]1]. >0 V ] = 2,.,,, where:

_al_ k2 Y Y

) a, -y 0 0

cdxl | n,= 0 Mz =Y s "y My = Kesler
. . : Structure

: 0

_aC_ B 0 a B 0 1 _—y_
Y |«

> Generally: an, >0 VvV j=i, with n,=




Multi-Class Perceptron Classification

» Lety,, ..., y, patterns from c classes, linearly separable. Let L, a linear machine
a,k),..., a.(k). We seek to formulate a series of linear machines L, ...,L,, ... that
converges to a separation (classification) machine L.

> Let y* the k-th sample that is amenable to correction (correct classification). If
y*~ w, then at least one j #i exists for which a/(k) y*<a/(k) y*

» L, correction rules specifies (perceptron with constant unit-step) :
_al (k )_ yk 1

a(k+l)=a(k)+nf;. where at(k)nf;. <0 with a(k)=| and n, =| ‘!
a, (k) -y |

a,(k+1)=a,(k)+y"
a].(k+1):aj(k)—yk
a(k+)=a, (k) [#i xou [#]

Therefore:




