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Parameter Estimation

➢ Bayesian classifier cannot be employed when the probability 
density functions and prior probabilities are not known, i.e.       
p(x/ωi) & P(ωi).

➢ Distributions can be estimated when appropriate data are 
available ➡ Hard Task!

➢ If the distribution shape is known, e.g. normal/gaussian, but 
not its parameters, e.g. mean and variance, then the problem 
is formulated as one of parameter estimation.



Parameter Estimation

➢ Two basic approaches:
a. Maximum Likelihood Estimation (Εκτίμηση Μέγιστης Πιθανοφάνειας)

b. Bayesian Parameter Estimation (Εκτίμηση παραμέτρων κατά Bayes)



Maximum Likelihood Estimation

➢ Assume that we take random samples from a given 
distribution with unknown parameters.                                       
                                 Let us use vector θ  to denote the set of 
parameters.

➢ If for example we know that the distribution is gaussian but we 
do not know its mean and variance, then:
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MLE Task

➢ For each class, estimate vector θ  using a training set  
Dn={x1,…,xn}  that includes n independent samples (i.i.d): 

➢ Maximum Likelihood Estimation of θ  corresponds to that 
value that maximizes the above function.

➢ Intuitively, it corresponds to the value of θ that 
«agrees/interprets» in the best possible way with the 
samples.

Likelihood of θ  with 
respect of the sample set 
Dn



Likelihood Function 



Log-Likelihood

➢ θ  that maximizes the likelihood function, maximizes also its 
log, that is more convenient to use:
 

    

θ  that maximizes the above function can be obtained by 
setting its derivative over θ  equal to zero, and solving for θ.



Log-Likelihood



➢  Normal distribution with unknown mean μ
○ p(xκ | μ) ~ N(μ, Σ)

○ Maximum likelihood estimator of μ  satisfies:

○ Left multiplying by Σ  we obtain:

Special Cases – Normal Distribution

Accordingly, it is the arithmetic 
mean of the training samples!



● Normal distribution with unknown mean μ  and 
variance σ2: 
○ θ = (θ1, θ2) = (μ, σ2)

 

Special Cases – Normal Distribution



➢ Taking into consideration all samples:

➢ From (1) and (2), we obtain:

Special Cases – Normal Distribution



The case of multidimensional gaussian distribution:

Special Cases – Normal Distribution



 Bayesian Estimator

➢ In contrast to MLE, where we assumed that the unknown 
parameters have constant values, the Bayesian estimator 
(BE) assumes that the unknown parameters are random 
variables and follow an priori known p.d.f

➢ Therefore, BE estimates a distribution of the values of θ and 
not the values themselves. BE provides more information, but 
is often difficult to calculate.

➢ The existence of training data allows the conversion of prior 
information to posterior p.d.f. ➡ phenomenon of learning 
(Bayesian learning) where each new observation refines the 
posterior probability.



➢ Bayesian Learning for pattern classification problems.

○ The computation of the posterior p.d.f. is the basis of Bayesian 
classification.

○ Goal: Computation of P(ωi | x, D) given the set of training 
samples D={D1,…,Dc}, where the samples in the set Dj  correspond 
to the class  j, j=1,…,c.

○ For each new, unclassified sample, x, the Bayes rule gives:

 Bayesian Estimation



➢ We assume that 

○ The priors P(ωi) are known, thus P(ωi/D) = P(ωi).

○ Only the samples of the set Di hold information about the p.d.f. 
p(x/ωi,Di) ➡ c independent problems of estimation of p(x/ωi,Di) 
arise, which can also be written as p(x/Di).

 Bayesian Estimation

We want to estimate this 
function (also written as 
p(x/Di))



➢ For each class, we know the form of the p.d.f. p(x|θ), but the 
value of the parameter vector θ is unknown.

➢ We have some initial knowledge of θ in the form of a priori 
p.d.f. p(θ).

➢ For each class, we have a set  Dn={x1, …, xn} from n 
statistically independent samples. Then:

 General Methodology of Bayesian 
Estimation

Key relationship: Connects the conditional p.d.f. p(x/D) with the posterior 
p.d.f. p(θ/D) of the parameter vector. It states that the p(x/D) is a linear 
combination of p(x/θ) with weights p(θ/D).  

If p(θ/D) has a steep unique maximum at θ* then: 



➢ For the computation of p(θ/D), we have:

➢ Due to the independence of the training samples,

➢ If p(D/θ) is centered around θ* with a large peak at this point, and if 
p(θ*) is not 0, then p(θ/D) also has a large peak at θ*, and therefore 
will be

➢ But the point θ*, as described above, is the MLE estimator of θ!! 

 General Methodology of Bayesian 
Estimation



➢ An issue of interest is that of the computation and the convergence of 
the sequence of p.d.f. p(θ/Dn), where we restored the index n of the 
number of training samples in the set Dn.

➢ Therefore,

➢ The above relationship creates a sequence of p.d.f. p(θ/x1), p(θ/x1, 
x2),…, p(θ/x1,…,xn) ➡ Bayesian recursive (or incremental) learning.

 Bayesian Learning



➢ Problem: Computation of p.d.f. p(θ/Dn) and p(x/Dn) when we assume 
that p(x/θ)=p(x/μ)=Ν(μ,σ2) (i.e. θ=μ) and p(μ)=N(μ0,σ0

2). μ0  is the best 
a prior knowledge of μ and σ0

2 indicates our uncertainty.

➢ It follows that p(μ/Dn) = Ν(μn,σn
2), where:

 Bayesian Learning – Normal Distribution

✔  As σ0
2→inf, we have          for every n, that is, we return to the estimation of maximum likelihood.

✔  As n→inf, we have                 , that is, for a fairly large number of training samples, the accuracy of the 
estimate of μ does not depend on the uncertainty of our a priori knowledge, σ0

2.

➢ μn represents our best knowledge of μ 
after observing n training samples and 
σn

2 measures our uncertainty. 

➢ Also, p(x/Dn)= Ν(μn, σ2+σn
2).



 Bayesian Learning – Normal Distribution



 Bayesian Learning – Normal Distribution



 Bayesian Learning – Normal Distribution

As n→inf, the posterior p.d.f. p(μ|Dn) becomes more and more 
concentrated/peaked around its middle. The phenomenon is called 
Bayesian learning.



➢ In virtually every case, MLE & Bayesian are 
equivalent in case of infinite training data.

➢ Criteria for choosing:
○ Computational complexity ➡ MLE
○ Interpretability ➡ MLE
○ Confidence in prior info ➡ Bayesian  / Bayesian 

with flat / uniform prior == equivalent to MLE

 MLE vs Bayesian Estimation
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