Pattern Recognition
(Avayvwpion MpoTunwv)

Linear Discriminant
Functions
(FpAMMIKEC ZUVAPTNOEIC
Aiakpionc)

Panos Trahanias

UNIVERSITY OF CRETE
DEPARTMENT of COMPUTER
SCIENCE

Linear Discriminant Functions

Goal: Formulate linear —with respect to feature vector x- discriminant
functions that define hyperplanes as decision surfaces.

Why? Simple form, straightforward implementation, optimal for Gaussian
pdfs.

How: Formulate the parameter (weights) estimation problem as an
optimization of a criterion (cost) function.

What is the criterion function? A real valued function of the weights
(parameters) that is amenable to minimization, e.g. probability of mis-
classification during training.

How hard is to accomplish? In the general case, it 1s hard to formulate a
linear classifier that minimizes error.

So what? Employ alternative criteria (simple functions of the weights) and
iterative optimization methods (e.g. gradient descent).

Discriminant Functions and

T
g(x) =W Xt W,

Weight vector Bias, threshold weight

glx)

output unit

Decision Surfaces

Weight vector, w, defines the orientation of the
decision hyperplane and the threshold weight, w,
defines its relative position with respect to the
origin.

g(x)=w'x+w, =0

QA Discriminant Functions and
N\ Decisfion Surfaces

If x; and x5 are both on the decision surface, then

w'x1 +wo = w'x2 + wo

w normal to any vector on the hyperplane,
hence normal to the hyperplane

wi(x; — x3) =0,

A The multi-class Case

Linear Machine: x inw;, if g(x)>gi(x)

Decision boundaries: Hi: g(x)=gi(x) 2> (W-w)x + (Wyw;) =0
- part of hyperplane normal to vector w;-w;

Distance of x from H;: (9(x)-gi(x)) /|| w-w{|
- differences in weight vectors play a role.

Convex decision regions.

Linearly Separable Classes:
Vectors and Solution Regions

Augmented Weight and o '
Feature Vectors: soution solution
region 2 region)2
W, 1
W X -
w X
0 0 ?
a= W2 = , y: x2 = ”__,-- Vi
w X Tepd ping |
S
| Wa | [Xa |
H: g(y)=a'y=0 a;
rg(y)=ay= :
. . T solution ‘ol\\j\\\
Distance of y fI'OIIlH - |a y HaH region
yi
Normalization: replace all training samples 3
from class w, with their negatives, and find pra a ai
the separating vectors that satisfy the T yi
relation: /
,//} ’!
!
!
!

T .
ay, >0 Vi a’y >0 Vi

Optimization Procedures

» Task: Find a that satisfies the set of linear inequalities a’y, >0 for all
i=1,...,n.

» How an appropriate solution is found?

Y Define a criterion function, [(@), and minimize it to obtain @ as a solution
vectof.

Y Accordingly, we transform the exhaustive search problem to that of
minimizing a real-valued function.

» How is J(a) minimized?
& Select an initial point @, and compute [(a,).
Y Compute the derivative of [(a,): V](a,).

% Find the next point @, in the direction of steepest descent, -V J(a,),
using a step 7J(&), that 1s, the learning rate or the stepsize.

Steepest Descent Algorithm

Algorithm 1. Steepest Descent

1 begin initialize a, threshold 6, m(0)>0, k=0
2 do k € k+1

3 a € a—n((k)VJ(a)

J(a) 4 until n(k)VJ(a)[< O
5 return a
! 6 end a,., =a,—nVJ@a,)

Issues:

»>»How to choose criterion function?
>How to choose learning rate 7n(k)?
»Convergence in local/global minimum?

»Convergence rate/speed/smoothness?
»>»Termination criterion?

4 2"2 a3 - a

YR :
o :i Newton Descent Algorithm

Algorithm 2. Newton Descent

1 begin initialize a, threshold 0
2 a € a-H'VJ(a)

3 until |[H'VJ(a) < 6

4 return a

5 end A=A~ Hk_lv‘](ak)

H, = [82J(a)/6ai8aj]

a:ak

Red: Steepest Descent
Black: Newton Descent

Newton: greater improvement in each
step at the computational cost of the
inversion of the Hessian matrix A.

Perceptron Criterion

> Choices of the Criterion Function

G A first choice: No of erroneously classified training samples.
However: non-continuous function, hence non-differentiable.

& A better choice: The perceptron critrerion function:

t
J,@=2[-a'y)
Y<Y
where #f(a) is the set of training samples that are erroneously classified by a.

G If “/(a) is empty, then J,(@)=0. Given a’y<0 wheny erroneously classified,

In(a) is never negative and becomes zero when a is a solution vector.

& Geometric interpretation: I,(a) is proportional to the sum of the distances of

the erroneously classified samples from the decision boundary.

!“u :\,' ' 7
S Four Cost Functions

Perceptron
Criterion

No of
erroneous
classifications

o

= S RN P
R eV
R T S vy
SRR
R e s

- - _ Jp - Z (_ aty)
-

Yy

Good!

solution
region

TSE with

Total square .
margin

error (TSE)

w-lylyo]

235 W

Yy

Beﬁerﬂe

0

“ Be’sf%—

* ANa Oa pmopovoe va £xel peyalo vIIoAOY10TIKO KOOTOG

Batch Perceptron Algorithm

& After differentiating: VJ (a)= @Jp = Z —y
’ 0a; | 15
Y Recursive formulation: a(k+1)=a(k)+nk) Z y
VY

where 7 is the set of erroneously classified samples by a;.

O Next weight vector (w.v.) estimated as the sum of the current wv. and a multiple

of the sum of the erroneously classified samples.

Algorithm 3. Batch Perceptron

1 begin initialize a, criterion €, m(0)>0, k=0

2 do k € ktl

3 a<a+ n(k)zye% y
4 until ‘n(k)zye% y‘ <0
5 return a

o end

ARNE Batch Perceptron Steps

all)=0

Surface of Cos
Function

(also known as Error
Surface)

Base of error
surface

0 - - 2
solution Y 3 aj
a, 5 region

44

Fixed-Increment
Single-Sample Perceptron

» Instead of applying the weight vector a(k) to all samples and then
correcting it based on the 7 set of the erroneously classified samples, we

use the samples one at a time and update or not the weight vector based on
the classification result.

» Moreover, if we employ a constant step #(k), then we derive the
following algorithm:

Algorithm 4. Fixed-Increment Single-Sample Perceptron

1 begin initialize a, k=0

2 do k € (k+1) mod n

3 If y* is misclassified by a, then a € a + y*
4 until all patterns properly classified

5 return a

6 end

Circular order of samples (green signifies the erroneously classified training samples):

Yy Y;s W4 Y2 Ys 1 Y4
> VY Y yYyvyye=v Y1 ¥ 2 ¥

Convergence

Variable-Increment Perceptron
with Margin

» Use the samples one at a time and update the weight vector a(k) when
its inner product with y* is less than a preset threshold b: a(k)y*< b.

» Moreover, if we employ a variable step n(k), we get the following
algorithm:

Algorithm 5. Variable-Increment Perceptron w. Margin
1 begin initialize a, threshold 6, margin b, n(0), k=0

2 do k € (k+1) mod n

3 if a'y*<b, then a € a + n(k)y*
4 until a‘y*>b for all k

5 return a

6 end

m

Convergence Conditions: U(k) >0, lim Z 77(k)

k=1

N
3
8
I
8
3=
=
T@ M
S
—
-
N
~—
I
-

Relaxation Procedures

> Criterion Function:

2
2y vl
where 7f(a) is the set of samples for which ay <.

J (a) =2 Z(aty_b)z

G If “/(a) is empty, then J,(a)=0.] (@) can never become negative and is zero if
and only if a@’y>/ for all the training samples.

U Gradient Vector:

a'y—b
J, (a) = L}a} > =y

= |yl

bay

% Update Rule: a(k+1)=a(k)+n(k))’ o
VY y

AN Batch Relaxation with Margin

Algorithm 6. Batch Relaxation with Margin

1 begin initialize a, margin b, n(0), k=0

2 do k € (k+1) mod n

3 =1}

4 =0

5 do j € j+1

6 if a'y*<b, then append y’ to 7
7 until j=n

8 aca+nh)) b”;ﬁ';yy

9 until 5@:{}
10 return a
11 end

2% 3‘«% _ , . .
S Single-Sample Relaxation with Margin

Algorithm 7. Single-Sample Relaxation with Margin
1 begin initialize a, margin b, n(0), k=0

2 do k € (k+1) mod n
3 if a'y*<b, then a<—a+77(k)myk

4 until aty*>b for all y*

5 return a

o end

At each step, weight vector a(k), is moved towards
the hyperplane a‘y*=b by a fraction, n(k), of its
distance, r(k), from that.

n(k)<1 -> underrelaxation
n(k)>1 -> overrelaxation
0<n(k)<2 for convergence

Minimum Square-Error — MSE

» Goal: Good performance in both cases, linearly separable and non-linearly
separable.

» How: Criterion that involves all patterns. Moreover,
Y Before: Find @ such as a’y>0 for each pattern y.,.
& Now: Find a such as a’y;=b; for each pattern y, (b; positive constants).

» Accordingly: Instead of solving a problem of linear inequalities, solve one of
linear equations.

> Notations:

—— — ——

Y b dy

; b a
1
Y .= Y2 b = ’ a. =
nxd : nx1 . dxl

Pattern Matrix yt Vector of positive b Vector of a,

| =" "] constants - "-| weights = 0 -

» Formulation: Find a such as: Ya=b.

Minimum Square-Error — MSE

» Commonly n>d+ 1, number of patterns > dimensions = overdetermined
system, hence no exact solution.

» Therefore: Minimization of the square of the error vector length,
e=Ya-b:

» Formulation:

VJS (a) p— O p— YtYa — Ytb Normal Equations

» If Y'Y can be inverted,

a=(Y'Y)'Y'b

v
Pseudo-inverse

Widrow-Hoff
(Least-mean squares-LMS)

» J.(a) can be minimized via recursive algorithms that do not require matrix
inversions.

» Tangent vector: VJ (a)=2Y" (Ya — b)
> Basic recursive formulae: a(k+1)=a(k)+nk)Y’ (b — Ya(k))

» By employing one sample at a step, the Widrow-Hoff (LMS) algorithm is
derived:

AAySépLOpogc 8. Widrow-Hoff (LMS)
1 begin initialize a, b, xpiLtfpto 6, n(), k=0

2 do k € (k+1) mod n

3 a<a+ n(k)(bk — atyk>yk
1 wntil [p(k)(b, —a'y" | <6
5 return a

6 end

Ho-Kashyap Method

» Perceptron and Relaxation procedures find separating Weight Vectors when
the samples are linearly separable, but do not converge for non-separable
classes. X; %

» Least-mean squares offers always a solution
vector (the one that minimizes ||Ya-bl|?) which is
not necessarily separating vector in the separable
case. —

» The Ho-Kashyap algorithm recursively solves the minimization problem:

minJ,(a,b) =[Ya-b[" sz b>0

» Algorithmically it achieves b not to converge to 0, by setting all the positive
components of the tangent vector V}, J; equal to zero.

RN Ho-Kashyap Algorithm
< yap Alg

Algorithm 9. Ho-Kashyap
1 begin initialize a, b, n()<1l, threshold b,;,, Kkupax

2 do k € (k+1) mod n

3 e <€ Ya-b

4 e” & (et|el)/2

5 b <€ b + 2n(k)e”

6 a ¢ (YY) 'Y'b

7 if Abs(e)< Dbpi, then return a, b and exit

8 until k= k.,

9 print “No solution found”
10 end

Multiple Classes
Kesler Structure

» Goal: Linear separation of multiple classes:

If y~aw,, then a,/y-a/y>0 forall j=2,...c

» The system of ¢-/ 1nequahtles can be described as:
The ¢d-D Welght vector @ classifies correctly all c-1/ cd—D patterns #;,,

Wizseees By (1 1]1]. >0 V] = 2,.,,, where:

al k2 Y Y

) a, -y 0 0

cdxl | n,= 0 Mz =Y s "y My = Kesler
. . : Structure

: 0

aC B 0 a B 0 1 _—y_
Y |«

> Generally: an, >0 VvV j=i, with n,=

Multi-Class Perceptron Classification

» Lety,, ..., y, patterns from c classes, linearly separable. Let L, a linear machine
a,k),..., a.(k). We seek to formulate a series of linear machines L, ...,L,, ... that
converges to a separation (classification) machine L.

> Let y* the k-th sample that is amenable to correction (correct classification). If
y*~ w, then at least one j #i exists for which a/(k) y*<a/(k) y*

» L, correction rules specifies (perceptron with constant unit-step) :
al (k) yk 1

a(k+l)=a(k)+nf;. where at(k)nf;. <0 with a(k)=| and n, =| ‘!
a, (k) -y |

a,(k+1)=a,(k)+y"
a].(k+1):aj(k)—yk
a(k+)=a, (k) [#i xou [#]

Therefore:

