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Non-Parametric Techniques

 Issues in Parametric Techniques:
 Often the shape of the distribution is not known.
 In practice, many distributions are multimodal (contain 

more than one modes), whereas most parametric 
models are unimodal.

 Approximation of multimodal distributions as a product 
of unimodal ones is not appropriate.

 Non-parametric techniques: Estimation of distribution function from 
scratch.
 Estimation of pdf’s p(x/ωi) from the data via 

generalization of the multi-dimensional histogram.
 Direct Estimation of the posterior probabilities P(ωi /x) 

and the discriminant functions.



Density (Distribution) Estimation

 Based on the fact that the probability of sample  x  is found within 
area R results from 

 The above integral can be approximated
either by the product of p(x) times the area
R, or by the number of samples that are
found within R 
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P~k/n

p(x*)

V: Area R. In one-dimensional case, V= length of R

k: Number of samples within R

n: Total number of samples
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For k/n to be a good estimate of P, 

and hence pn(x) a good estimate of p(x), 

the following should hold:

In order to estimate the density at x, we choose a series of areas R1, R2,…,Rn, 

that contain x, whereby Ri is used for i samples.  Let Vn the volume of Rn, kn the number of samples within the n-th area, and pn(x) the n-th 

estimation of p(x).  Then,

Density (Distribution) Estimation
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 There are two ways to create series of areas  Ri for pn(x) to converge 
to p(x):

 The volume of an initial area is reduced by defining a 

sequence of volumes Vn as functions of n, e.g.

 Density estimation via the Parzen Windows 
method

 We define kn as a function of n,                  hence Vn  

increases until it contains kn samples. e.g.

         Density estimation via the kn-Nearest 

Neighbor method

Density (Distribution) Estimation
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Two Approaches



Parzen Windows

 Method based on finding the number of samples within a given area, 
where the area shrinks as the number of samples grows larger.

 The number of samples within the area is computed via the use of a 
“window function”, the Parzen Window.

Window function Area/width of function
Volume of function, Vn=(hn)
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Rn with center x and width hn
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 Window (.) can be a general functional, not necessarily hypercube. For pn(x) to 
be a valid p.d.f. for every n, it should hold

 pn(x)   is a linear combination of (.),    where every sample xi   contributes to 
the estimation of p(x) according to its distance from x.  If (.) is a valid p.d.f., 
then pn(x) will converge to p(x) as n increases.          A typical choice for (.) is –
Wow, you’ve made a great guess– the Gaussian Function!

 p(x) is computed as a superposition of Gaussians, where each Gaussian is 
centered in the corresponding training sample. Parameter hn is the Gaussian 
standard deviation!!! 

Parzen Windows
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Distribution to be 

estimated

Training Samples

x1 x2 x3

Gaussians with centers the training samples

 = hn

Parzen Windows



Effect of Window Width hn

Parameter hn has an effect on both the window width and its amplitude:

   When hn is large (small), window becomes wide (narrow), window amplitude is small (large) and x must be far from 

(close to) xi  for function δn(x-xi) to change drastically compared to its value at δn(0).
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Effect of Window Width hn

How the window width affects the estimation of p.d.f. p(x) :

  If hn is large, estimate pn(x) results as superposition of n “wide” functions centered at the training samples 

and constitutes a smooth, “out-of-focus” estimation of p(x), with low resolution.

  If hn is small, pn(x) results as superposition of n “narrow” functions, i.e. “erratic or noisy” estimation of p(x).

Hence



Convergence Properties of pn(x)

 Mean value of random variable pn(x):          
            is the 

convolution of p(x) with the window function, hence it is a blurred version of 
p(x).  

 It holds,

 Variance of random variable pn(x):

 Accordingly, we have small variance for large Vn!  In the limit ninf, we may 
have Vn approach 0 and variance will also approach 0, given that nVninf. 

 Valid choices: 

Hence
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Parzen Windows Examples

As n approaches infinity, estimation becomes accurate, 

regardless of the window width.
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Parzen Windows Examples
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As n approaches infinity, estimation becomes 

accurate, regardless of the window width.

Parzen Windows Examples



Parzen Windows for Pattern 
Classification

 Estimation of likelihood p(x|ωi) from training data via the Parzen windows 
approach, and use of Bayes rule for classification, e.g. computation of posterior 
probabilities and classification based on largest posterior probability.

 Pros: No need for problem specific assumptions, only the existence of training 
data set!

 Cons: Requires (many)d data so that estimate converges to actual distribution.
 Moreover, as the dimension increases, the requirement for 

(many)d data becomes                ( (many)many (n) )n !!!!  Curse of 
dimensionality !

 The only way to overcome the above is the prior knowledge about 
“good” training data!

 The training error can become arbitrarily small (even zero), by choosing small 
windows!  Still this is not desirable, since it’ll result in overfitting and it’ll 
reduce performance in the classification of test data.



Very small window 

very small/detailed separation in the 

feature space, not desirable!

Larger window  Larger training error, but better generalization 

performance!

Desirable property.

In practice we’re looking at small windows in areas with many (dense) training samples, and large windows in areas with little 

(sparse) training samples!  How can this be accomplished…?

Parzen Windows for Pattern 
Classification



d-dimensional input vector x

wjk

aji

k=1,2,…,d


 Input:  {xk; k=1,…,d}  d nodes, each corresponds to a feature.


 wjk: weights that link k–th input node with j–th node of 

hidden layer (pattern node).


 Hidden layer: n nodes, each corresponds to a pattern, i.e. 

training sample, j=1,2,…,n.


 Output layer: c nodes, each represents a class.


 aji: weights that link j–th hidden node with i–th output 

node,  i=1,2,…,c

Fully connected

Sparsely connected

Probabilistic Neural Networks (PNN)



d-dimensional input vector x

wjk

aji

k=1,2,…,d

 Training 


j-th training sample (pattern) is normalized to unit length.


 Given as input (input nodes).


 Weights wjk set as wjk=xjk.


 A unique link with weight aji=1 is established from the j-th hidden 

node to the output node that corresponds to the (known) class of xj.

PNN-Training

j=0,  aji=0  for  j=1,…,n;  i=1,…,c

aji  1



PNN-Classification

 Each pattern node gives rise to the inner product of the vector of its 
weights with the normalized input x to compute netJ=wtx, and output 
e[(netJ –1) /σ2].

 Each class node sums the results of the pattern nodes that are 
connected to it. Accordingly, the activation of each class represents the 
p.d.f. estimate with a Gaussian Parzen window with covariance matrix 
σ2Id×d, where I is the identity matrix.

C

net1

netn

ajc

Activation Function

J

x1

xd

wjk

Width of Gaussian Parzen window

gigiaki

  21 Jnete



kn-Nearest Neighbor (ΚΝΝ)

 Window width: instead of choosing it as a function of the number of 
training samples (                  ), why not choosing it as a function of the 
training data?

 Note: a large window is desirable in areas with small number of data, 
whereas a small window is appropriate in dense (with data) areas!

 k-nearest neighbor estimation algorithm:
 Choose an initial area centered at x where  p(x) is 

estimated.
 Increase window until a predefined number of kn samples 

falls inside the window. Those are the kn  nearest 
neighbors of x.

 Pdf (density) is estimated as 

 Convergence conditions of pn(x):
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KNN

If               and assuming that pn(x) is a good estimate of p(x), then            .  Accordingly Vn is once more    but this time the 

initial area V1 is identified from the pdf p(x) of the training data and is not an arbitrary choice.  Moreover, for each n, the size of area 

Vn is a function of x, i.e. Vn= Vn(x).
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How to Choose kn

Note that as kn increases, estimation accuracy 

increases…!

In classification problems, we usually tune kn  (or hn for 

Parzen windows), so that the classifier operates with the 

lowest error for the validation test dataset.



KNN Classification

 KNN can be employed to estimate the posterior probabilities: 
Actually, posterior probabilities in an area around x are calculated as 
the ratio of samples within the area with class label ωi.
 n:  total number of patterns from all classes
 ki:  number of patterns from class i in the area around x

 k:  total number of patterns from all classes in the area around x
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KNN Classification

 Classification of a pattern  x,
 From the n training samples, the k nearest neighbors are 

identified regardless of their class, (where k is odd for a 
two-class problem). 

 Let ki  the number of samples from class  i,

 Classify x to the class with the largest ki !
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Nearest Neighbor Classifier

 The simplest KNN classifier is for  k=1!  In this case x assumes the class 
of its nearest neighbor!  Is this a good classifier…?

   ΝΝ classifier partitions the feature space as a 

Voronoi tessellation, where each cell assumes 

the label of the class within it.

  Given infinite number of training samples, the 

classification error probability is bounded by 

twice the error of the Bayesian classifier (valid 

for small error probabilities).



Error Rates

NN Classifier K-NN Classifier



Computational Issues

 Partial distances
 Use a subset r of d dimensions, to compute the distance 

of the unknown pattern from the training samples:

 Search trees
 Establish “search trees” where training samples are 

selectively linked so that, for the classification of a new 
pattern, distance computation is required only to some 
entry/root patterns and the patterns linked to them. 

 Editing, pruning, or condensing
 Prune patterns that are surrounded from patterns of the 

same class.
1. Compute the Voronoi diagram of the training patterns
2. For each pattern, if any of its neighbors is not of the same 

class, mark it.
3. Prune non-marked patterns and compute the revised 

Voronoi diagram 
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Metrics and ΚΝΝ Classification 

 Properties:
 Nonegativity: 
 reflexivity:
 symmetry:
 triangle inequality:

 Euclidean Distance:

 Minkowski Metric:

 Manhatan Distance:

 Chess-board Distance:
Distance 1 from the center via the use of each 

one of the metrics Lp.
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Metrics and ΚΝΝ Classification 

When the pattern space is transformed after multiplying 

each feature by a constant, distances in the transformed 

space may vary significantly from the initial ones.  

Evidently, this effects the performance of the ΚΝΝ 

classifier.

It is of utmost importance to employ metrics that are invariant 

under basic transformations, such as translation (shift), scaling, 

rotation, line thickness, shear.  Example case: optical character 

recognition – OCR.

Euclidean distance between 5 and a translated 5 by s pixels. For translations larger 

than 1 pixel, distance between the initial 5 and translated 5 is larger than the 

distance between the initial 5 and 8, and hence NN classifier that employs Euclidean 

distance will classify erroneously. 



Tangent Distance


 Let r  transformations, αi.

  Let x’  a pattern.

  Transformed pattern, Fi(x’;αi).

  Tangent vector: TVi=Fi(x’;αi)-x’.

  Tangent matrix: Τdxr=[TV1,..., TVr].


 Tangent space:  space defined by the r  linearly independent tangent vectors TVi  that pass 

from x’.  Forms a linear approximation of the space of transformed x’.

  Tangent distance: 

  Actually, it is Euclidean distance of x  from the tangent space of x’
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Tangent Distance



Tangent Distance



Reduced Coulomb Energy (RCE) Networks


 An RCE network, during training tunes the window width around each pattern according to its distance from the nearest pattern in a 

different class.

   During training, each pattern initiates a new circle and circle radii are adapted 

so that they do not contain patterns of different classes.

   Black circles represent class 1, pink circles class 2, whereas dark red areas 

represent ambiguous regions where no classification decision can be made. 



Reduced Coulomb Energy (RCE) Networks
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