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Parameter Estimation

> Bayesian classifier cannot be employed when the probability
density functions and prior probabilities are not known, I.e.
p(x/w,) & P(w)).

> Distributions can be estimated when appropriate data are
available = Hard Task!

> |f the distribution shape is known, e.g. normal/gaussian, but
not its parameters, e.g. mean and variance, then the problem
Is formulated as one of parameter estimation.




Parameter Estimation

> Two basic approaches:
a. Maximum Likelihood Estimation (Extipnon Méeyiotng ITiBavogpaveiag)
b. Bayesian Parameter Estimation (Extipnon noapapétpov kata Bayes)



Maximum Likelihood Estimation

> Assume that we take random samples from a given
distribution with unknown parameters.
Let us use vector @ to denote the set of
parameters.

> |If for example we know that the distribution is gaussian but we
do not know its mean and variance, then:

0=, X) =(tt, ..., thy, 0 ,...;05,c0v(x _,x );m,n =1,..d;m >n)
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MLE Task

> For each class, estimate vector @ using a training set
n={x,,...,x } thatincludes n independent samples (i.i.d):

A Likelihood of 8 with
pD"[0)= Hp(xk 0) respect of the sample set
= y

> Maximum Likelihood Estimation of @ corresponds to that
value that maximizes the above function.

> Intuitively, it corresponds to the value of 8 that
«agrees/interprets» in the best possible way with the
samples.
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FIGURE 3.1. The top graph shows sewveral training points in one dimension, known or
assumed to be drawn from a Gawssian of a particular variance, bul unknown mean.
Four of the infinite number of candidate source distributions are shown in dashed
lines. The middle figure shows the likelihood (@) as a function of the mean. If we
had a wvery large number of training points, this likelihood would be very narrow. The
value that maximizes the likelihood is marked #: it also maximizes the logarithm of
the likelihood—that is, the log-likelihood (@), shown at the bottom. Note that even
though they look similar, the likelihood p(T2&) is shown as a function of & whereas the
conditional density p(x|#) is shown as a function of x. Furthermore, as a function of &,
the likelihood p(T2)&) is not a probability density function and its area has no signifi-
cance, From: Richard O Dada, Peter E. Hart, and David G, Stork, Pattern Classification.
Copyright @ 2001 by John Wiley & Sons, Inc.

Likelihood Function



Log-Likelihood

> @ that maximizes the likelihood function, maximizes also its
log, that is more convenient to use:

/®)=1n p(D" |0)= > In p(x, |0

0@ that maximizes the above function can be obtained by
setting its derivative over @ equal to zero, and solving for 0.

0 W = argmax/(0)

0

Vel(e) = Zve In p(x, [0) =0
k=1



Log-Likelihood




Special Cases - Normal Distribution

> Normal distribution with unknown mean (i
O p(x | W) ~ N(B, 2)
in px, [0 == Inf2m) 2] (x, — x- )
Vo In p(x, [ =27 (x, —p)

O Maximum likelihoo;i estimator of u satisfies:
Zz_l(xk -p)=0
k=1

O Left multiplying by 2 we obtain:

l’i = z X, Accordingly, it is the arithmetic
mean of the training samples!



Special Cases - Normal Distribution

@ Normal distribution with unknown mean u and
variance oz
06 =(0,06,)=(u, o) | ,
[(0)=1nP(x, |0) = —Eln 276, —g(xk —-6,)’
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Bayesian Estimator

> |n contrast to MLE, where we assumed that the unknown
parameters have constant values, the Bayesian estimator
(BE) assumes that the unknown parameters are random
variables and follow an priori known p.d.f

> Therefore, BE estimates a distribution of the values of 8 and
not the values themselves. BE provides more information, but
IS often difficult to calculate.

> The existence of training data allows the conversion of prior
information to posterior p.d.f. = phenomenon of learning
(Bayesian learning) where each new observation refines the
posterior probability.




Bayesian Estimation

> Bayesian Learning for pattern classification problems.

O The computation of the posterior p.d.f. is the basis of Bayesian
classification.

O Goal: Computation of P(w, | x, D) given the set of training
samples D={D,,...,D_}, where the samples in the set D, correspond
to the class j, j=1,...,c.

O For each new, unclassified sample, x, the Bayes rule gives:

p(x|w,D)P(w,| D)

P(w, | x,D)= -
Y p(x|w,;,D)P(e,| D)
j=1



Bayesian Estimation

> \We assume that

O The priors P(w,) are known, thus P(w/D) = P(w)).

O Only the samples of the set D. hold information about the p.d.{.
p(x/w.,D.) = c independent problems of estimation of p(x/®,D,)
arise, which can also be written as p(x/D,).

P(co,. |X,Dl.): @P(wz)

> p(xlo,.D)P(@)

We want to estimate this
function (also written as

p(x/D))




General Methodology of Bayesian
Estimation

> For each class, we know the form of the p.d.f. p(x|6), but the
value of the parameter vector 8 is unknown.

> We have some initial knowledge of 8 in the form of a priori

p.d.f. p(9).
> For each class, we have a set D"={x,, ..., x } from n
statistically independent samples. Then:

p(x/ D)= p(x/0)p(6/D)d6

Key relationship: Connects the conditional p.d.f. p(x/D) with the posterior
p.d.f. p(6/D) of the parameter vector. It states that the_p(x/D) is a linear
combination of p(x/8) with weights p(6/D).

If p(6/D) has a steep unique maximum at 8 then: p(x/ D)~ p(x/07)



General Methodology of Bayesian
Estimation

0/ D)~ PD70)p(Y)
PO T (p/0) o) ao

> For the computation of p(6/D), we have:

> Due to the independence of the training samples, p(D/0)= Hp(xk /0)

k=1

> If p(D/8) is centered around 6* with a large peak at this point, and if
p(0*) is not O, then p(6/D) also has a large peak at 8*, and therefore

will be
p(x/ D)~ p(x/0)

> But the point 8* as described above, is the MLE estimator of 9!



Bayesian Learning

> An issue of interest is that of the computation and the convergence of
the sequence of p.d.f. p(8/D"), where we restored the index n of the
number of training samples in the set D".

p(D"10) =T ] p(x, /8) = p(x, /) p(D"" /0)

x /0)p(0/D"!
0

p(0/D°%) = p(0)

> The above relationship creates a sequence of p.d.f. p(6/x,), p(6/x,,
X,),..., p(6/x,,...,x ) = Bayesian recursive (or incremental) learning.




> Problem: Computation of p.d.f. p(68/D") and p(x/D") when we assume
that p(x/8)=p(x/u)=N(u,c?) (i.e. 6=u) and p(u)=N(u,07). U, is the best
a prior knowledge of y and o,?indicates our uncertainty.

It follows that p(u/D") = N(u,.0,2), where: no., . o’
1 =

no, +o no, +o

. represents our best knowledge of p 5 9
: . 0,0
after observing n training samples and o ,f = 20 =,
0,2 measures our uncertainty. no, +o
— 2 2
> Also, p(x/D")= N(u,, 0°+0,2). ) 1 &

v ds o —inf, we have U =1 for every n, that is, we return to the estimation of maximum likelifiood.
0 n n y

v A5 n=inf, we have 6> ~c*In, that is, for a fairly large number of training samples, the accuracy of the
. Y larg g samp Y

estimate of y does not depend on the uncertainty of our a priori Knowledge, 0.



Bayesian Learning - Normal Distribution

___p(Dlp)p(r)
D) = ToDlp(u) de

a fI p(@k|m)p(r);
k=1

PR N, %) and p(u) ~ N(uo,03)

p(xr|p) p(u)
- o ~ e ~
1
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Bayesian Learning - Normal Distribution

/ p(z|p)p(p|D) du
- [ ) e [ 3(552) ] @
S i A
& 27ri'0‘n o [ ;(02 ﬁ:g J flo,on), (37)

where

102442 o2z + o2, \ 2
fO-,O' :/ex [_____ 'n( e l:n) ]
a ol oma 02 + g2 e

That is, as a funct'%on of z, p(z|D) is proportional to exp[—(1/2)(z — pn)? /(02 + 62)]
and hence p(z|D) is normally distributed with mean tn, and variance o2 + o2; i g
=

(38)
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As n—inf, the posterior p.d.f. p(u|D") becomes more and more
concentrated/peaked around its middle. The phenomenon is called
Bayesian learning.




MLE vs Bayesian Estimation

> In virtually every case, MLE & Bayesian are
equivalent in case of infinite training data.

> Criteria for choosing:
O Computational complexity = MLE
O Interpretability = MLE

O Confidence in prior info = Bayesian / Bayesian
with flat / uniform prior == equivalent to MLE
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