

Pattern Recognition (Αναγνώριση Προτύπων)

Linear Discriminant
Functions
(Γραμμικές Συναρτήσεις
Διάκρισης)

Panos Trahanias

UNIVERSITY OF CRETE
DEPARTMENT of COMPUTER
SCIENCE

Linear Discriminant Functions

- \triangleright Goal: Formulate <u>linear</u>—with respect to feature vector x- discriminant functions that define <u>hyperplanes</u> as decision surfaces.
- ➤ Why? Simple form, straightforward implementation, optimal for Gaussian pdfs.
- ► How: Formulate the parameter (weights) estimation problem as an optimization of a <u>criterion (cost) function</u>.
- What is the criterion function? A real valued function of the weights (parameters) that is amenable to minimization, e.g. probability of misclassification during training.
- ➤ How hard is to accomplish? In the general case, it is hard to formulate a linear classifier that minimizes error.
- So what? Employ alternative criteria (simple functions of the weights) and iterative optimization methods (e.g. gradient descent).

Discriminant Functions and Decision Surfaces

$$\mathbf{x} = \mathbf{x}_p + r \frac{\mathbf{w}}{\|\mathbf{w}\|}, \text{ with } r = \frac{g(\mathbf{x})}{\|\mathbf{w}\|}$$

Weight vector, \mathbf{w} , defines the orientation of the decision hyperplane and the threshold weight, \mathbf{w}_0 , defines its relative position with respect to the origin.

Discriminant Functions and Decision Surfaces

If \mathbf{x}_1 and \mathbf{x}_2 are both on the decision surface, then

$$\mathbf{w}^t \mathbf{x}_1 + w_0 = \mathbf{w}^t \mathbf{x}_2 + w_0$$

$$\mathbf{w}^t(\mathbf{x}_1 - \mathbf{x}_2) = 0,$$

w normal to any vector on the hyperplane, hence normal to the hyperplane

$$g(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + w_0 = r \|\mathbf{w}\|, \qquad \qquad \mathbf{w} \neq \mathbf{x} + w_0 = \mathbf{w}^t \left(\mathbf{x}_{p} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{x}_{p} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{x}_{p} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{x}_{p} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0 = \mathbf{w}^t \left(\mathbf{w} + r \frac{\mathbf{w}}{\|\mathbf{w}$$

The multi-class Case

Linear Machine:

Decision boundaries:

Distance of **x** from H_{ii}:

Convex decision regions.

$$H_{I3}$$
 $\mathcal{R}_{_{3}}$
 $\omega_{_{3}}$
 $\omega_{_{2}}$
 $\mathcal{R}_{_{23}}$

$$\boldsymbol{x}$$
 in ω_i if $g_i(\boldsymbol{x}) > g_j(\boldsymbol{x})$

$$H_{ij}$$
: $g_i(\mathbf{x}) = g_j(\mathbf{x}) \rightarrow (\mathbf{w}_i - \mathbf{w}_j)^t \mathbf{x} + (\mathbf{w}_{i0} - \mathbf{w}_{j0}) = 0$ - part of hyperplane normal to vector $\mathbf{w}_i - \mathbf{w}_j$.

$$(g_i(\mathbf{x})-g_j(\mathbf{x}))/||\mathbf{w}_i-\mathbf{w}_j||$$

- differences in weight vectors play a role.

Linearly Separable Classes: Vectors and Solution Regions

Augmented Weight and Feature Vectors:

$$\mathbf{a} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ w_d \end{bmatrix} = \begin{bmatrix} w_0 \\ \mathbf{w} \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_d \end{bmatrix} = \begin{bmatrix} x_0 \\ \mathbf{x} \end{bmatrix}$$

$$H: g(y) = \mathbf{a}^T y = 0$$

Distance of \mathbf{y} from $\mathbf{H} : |\mathbf{a}^T \mathbf{y}| / ||\mathbf{a}||$

Normalization: replace all training samples from class ω_2 with their negatives, and find the <u>separating vectors</u> that satisfy the relation:

$$\boxed{\mathbf{a}^T \mathbf{y}_i > 0 \quad \forall i}$$

Optimization Procedures

- Task: Find \boldsymbol{a} that satisfies the set of linear inequalities $\boldsymbol{a}^t \boldsymbol{y}_i > 0$ for all i=1,...,n.
- ➤ How an appropriate solution is found?
 - \hookrightarrow Define a criterion function, J(a), and minimize it to obtain a as a solution vector.
 - Accordingly, we transform the exhaustive search problem to that of minimizing a real-valued function.
- \triangleright How is J(a) minimized?

 - \hookrightarrow Compute the derivative of $J(a_1)$: $\nabla J(a_1)$.
 - Find the next point a_2 in the direction of steepest descent, $-\nabla J(a_1)$, using a step $\eta(k)$, that is, the learning rate or the stepsize.

Steepest Descent Algorithm

Newton Descent Algorithm

Algorithm 2. Newton Descent

- 1 begin initialize a, threshold θ
- 2 $\mathbf{a} \leftarrow \mathbf{a} \mathbf{H}^{-1} \nabla \mathbf{J} (\mathbf{a})$
- 3 until $|\mathbf{H}^{-1}\nabla \mathbf{J}(\mathbf{a})| < \theta$
- 4 return a
- 5 **end**

$$\mathbf{a}_{k+1} = \mathbf{a}_k - \mathbf{H}_k^{-1} \nabla J(\mathbf{a}_k)$$

$$\mathbf{H}_{k} = \left[\partial^{2} J(\mathbf{a}) / \partial a_{i} \partial a_{j} \right]_{\mathbf{a} = \mathbf{a}_{k}}$$

Red: Steepest Descent Black: Newton Descent

Newton: greater improvement in each step at the computational cost of the inversion of the Hessian matrix *H*.

Perceptron Criterion

> Choices of the Criterion Function

- A first choice: No of erroneously classified training samples. However: non-continuous function, hence non-differentiable.
- A better choice: The perceptron critrerion function:

$$J_p(\mathbf{a}) = \sum_{\mathbf{y} \in \mathcal{Y}} \left(-\mathbf{a}^t \mathbf{y} \right)$$

where $\mathcal{Y}(a)$ is the set of training samples that are erroneously classified by a.

- Geometric interpretation: $J_{\underline{p}}(a)$ is proportional to the sum of the distances of the erroneously classified samples from the decision boundary.

Four Cost Functions

^{*} Αλλά θα μπορούσε να έχει μεγάλο υπολογιστικό κόστος

Batch Perceptron Algorithm

After differentiating:

$$\nabla J_p(\mathbf{a}) = \left| \frac{\partial J_p}{\partial a_i} \right| = \sum_{\mathbf{y} \in \mathbf{y}} -\mathbf{y}$$

Recursive formulation:

$$\mathbf{a}(k+1) = \mathbf{a}(k) + \eta(k) \sum_{y \in \mathcal{U}_k} \mathbf{y}$$

where \mathcal{Y}_k is the set of erroneously classified samples by \boldsymbol{a}_k .

Next weight vector (w.v.) estimated as the sum of the current w.v. and a multiple of the sum of the erroneously classified samples.

Algorithm 3. Batch Perceptron

- 1 begin initialize a, criterion θ , $\eta(0)>0$, k=0
- 2 **do** k **←** k+1
- $\mathbf{a} \leftarrow \mathbf{a} + \eta(k) \sum_{y \in \mathcal{Y}_k} \mathbf{y}$
- $4 \quad \text{until} \quad \left| \eta(k) \sum_{y \in \mathcal{U}_k} \mathbf{y} \right| < \theta$
- 5 return a
- 6 <u>end</u>

Batch Perceptron Steps

Fixed-Increment Single-Sample Perceptron

- Instead of applying the weight vector a(k) to all samples and then correcting it based on the \mathcal{Y}_k set of the erroneously classified samples, we use the samples <u>one at a time</u> and update or not the weight vector based on the classification result.
- Moreover, if we employ a constant step $\eta(k)$, then we derive the following algorithm:

```
Algorithm 4. Fixed-Increment Single-Sample Perceptron

1 begin initialize a, k=0

2 do k 	(k+1) mod n

3 If y is misclassified by a, then a 	a + y 4

4 until all patterns properly classified

5 return a

6 end
```

Circular order of samples (green signifies the erroneously classified training samples):

$$y_1$$
 y_2 y_3 y_4 y_1 y_2 y_3 y_4 y_1 y_2 y_3 y_4

$$y_1$$
 y_2 y_3 y_0 y_1 ... = y_2 y_1 y_3 y_2 y_3

Variable-Increment Perceptron with Margin

- \triangleright Use the samples <u>one at a time</u> and update the weight vector a(k) when its inner product with y^k is less than a preset threshold $b: \underline{a(k)}y^k < \underline{b}$.
- \triangleright Moreover, if we employ a <u>variable step $\eta(k)$ </u>, we get the following algorithm:

```
Algorithm 5. Variable-Increment Perceptron w. Margin
1 begin initialize a, threshold \theta, margin b, \eta(0), k=0
   \underline{\mathbf{do}} k \leftarrow (k+1) \mod n
   \underline{if} \ a^t y^k < b, \ \underline{then} \ a \leftarrow a + \eta(k) y^k
   until a^ty^k > b for all k
   return a
6 end
```

Convergence Conditions:
$$\eta(k) \ge 0$$
, $\lim_{m \to \infty} \sum_{k=1}^m \eta(k) = \infty$, $\lim_{m \to \infty} \frac{\sum_{k=1}^m \eta^2(k)}{\left(\sum_{k=1}^m \eta(k)\right)^2} = 0$

Relaxation Procedures

> Criterion Function:

$$J_r(\mathbf{a}) = \frac{1}{2} \sum_{\mathbf{y} \in \mathcal{Y}} \frac{\left(\mathbf{a}^t \mathbf{y} - b\right)^2}{\left\|\mathbf{y}\right\|^2}$$

where $\mathcal{Y}(a)$ is the set of samples for which $a^t y < b$.

If $\mathcal{Y}(a)$ is empty, then $J_r(a)=0$. $\underline{J_r(a)}$ can never become negative and is zero if and only if $\underline{a^t y} > b$ for all the training samples.

Stradient Vector:

$$\nabla J_r(\mathbf{a}) = \left[\frac{\partial J_r}{\partial a_i}\right] = \sum_{y \in \mathcal{U}} \frac{\mathbf{a}^t \mathbf{y} - b}{\|\mathbf{y}\|^2} \mathbf{y}$$

$$\mathbf{a}(k+1) = \mathbf{a}(k) + \eta(k) \sum_{y \in \mathcal{U}_k} \frac{b - \mathbf{a}^t \mathbf{y}}{\|\mathbf{y}\|^2} \mathbf{y}$$

Batch Relaxation with Margin

```
Algorithm 6. Batch Relaxation with Margin
1 begin initialize a, margin b, \eta(0), k=0
    \underline{do} k \leftarrow (k+1) \mod n
    \mathcal{Y}_k = \{ \}
4 j=0
5 <u>do</u> j ← j+1
6 if a^t y^k < b, then append y^j to \mathcal{Y}_k
   until j=n
8 \mathbf{a} \leftarrow \mathbf{a} + \eta(k) \sum_{y \in \mathcal{Y}} \frac{b - \mathbf{a}^t \mathbf{y}}{\|\mathbf{y}\|^2} \mathbf{y}
9 <u>until</u> \mathcal{I}_k = \{\}
       return a
11 end
```


Single-Sample Relaxation with Margin

Algorithm 7. Single-Sample Relaxation with Margin

- 1 begin initialize a, margin b, $\eta(0)$, k=0
- 2 **do** $k \leftarrow (k+1) \mod n$
- 3 <u>if</u> $\mathbf{a}^t \mathbf{y}^k < b$, then $\mathbf{a} \leftarrow \mathbf{a} + \eta(k) \frac{b \mathbf{a}^t \mathbf{y}^k}{\|\mathbf{y}^k\|^2} \mathbf{y}^k$
- 4 **until** $a^t y^k > b$ for all y^k
- 5 return a
- 6 end

At each step, weight vector $\mathbf{a}(k)$, is moved towards the hyperplane $\mathbf{a}^t \mathbf{y}^k = b$ by a fraction, $\eta(k)$, of its distance, r(k), from that.

$$\eta(k) < 1 \rightarrow$$
 underrelaxation $\eta(k) > 1 \rightarrow$ overrelaxation $0 < \eta(k) < 2$ for convergence

Minimum Square-Error – MSE

- ➤ Goal: Good performance in both cases, linearly separable and non-linearly separable.
- ➤ How: Criterion that involves <u>all</u> patterns. Moreover,
 - \Rightarrow Before: Find \boldsymbol{a} such as $\boldsymbol{a}^t\boldsymbol{y}_i > 0$ for each pattern \boldsymbol{y}_i .
 - \triangleright Now: Find \boldsymbol{a} such as $\boldsymbol{a}^t\boldsymbol{y}_i=b_i$ for each pattern \boldsymbol{y}_i . (b_i positive constants).
- Accordingly: Instead of solving a problem of linear inequalities, solve one of linear equations.
- > Notations:

 \triangleright Formulation: Find a such as: Ya=b.

Minimum Square-Error – MSE

- \triangleright Commonly n > d+1, number of patterns > dimensions \rightarrow overdetermined system, hence no exact solution.
- Therefore: Minimization of the square of the error vector length, e=Ya-h:

$$J_s(\mathbf{a}) = \|\mathbf{Y}\mathbf{a} - \mathbf{b}\|^2 = \sum_{i=1}^n (\mathbf{a}^t \mathbf{y}_i - b_i)^2$$

> Formulation:

$$\nabla J_{s}(\mathbf{a}) = \mathbf{0} \Longrightarrow \mathbf{Y}^{t} \mathbf{Y} \mathbf{a} = \mathbf{Y}^{t} \mathbf{b}$$

Normal Equations

 \triangleright If Y^tY can be inverted,

$$\mathbf{a} = \underbrace{\left(\mathbf{Y}^{t}\mathbf{Y}\right)^{-1}\mathbf{Y}^{t}}_{\text{Pseudo-inverse}} \mathbf{b}$$

Widrow-Hoff (Least-mean squares-LMS)

- \triangleright $J_s(a)$ can be minimized via recursive algorithms that do not require matrix inversions.
- > Tangent vector: $\nabla J_s(\mathbf{a}) = 2\mathbf{Y}^t(\mathbf{Y}\mathbf{a} \mathbf{b})$
- Basic recursive formulae: $\mathbf{a}(k+1) = \mathbf{a}(k) + \eta(k)\mathbf{Y}^{t}(\mathbf{b} \mathbf{Y}\mathbf{a}(k))$
- ➤ By employing one sample at a step, the Widrow-Hoff (LMS) algorithm is derived:

```
Aλγόριθμος 8. Widrow-Hoff (LMS)

1 begin initialize a, b, κριτήριο \theta, \eta(), k=0

2 do k \leftarrow (k+1) \mod n

3 \mathbf{a} \leftarrow \mathbf{a} + \eta(k) (b_k - \mathbf{a}^t \mathbf{y}^k) \mathbf{y}^k

4 until |\eta(k)(b_k - \mathbf{a}^t \mathbf{y}^k) \mathbf{y}^k| < \theta

5 return \mathbf{a}

6 end
```


Ho-Kashyap Method

Perceptron and Relaxation procedures find separating Weight Vectors when the samples are linearly separable, but do not converge for non-separable classes.

Least-mean squares offers always a solution vector (the one that minimizes ||Ya-b||²) which is not necessarily separating vector in the separable case.

The Ho-Kashyap algorithm recursively solves the minimization problem:

$$\min_{\mathbf{a},\mathbf{b}} J_{s}(\mathbf{a},\mathbf{b}) = \|\mathbf{Y}\mathbf{a} - \mathbf{b}\|^{2} \quad s.t. \quad \mathbf{b} > \mathbf{0}$$

Algorithmically it achieves b not to converge to 0, by setting all the positive components of the tangent vector $\nabla_b J_s$ equal to zero.

Ho-Kashyap Algorithm

```
Algorithm 9. Ho-Kashyap
1 begin initialize a, b, \eta()<1, threshold b_{min}, k_{max}
2
       do k \leftarrow (k+1) \mod n
3
            e ← Ya-b
          e^{+} \leftarrow (e + |e|) / 2
4
         \mathbf{b} \leftarrow \mathbf{b} + 2\eta(\mathbf{k})\mathbf{e}^+
5
         \mathbf{a} \leftarrow (\mathbf{Y}^{\mathsf{t}}\mathbf{Y})^{-1}\mathbf{Y}^{\mathsf{t}}\mathbf{b}
6
              <u>if</u> Abs(e) < b<sub>min</sub> <u>then</u> <u>return</u> a, b and <u>exit</u>
8
       until k= k<sub>max</sub>
       print "No solution found"
10 end
```


Multiple Classes Kesler Structure

➤ <u>Goal</u>: Linear separation of multiple classes:

If
$$\mathbf{y} \sim \omega_1$$
, then $\mathbf{a}_1^t \mathbf{y} - \mathbf{a}_i^t \mathbf{y} > 0$ for all $j = 2, ..., c$.

The system of c-l inequalities can be described as: The $c\hat{d} - D$ weight vector $\hat{\boldsymbol{\alpha}}$ classifies correctly all c-l $c\hat{d} - D$ patterns $\boldsymbol{\eta}_{12}$, $\boldsymbol{\eta}_{13}$,..., $\boldsymbol{\eta}_{1c}$: $\hat{\boldsymbol{\alpha}}^t \boldsymbol{\eta}_{1j} > 0 \quad \forall \quad j = 2,...,c$ where:

$$\hat{\boldsymbol{a}}_{c\hat{d}\times 1} = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_c \end{bmatrix} \qquad \boldsymbol{\eta}_{12} = \begin{bmatrix} \mathbf{y} \\ -\mathbf{y} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix} \qquad \boldsymbol{\eta}_{13} = \begin{bmatrix} \mathbf{y} \\ \mathbf{0} \\ -\mathbf{y} \\ \vdots \\ \mathbf{0} \end{bmatrix} \qquad \boldsymbol{,}\cdots\boldsymbol{,} \qquad \boldsymbol{\eta}_{1c} = \begin{bmatrix} \mathbf{y} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \\ -\mathbf{y} \end{bmatrix} \qquad \mathbf{Kesler}$$

Senerally: $\hat{\mathbf{\alpha}}^t \mathbf{\eta}_{ij} > 0 \quad \forall \quad j \neq i, \quad \text{with} \quad \mathbf{\eta}_{ij} = \begin{vmatrix} \vdots \\ \mathbf{y} \\ \vdots \\ -\mathbf{y} \\ \vdots \end{vmatrix} \leftarrow i$

Multi-Class Perceptron Classification

- \triangleright Let $y_1, ..., y_n$ patterns from c classes, linearly separable. Let L_k a linear machine $a_1(k), ..., a_c(k)$. We seek to formulate a series of linear machines $L_1, ..., L_k, ...$ that converges to a separation (classification) machine L.
- \triangleright Let y^k the k-th sample that is amenable to correction (correct classification). If $\mathbf{y}^k \sim \omega_i$, then at least one $j \neq i$ exists for which $\mathbf{a}_i^t(k) \mathbf{y}^k < \mathbf{a}_i^t(k) \mathbf{y}^k$.
- \triangleright L_k correction rules specifies (perceptron with constant unit-step):

$$\boldsymbol{\alpha}(k+1) = \boldsymbol{\alpha}(k) + \boldsymbol{\eta}_{ij}^{k} \text{ where } \boldsymbol{\alpha}^{t}(k)\boldsymbol{\eta}_{ij}^{k} \leq 0 \text{ with } \boldsymbol{\alpha}(k) = \begin{bmatrix} \mathbf{a}_{1}(k) \\ \vdots \\ \mathbf{a}_{c}(k) \end{bmatrix} \text{ and } \boldsymbol{\eta}_{ij}^{k} = \begin{bmatrix} \vdots \\ \mathbf{y}^{k} \\ \vdots \\ -\mathbf{y}^{k} \end{bmatrix} \leftarrow i$$

Therefore:
$$\mathbf{a}_{i}(k+1) = \mathbf{a}_{i}(k) + \mathbf{y}^{k}$$
$$\mathbf{a}_{j}(k+1) = \mathbf{a}_{j}(k) - \mathbf{y}^{k}$$
$$\mathbf{a}_{l}(k+1) = \mathbf{a}_{l}(k) \quad l \neq i \quad \text{kat} \quad l \neq j$$