
Pattern Recognition

(Αναγνώριση Προτύπων)

Nonparametric Techniques

(Μη-Παραμετρικές Τεχνικές)

Panos Trahanias

UNIVERSITY OF CRETE

DEPARTMENT of COMPUTER

SCIENCE

Non-Parametric Techniques

 Issues in Parametric Techniques:
 Often the shape of the distribution is not known.
 In practice, many distributions are multimodal (contain

more than one modes), whereas most parametric
models are unimodal.

 Approximation of multimodal distributions as a product
of unimodal ones is not appropriate.

 Non-parametric techniques: Estimation of distribution function from
scratch.
 Estimation of pdf’s p(x/ωi) from the data via

generalization of the multi-dimensional histogram.
 Direct Estimation of the posterior probabilities P(ωi /x)

and the discriminant functions.

Density (Distribution) Estimation

 Based on the fact that the probability of sample x is found within
area R results from

 The above integral can be approximated
either by the product of p(x) times the area
R, or by the number of samples that are
found within R

x*

R

P~k/n

p(x*)

V: Area R. In one-dimensional case, V= length of R

k: Number of samples within R

n: Total number of samples

~

R

dpRPP
x

xxx)(

nkVpdpP
R

/*)()(

xxx
x

x*

R

P

p(x*|w2)

For k/n to be a good estimate of P,

and hence pn(x) a good estimate of p(x),

the following should hold:

In order to estimate the density at x, we choose a series of areas R1, R2,…,Rn,

that contain x, whereby Ri is used for i samples. Let Vn the volume of Rn, kn the number of samples within the n-th area, and pn(x) the n-th

estimation of p(x). Then,

Density (Distribution) Estimation

0lim

lim

0lim

nk

k

V

n
n

n
n

n
n

)()(xx p
V

nk
p

n
n

n
n

 There are two ways to create series of areas Ri for pn(x) to converge
to p(x):

 The volume of an initial area is reduced by defining a

sequence of volumes Vn as functions of n, e.g.

 Density estimation via the Parzen Windows
method

 We define kn as a function of n, hence Vn

increases until it contains kn samples. e.g.

 Density estimation via the kn-Nearest

Neighbor method

Density (Distribution) Estimation

nVVn /1

nkn

Two Approaches

Parzen Windows

 Method based on finding the number of samples within a given area,
where the area shrinks as the number of samples grows larger.

 The number of samples within the area is computed via the use of a
“window function”, the Parzen Window.

Window function Area/width of function
Volume of function, Vn=(hn)

d

1/2

1/2

1/2

(x)

No of samples within Rn,

Rn with center x and width hn

n

i n

i

n
n hVn

xp
1

11
)(

xx

 n

i
n

i
n h

k
xx

1

 Window (.) can be a general functional, not necessarily hypercube. For pn(x) to
be a valid p.d.f. for every n, it should hold

 pn(x) is a linear combination of (.), where every sample xi contributes to
the estimation of p(x) according to its distance from x. If (.) is a valid p.d.f.,
then pn(x) will converge to p(x) as n increases. A typical choice for (.) is –
Wow, you’ve made a great guess– the Gaussian Function!

 p(x) is computed as a superposition of Gaussians, where each Gaussian is
centered in the corresponding training sample. Parameter hn is the Gaussian
standard deviation!!!

Parzen Windows

 nn
n

n

i
in

n

i n

i

n
n hVnhVn

xp
x

xxx
xx

1

όπου
111

)(
11

 1και0
u

uuu d

Distribution to be

estimated

Training Samples

x1 x2 x3

Gaussians with centers the training samples

 = hn

Parzen Windows

Effect of Window Width hn

Parameter hn has an effect on both the window width and its amplitude:

 When hn is large (small), window becomes wide (narrow), window amplitude is small (large) and x must be far from

(close to) xi for function δn(x-xi) to change drastically compared to its value at δn(0).

 d
nn

nn
n hV

hV

 ,

1 x
x

Effect of Window Width hn

How the window width affects the estimation of p.d.f. p(x) :

 If hn is large, estimate pn(x) results as superposition of n “wide” functions centered at the training samples

and constitutes a smooth, “out-of-focus” estimation of p(x), with low resolution.

 If hn is small, pn(x) results as superposition of n “narrow” functions, i.e. “erratic or noisy” estimation of p(x).

Hence

Convergence Properties of pn(x)

 Mean value of random variable pn(x):
 is the

convolution of p(x) with the window function, hence it is a blurred version of
p(x).

 It holds,

 Variance of random variable pn(x):

 Accordingly, we have small variance for large Vn! In the limit ninf, we may
have Vn approach 0 and variance will also approach 0, given that nVninf.

 Valid choices:

Hence

 vvvxxx dppEp nnn

 xxvxvx pp
nnVn

n

οπότε
0

n

n
n

nnn
n nV

p
p

n
dp

hVnV
p

x
xvv

vx
x

sup111
var 22

nVVnVV nn lnή 11

Parzen Windows Examples

As n approaches infinity, estimation becomes accurate,

regardless of the window width.

 2

1

2

2

1

;
11

)(

u

n

i n

i

n
n

eu

h

xx

hn
xp

Parzen Windows Examples

 2

1
2

2

1

;
11

)(

uu

u

xx

T

e

hhn
xp

n

i n

i

n
n

As n approaches infinity, estimation becomes

accurate, regardless of the window width.

Parzen Windows Examples

Parzen Windows for Pattern
Classification

 Estimation of likelihood p(x|ωi) from training data via the Parzen windows
approach, and use of Bayes rule for classification, e.g. computation of posterior
probabilities and classification based on largest posterior probability.

 Pros: No need for problem specific assumptions, only the existence of training
data set!

 Cons: Requires (many)d data so that estimate converges to actual distribution.
 Moreover, as the dimension increases, the requirement for

(many)d data becomes ((many)many (n))n !!!! Curse of
dimensionality !

 The only way to overcome the above is the prior knowledge about
“good” training data!

 The training error can become arbitrarily small (even zero), by choosing small
windows! Still this is not desirable, since it’ll result in overfitting and it’ll
reduce performance in the classification of test data.

Very small window

very small/detailed separation in the

feature space, not desirable!

Larger window Larger training error, but better generalization

performance!

Desirable property.

In practice we’re looking at small windows in areas with many (dense) training samples, and large windows in areas with little

(sparse) training samples! How can this be accomplished…?

Parzen Windows for Pattern
Classification

d-dimensional input vector x

wjk

aji

k=1,2,…,d

 Input: {xk; k=1,…,d} d nodes, each corresponds to a feature.

 wjk: weights that link k–th input node with j–th node of

hidden layer (pattern node).

 Hidden layer: n nodes, each corresponds to a pattern, i.e.

training sample, j=1,2,…,n.

 Output layer: c nodes, each represents a class.

 aji: weights that link j–th hidden node with i–th output

node, i=1,2,…,c

Fully connected

Sparsely connected

Probabilistic Neural Networks (PNN)

d-dimensional input vector x

wjk

aji

k=1,2,…,d

 Training

j-th training sample (pattern) is normalized to unit length.

 Given as input (input nodes).

 Weights wjk set as wjk=xjk.

 A unique link with weight aji=1 is established from the j-th hidden

node to the output node that corresponds to the (known) class of xj.

PNN-Training

j=0, aji=0 for j=1,…,n; i=1,…,c

aji 1

PNN-Classification

 Each pattern node gives rise to the inner product of the vector of its
weights with the normalized input x to compute netJ=wtx, and output
e[(netJ –1) /σ2].

 Each class node sums the results of the pattern nodes that are
connected to it. Accordingly, the activation of each class represents the
p.d.f. estimate with a Gaussian Parzen window with covariance matrix
σ2Id×d, where I is the identity matrix.

C

net1

netn

ajc

Activation Function

J

x1

xd

wjk

Width of Gaussian Parzen window

gigiaki

 21 Jnete

kn-Nearest Neighbor (ΚΝΝ)

 Window width: instead of choosing it as a function of the number of
training samples (), why not choosing it as a function of the
training data?

 Note: a large window is desirable in areas with small number of data,
whereas a small window is appropriate in dense (with data) areas!

 k-nearest neighbor estimation algorithm:
 Choose an initial area centered at x where p(x) is

estimated.
 Increase window until a predefined number of kn samples

falls inside the window. Those are the kn nearest
neighbors of x.

 Pdf (density) is estimated as

 Convergence conditions of pn(x):

nVVn /1

n

n

V

nk

0lim;lim

nkk n
n

n
n

KNN

If and assuming that pn(x) is a good estimate of p(x), then . Accordingly Vn is once more but this time the

initial area V1 is identified from the pdf p(x) of the training data and is not an arbitrary choice. Moreover, for each n, the size of area

Vn is a function of x, i.e. Vn= Vn(x).

nkn

)(1 xpnVn nV1

How to Choose kn

Note that as kn increases, estimation accuracy

increases…!

In classification problems, we usually tune kn (or hn for

Parzen windows), so that the classifier operates with the

lowest error for the validation test dataset.

KNN Classification

 KNN can be employed to estimate the posterior probabilities:
Actually, posterior probabilities in an area around x are calculated as
the ratio of samples within the area with class label ωi.
 n: total number of patterns from all classes
 ki: number of patterns from class i in the area around x

 k: total number of patterns from all classes in the area around x

k

k

p

p
P

V

nk
p

i
c

j
jn

in
in

i
in

1

),(

),(
)|(

),(

x

x
x

x

KNN Classification

 Classification of a pattern x,
 From the n training samples, the k nearest neighbors are

identified regardless of their class, (where k is odd for a
two-class problem).

 Let ki the number of samples from class i,

 Classify x to the class with the largest ki !

kk
i i

Nearest Neighbor Classifier

 The simplest KNN classifier is for k=1! In this case x assumes the class
of its nearest neighbor! Is this a good classifier…?

 ΝΝ classifier partitions the feature space as a

Voronoi tessellation, where each cell assumes

the label of the class within it.

 Given infinite number of training samples, the

classification error probability is bounded by

twice the error of the Bayesian classifier (valid

for small error probabilities).

Error Rates

NN Classifier K-NN Classifier

Computational Issues

 Partial distances
 Use a subset r of d dimensions, to compute the distance

of the unknown pattern from the training samples:

 Search trees
 Establish “search trees” where training samples are

selectively linked so that, for the classification of a new
pattern, distance computation is required only to some
entry/root patterns and the patterns linked to them.

 Editing, pruning, or condensing
 Prune patterns that are surrounded from patterns of the

same class.
1. Compute the Voronoi diagram of the training patterns
2. For each pattern, if any of its neighbors is not of the same

class, mark it.
3. Prune non-marked patterns and compute the revised

Voronoi diagram

2/1

1

2

r

k
kkr baD ba,

Metrics and ΚΝΝ Classification

 Properties:
 Nonegativity:
 reflexivity:
 symmetry:
 triangle inequality:

 Euclidean Distance:

 Minkowski Metric:

 Manhatan Distance:

 Chess-board Distance:
Distance 1 from the center via the use of each

one of the metrics Lp.

 0ba,D
 baba, iff0D
 abba, ,DD

 ca,cbba, DDD ,

2/1

1

2
2

d

k
kk baL ba,

pd

k

p

kkp baL
/1

1

ba,

d

k
kk baL

1
1 ba,

 kk
dk

baL

,...,1

maxba,

Metrics and ΚΝΝ Classification

When the pattern space is transformed after multiplying

each feature by a constant, distances in the transformed

space may vary significantly from the initial ones.

Evidently, this effects the performance of the ΚΝΝ

classifier.

It is of utmost importance to employ metrics that are invariant

under basic transformations, such as translation (shift), scaling,

rotation, line thickness, shear. Example case: optical character

recognition – OCR.

Euclidean distance between 5 and a translated 5 by s pixels. For translations larger

than 1 pixel, distance between the initial 5 and translated 5 is larger than the

distance between the initial 5 and 8, and hence NN classifier that employs Euclidean

distance will classify erroneously.

Tangent Distance

 Let r transformations, αi.

 Let x’ a pattern.

 Transformed pattern, Fi(x’;αi).

 Tangent vector: TVi=Fi(x’;αi)-x’.

 Tangent matrix: Τdxr=[TV1,..., TVr].

 Tangent space: space defined by the r linearly independent tangent vectors TVi that pass

from x’. Forms a linear approximation of the space of transformed x’.

 Tangent distance:

 Actually, it is Euclidean distance of x from the tangent space of x’

 xΤwxxx
w

 min,tanD

Tangent Distance

Tangent Distance

Reduced Coulomb Energy (RCE) Networks

 An RCE network, during training tunes the window width around each pattern according to its distance from the nearest pattern in a

different class.

 During training, each pattern initiates a new circle and circle radii are adapted

so that they do not contain patterns of different classes.

 Black circles represent class 1, pink circles class 2, whereas dark red areas

represent ambiguous regions where no classification decision can be made.

Reduced Coulomb Energy (RCE) Networks

	Slide 1
	Non-Parametric Techniques
	Density (Distribution) Estimation
	Density (Distribution) Estimation
	Density (Distribution) Estimation
	Two Approaches
	Parzen Windows
	Parzen Windows
	Parzen Windows
	Effect of Window Width hn
	Effect of Window Width hn
	Convergence Properties of pn(x)
	Parzen Windows Examples
	Parzen Windows Examples
	Parzen Windows Examples
	Parzen Windows for Pattern Classification
	Parzen Windows for Pattern Classification
	Probabilistic Neural Networks (PNN)
	PNN-Training
	PNN-Classification
	kn-Nearest Neighbor (ΚΝΝ)
	KNN
	How to Choose kn
	KNN Classification
	KNN Classification
	Nearest Neighbor Classifier
	Error Rates
	Computational Issues
	Metrics and ΚΝΝ Classification
	Metrics and ΚΝΝ Classification
	Tangent Distance
	Tangent Distance
	Tangent Distance
	Reduced Coulomb Energy (RCE) Networks
	Reduced Coulomb Energy (RCE) Networks

