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Chapter 5

Linear Discriminant Functions

5.1 Introduction

I n Chap. ?? we assumed that the forms for the underlying probability densities were
known, and used the training samples to estimate the values of their parameters.

In this chapter we shall instead assume we know the proper forms for the discriminant
functions, and use the samples to estimate the values of parameters of the classifier.
We shall examine various procedures for determining discriminant functions, some of
which are statistical and some of which are not. None of them, however, requires
knowledge of the forms of underlying probability distributions, and in this limited
sense they can be said to be nonparametric.

Throughout this chapter we shall be concerned with discriminant functions that
are either linear in the components of x, or linear in some given set of functions
of x. Linear discriminant functions have a variety of pleasant analytical properties.
As we have seen in Chap. ??, they can be optimal if the underlying distributions
are cooperative, such as Gaussians having equal covariance, as might be obtained
through an intelligent choice of feature detectors. Even when they are not optimal,
we might be willing to sacrifice some performance in order to gain the advantage of
their simplicity. Linear discriminant functions are relatively easy to compute and in
the absense of information suggesting otherwise, linear classifiers are an attractive
candidates for initial, trial classifiers. They also illustrate a number of very important
principles which will be used more fully in neural networks (Chap. ??).

The problem of finding a linear discriminant function will be formulated as a prob-
lem of minimizing a criterion function. The obvious criterion function for classification
purposes is the sample risk, or training error — the average loss incurred in classifying training

errorthe set of training samples. We must emphasize right away, however, that despite the
attractiveness of this criterion, it is fraught with problems. While our goal will be to
classify novel test patterns, a small training error does not guarantee a small test error
— a fascinating and subtle problem that will command our attention in Chap. ??.
As we shall see here, it is difficult to derive the minimum-risk linear discriminant
anyway, and for that reason we investigate several related criterion functions that are
analytically more tractable.

Much of our attention will be devoted to studying the convergence properties
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4 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

and computational complexities of various gradient descent procedures for minimizing
criterion functions. The similarities between many of the procedures sometimes makes
it difficult to keep the differences between them clear and for this reason we have
included a summary of the principal results in Table 5.1 at the end of Sect. 5.10.

5.2 Linear Discriminant Functions and Decision Sur-
faces

5.2.1 The Two-Category Case

A discriminant function that is a linear combination of the components of x can be
written as

g(x) = wtx + w0, (1)

where w is the weight vector and w0 the bias or threshold weight. A two-categorythreshold
weight linear classifier implements the following decision rule: Decide ω1 if g(x) > 0 and ω2

if g(x) < 0. Thus, x is assigned to ω1 if the inner product wtx exceeds the threshold
−w0 and ω2 otherwise. If g(x) = 0, x can ordinarily be assigned to either class, but
in this chapter we shall leave the assignment undefined. Figure 5.1 shows a typical
implementation, a clear example of the general structure of a pattern recognition
system we saw in Chap. ??.

x0 = 1

x1                    x2                . . .                    xd

. . .

w2 

w0 

w1 
wd 

g(x)

Figure 5.1: A simple linear classifier having d input units, each corresponding to the
values of the components of an input vector. Each input feature value xi is multiplied
by its corresponding weight wi; the output unit sums all these products and emits a
+1 if wtx + w0 > 0 or a −1 otherwise.

The equation g(x) = 0 defines the decision surface that separates points assigned
to ω1 from points assigned to ω2. When g(x) is linear, this decision surface is a
hyperplane. If x1 and x2 are both on the decision surface, then

wtx1 + w0 = wtx2 + w0

or

wt(x1 − x2) = 0,
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and this shows that w is normal to any vector lying in the hyperplane. In general,
the hyperplane H divides the feature space into two halfspaces, decision region R1

for ω1 and region R2 for ω2. Since g(x) > 0 if x is in R1, it follows that the normal
vector w points into R1. It is sometimes said that any x in R1 is on the positive side
of H, and any x in R2 is on the negative side.

The discriminant function g(x) gives an algebraic measure of the distance from x
to the hyperplane. Perhaps the easiest way to see this is to express x as

x = xp + r
w
‖w‖ ,

where xp is the normal projection of x onto H, and r is the desired algebraic distance
— positive if x is on the positive side and negative if x is on the negative side. Then,
since g(xp) = 0,

g(x) = wtx + w0 = r‖w‖,

or

r =
g(x)
‖w‖ .

In particular, the distance from the origin to H is given by w0/‖w‖. If w0 > 0 the
origin is on the positive side of H, and if w0 < 0 it is on the negative side. If w0 = 0,
then g(x) has the homogeneous form wtx, and the hyperplane passes through the
origin. A geometric illustration of these algebraic results is given in Fig. 5.2.

R2

R1

x

g(x)=0
w

x1

x2

x3

w0/||
w||

r

H

xp

Figure 5.2: The linear decision boundary H, where g(x) = wtx + w0 = 0, separates
the feature space into two half-spaces R1 (where g(x) > 0) and R2 (where g(x) < 0).

To summarize, a linear discriminant function divides the feature space by a hy-
perplane decision surface. The orientation of the surface is determined by the normal
vector w, and the location of the surface is determined by the bias w0. The discrim-
inant function g(x) is proportional to the signed distance from x to the hyperplane,
with g(x) > 0 when x is on the positive side, and g(x) < 0 when x is on the negative
side.
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5.2.2 The Multicategory Case

There is more than one way to devise multicategory classifiers employing linear dis-
criminant functions. For example, we might reduce the problem to c − 1 two-class
problems, where the ith problem is solved by a linear discriminant function that
separates points assigned to ωi from those not assigned to ωi. A more extravagant
approach would be to use c(c−1)/2 linear discriminants, one for every pair of classes.
As illustrated in Fig. 5.3, both of these approaches can lead to regions in which the
classification is undefined. We shall avoid this problem by adopting the approach
taken in Chap. ??, defining c linear discriminant functions

gi(x) = wtxi + wi0 i = 1, ..., c, (2)

and assigning x to ωi if gi(x) > gj(x) for all j 6= i; in case of ties, the classification
is left undefined. The resulting classifier is called a linear machine. A linear machinelinear

machine divides the feature space into c decision regions, with gi(x) being the largest discrim-
inant if x is in region Ri. If Ri and Rj are contiguous, the boundary between them
is a portion of the hyperplane Hij defined by

gi(x) = gj(x)

or

(wi −wj)tx + (wi0 − wj0) = 0.

It follows at once that wi −wj is normal to Hij , and the signed distance from x
to Hij is given by (gi − gj)/‖wi −wj‖. Thus, with the linear machine it is not the
weight vectors themselves but their differences that are important. While there are
c(c− 1)/2 pairs of regions, they need not all be contiguous, and the total number of
hyperplane segments appearing in the decision surfaces is often fewer than c(c−1)/2,
as shown in Fig. 5.4.

It is easy to show that the decision regions for a linear machine are convex and this
restriction surely limits the flexibility and accuracy of the classifier (Problems 1 & 2).
In particular, for good performance every decision region should be singly connected,
and this tends to make the linear machine most suitable for problems for which the
conditional densities p(x|ωi) are unimodal.

5.3 Generalized Linear Discriminant Functions

The linear discriminant function g(x) can be written as

g(x) = w0 +
d∑
i=1

wixi, (3)

where the coefficients wi are the components of the weight vector w. By adding
additional terms involving the products of pairs of components of x, we obtain the
quadratic discriminant functionquadratic

discriminant

g(x) = w0 +
d∑
i=1

wixi +
d∑
i=1

d∑
j=1

wijxixj . (4)
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Figure 5.3: Linear decision boundaries for a four-class problem. The top figure shows
ωi/not ωi dichotomies while the bottom figure shows ωi/ωj dichotomies. The pink
regions have ambiguous category assigments.

Since xixj = xjxi, we can assume that wij = wji with no loss in generality. Thus, the
quadratic discriminant function has an additional d(d+1)/2 coefficients at its disposal
with which to produce more complicated separating surfaces. The separating surface
defined by g(x) = 0 is a second-degree or hyperquadric surface. The linear terms
in g(x) can be eliminated by translating the axes. We can define W = [wij ], a
symmetric, nonsingular matrix and then the basic character of the separating surface
can be described in terms of the scaled matrix W̄ = W/(wtW−1w − 4w0). If W̄
is a positive multiple of the identity matrix, the separating surface is a hypersphere.
If W̄ is positive definite, the separating surfaces is a hyperellipsoid. If some of the
eigenvalues of W̄ are positive and others are negative, the surface is one of the variety
of types of hyperhyperboloids (Problem 11). As we observed in Chap. ??, these are
the kinds of separating surfaces that arise in the general multivariate Gaussian case.

By continuing to add terms such as wijkxixjxk we can obtain the class of polyno-
mial discriminant functions. These can be thought of as truncated series expansions polynomial

discriminantof some arbitrary g(x), and this in turn suggest the generalized linear discriminant
function

g(x) =
d̂∑
i=1

aiyi(x) (5)
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R1
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ω1
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ω3

ω5
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Figure 5.4: Decision boundaries produced by a linear machine for a three-class prob-
lem and a five-class problem.

or

g(x) = aty, (6)

where a is now a d̂-dimensional weight vector, and where the d̂ functions yi(x) — some-
times called ϕ functions — can be arbitrary functions of x. Such functions might bephi

function computed by a feature detecting subsystem. By selecting these functions judiciously
and letting d̂ be sufficiently large, one can approximate any desired discriminant func-
tion by such an expansion. The resulting discriminant function is not linear in x, but
it is linear in y. The d̂ functions yi(x) merely map points in d-dimenional x-space
to points in d̂-dimensional y-space. The homogeneous discriminant aty separates
points in this transformed space by a hyperplane passing through the origin. Thus,
the mapping from x to y reduces the problem to one of finding a homogeneous linear
discriminant function.

Some of the advantages and disadvantages of this approach can be clarified by
considering a simple example. Let the quadratic discriminant function be

g(x) = a1 + a2x+ a3x
2, (7)

so that the three-dimensional vector y is given by

y =

 1
x
x2

 . (8)

The mapping from x to y is illustrated in Fig. 5.5. The data remain inherently one-
dimensional, since varying x causes y to trace out a curve in three dimensions. Thus,
one thing to notice immediately is that if x is governed by a probability law p(x), the
induced density p̂(y) will be degenerate, being zero everywhere except on the curve,
where it is infinite. This is a common problem whenever d̂ > d, and the mapping
takes points from a lower-dimensional space to a higher-dimensional space.

The plane Ĥ defined by aty = 0 divides the y-space into two decision regions R̂1

and R̂2. Figure ?? shows the separating plane corresponding to a = (−1, 1, 2)t, the
decision regions R̂1 and R̂2, and their corresponding decision regions R1 and R2 in
the original x-space. The quadratic discriminant function g(x) = −1 + x + 2x2 is
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Figure 5.5: The mapping y = (1, x, x2)t takes a line and transforms it to a parabola
in three dimensions. A plane splits the resulting y space into regions corresponding
to two categories, and this in turn gives a non-simply connected decision region in the
one-dimensional x space.

positive if x < −1 or if x > 0.5, and thus R1 is multiply connected. Thus although
the decision regions in y-space are convex, this is by no means the case in x-space.
More generally speaking, even with relatively simple functions yi(x), decision surfaces
induced in an x-space can be fairly complex (Fig. 5.6).

Unfortunately, the curse of dimensionality often makes it hard to capitalize on
this flexibility in practice. A complete quadratic discriminant function involves d̂ =
(d + 1)(d + 2)/2 terms. If d is modestly large, say d = 50, this requires the com-
putation of a great many terms; inclusion of cubic and higher orders leads to O(d̂3)
terms. Furthermore, the d̂ components of the weight vector a must be determined
from training samples. If we think of d̂ as specifying the number of degrees of freedom
for the discriminant function, it is natural to require that the number of samples be
not less than the number of degrees of freedom (cf., Chap. ??). Clearly, a general
series expansion of g(x) can easily lead to completely unrealistic requirements for
computation and data. We shall see in Sect. ?? that this drawback can be accom-
modated by imposing a constraint of large margins, or bands between the training
patterns, however. In this case, we are not technically speaking fitting all the free
parameters; instead, we are relying on the assumption that the mapping to a high-
dimensional space does not impose any spurious structure or relationships among the
training points. Alternatively, multilayer neural networks approach this problem by
employing multiple copies of a single nonlinear function of the input features, as we
shall see in Chap. ??.

While it may be hard to realize the potential benefits of a generalized linear dis-
criminant function, we can at least exploit the convenience of being able to write
g(x) in the homogeneous form aty. In the particular case of the linear discriminant
function
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y2
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Figure 5.6: The two-dimensional input space x is mapped through a polynomial
function f to y. Here the mapping is y1 = x1, y2 = x2 and y3 ∝ x1x2. A linear
discriminant in this transformed space is a hyperplane, which cuts the surface. Points
to the positive side of the hyperplane Ĥ correspond to category ω1, and those beneath
it ω2. Here, in terms of the x space, R1 is a not simply connected.

g(x) = w0 +
d∑
i=1

wixi =
d∑
i=0

wixi (9)

where we set x0 = 1. Thus we can write

y =


1
x1

...
xd

 =


1

x

 , (10)

and y is sometimes called an augmented feature vector. Likewise, an augmented weightaugmented
vector vector can be written as:

a =


w0

w1

...
wd

 =


w0

w

 . (11)

This mapping from d-dimensional x-space to (d+1)-dimensional y-space is mathe-
matically trivial but nonetheless quite convenient. The addition of a constant compo-
nent to x preserves all distance relationships among samples. The resulting y vectors
all lie in a d-dimensional subspace, which is the x-space itself. The hyperplane deci-
sion surface Ĥ defined by aty = 0 passes through the origin in y-space, even though
the corresponding hyperplane H can be in any position in x-space. The distance from
y to Ĥ is given by |aty|/‖a‖, or |g(x)|/‖a‖. Since ‖a‖ > ‖w‖, this distance is less
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than, or at most equal to the distance from x to H. By using this mapping we reduce
the problem of finding a weight vector w and a threshold weight w0 to the problem
of finding a single weight vector a (Fig. 5.7).

y1

y2

y0

a

y0 = 1

R1
R2

y0 = 0

Figure 5.7: A three-dimensional augmented feature space y and augmented weight
vector a (at the origin). The set of points for which aty = 0 is a plane (or more
generally, a hyperplane) perpendicular to a and passing through the origin of y-
space, as indicated by the red disk. Such a plane need not pass through the origin of
the two-dimensional x-space at the top, of course, as shown by the dashed line. Thus
there exists an augmented weight vector a that will lead to any straight decision line
in x-space.

5.4 The Two-Category Linearly-Separable Case

5.4.1 Geometry and Terminology

Suppose now that we have a set of n samples y1, ...,yn, some labelled ω1 and some
labelled ω2. We want to use these samples to determine the weights a in a linear
discriminant function g(x) = aty. Suppose we have reason to believe that there
exists a solution for which the probability of error is very low. Then a reasonable
approach is to look for a weight vector that classifies all of the samples correctly. If
such a weight vector exists, the samples are said to be linearly separable. linearly

separableA sample yi is classified correctly if atyi > 0 and yi is labelled ω1 or if atyi < 0
and yi is labelled ω2. This suggests a “normalization” that simplifies the treatment
of the two-category case, viz., the replacement of all samples labelled ω2 by their
negatives. With this “normalization” we can forget the labels and look for a weight
vector a such that atyi > 0 for all of the samples. Such a weight vector is called a
separating vector or more generally a solution vector. separating

vectorThe weight vector a can be thought of as specifying a point in weight space. Each
sample yi places a constraint on the possible location of a solution vector. The
equation atyi = 0 defines a hyperplane through the origin of weight space having yi
as a normal vector. The solution vector — if it exists — must be on the positive side
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of every hyperplane. Thus, a solution vector must lie in the intersection of n half-
spaces; indeed any vector in this region is a solution vector. The corresponding region
is called the solution region, and should not be confused with the decision region insolution

region feature space corresponding to any particular category. A two-dimensional example
illustrating the solution region for both the normalized and the unnormalized case is
shown in Fig. 5.8.

y1

y2

separating plane

solution 
region

y1

y2

"separating" plane

solution 
region

aa

Figure 5.8: Four training samples (black for ω1, red for ω2) and the solution region
in feature space. The figure on the left shows the raw data; the solution vectors leads
to a plane that separates the patterns from the two categories. In the figure on the
right, the red points have been “normalized” — i.e., changed in sign. Now the solution
vector leads to a plane that places all “normalized” points on the same side.

From this discussion, it should be clear that the solution vector — again, if it
exists — is not unique. There are several ways to impose additional requirements to
constrain the solution vector. One possibility is to seek a unit-length weight vector
that maximizes the minimum distance from the samples to the separating plane.
Another possibility is to seek the minimum-length weight vector satisfying atyi ≥ b
for all i, where b is a positive constant called the margin. As shown in Fig. 5.9, themargin
solution region resulting form the intersections of the halfspaces for which atyi ≥ b > 0
lies within the previous solution region, being insultated from the old boundaries by
the distance b/‖yi‖.

The motivation behind these attempts to find a solution vector closer to the “mid-
dle” of the solution region is the natural belief that the resulting solution is more likely
to classify new test samples correctly. In most of the cases we shall treat, however,
we shall be satisfied with any solution strictly within the solution region. Our chief
concern will be to see that any iterative procedure used does not converge to a limit
point on the boundary. This problem can always be avoided by the introduction of a
margin, i.e., by requiring that atyi ≥ b > 0 for all i.

5.4.2 Gradient Descent Procedures

The approach we shall take to finding a solution to the set of linear inequalities
atyi > 0 will be to define a criterion function J(a) that is minimized if a is a solution
vector. This reduces our problem to one of minimizing a scalar function — a problem
that can often be solved by a gradient descent procedure. Basic gradient descent is
very simple. We start with some arbitrarily chosen weight vector a(1) and compute
the gradient vector ∇J(a(1)). The next value a(2) is obtained by moving some



5.4. THE TWO-CATEGORY LINEARLY-SEPARABLE CASE 13

solution
region

y1

y2

y3

a1

a2

solution
region

a2

a1

y1

y2

y3

b/||y
2 ||

b/||y 1
||

b/
||y

3
||

}

}

}

Figure 5.9: The effect of the margin on the solution region. At the left, the case of
no margin (b = 0) equivalent to a case such as shown at the left in Fig. 5.8. At the
right is the case b > 0, shrinking the solution region by margins b/‖yi‖.

distance from a(1) in the direction of steepest descent, i.e., along the negative of the
gradient. In general, a(k + 1) is obtained from a(k) by the equation

a(k + 1) = a(k)− η(k)∇J(a(k)), (12)

where η is a positive scale factor or learning rate that sets the step size. We hope learning
ratethat such a sequence of weight vectors will converge to a solution minimizing J(a).

In algorithmic form we have:

Algorithm 1 (Basic gradient descent)

1 begin initialize a, criterion θ, η(·), k = 0
2 do k ← k + 1
3 a← a− η(k)∇J(a)
4 until η(k)∇J(a) < θ
5 return a
6 end

The many problems associated with gradient descent procedures are well known.
Fortunately, we shall be constructing the functions we want to minimize, and shall be
able to avoid the most serious of these problems. One that will confront us repeatedly,
however, is the choice of the learning rate η(k). If η(k) is too small, convergence is
needlessly slow, whereas if η(k) is too large, the correction process will overshoot and
can even diverge (Sect. 5.6.1).

We now consider a principled method for setting the learning rate. Suppose that
the criterion function can be well approximated by the second-order expansion around
a value a(k) as

J(a) ' J(a(k)) +∇J t(a− a(k)) +
1
2

(a− a(k))tH (a− a(k)), (13)

where H is the Hessian matrix of second partial derivatives ∂2J/∂ai∂aj evaluated at Hessian
matrixa(k). Then, substituting a(k + 1) from Eq. 12 into Eq. 13 we find:
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J(a(k + 1)) ' J(a(k))− η(k)‖∇J‖2 +
1
2
η2(k)∇J tH∇J.

From this it follows (Problem 12) that J(a(k + 1)) can be minimized by the choice

η(k) =
‖∇J‖2
∇J tH∇J , (14)

where H depends on a, and thus indirectly on k. This then is the optimal choice
of η(k) given the assumptions mentioned. Note that if the criterion function J(a) is
quadratic throughout the region of interest, then H is constant and η is a constant
independent of k.

An alternative approach, obtained by ignoring Eq. 12 and by choosing a(k +
1) to minimize the second-order expansion, is Newton’s algorithm where line 3 inNewton’s

algorithm Algorithm 1 is replaced by

a(k + 1) = a(k)−H−1∇J, (15)

leading to the following algorithm:

Algorithm 2 (Newton descent)

1 begin initialize a, criterion θ
2 do
3 a← a−H−1∇J(a)
4 until H−1∇J(a) < θ
5 return a
6 end

Simple gradient descent and Newton’s algorithm are compared in Fig. 5.10.
Generally speaking, Newton’s algorithm will usually give a greater improvement

per step than the simple gradient descent algorithm, even with the optimal value
of η(k). However, Newton’s algorithm is not applicable if the Hessian matrix H is
singular. Furthermore, even when H is nonsingular, the O(d3) time required for
matrix inversion on each iteration can easily offset the descent advantage. In fact,
it often takes less time to set η(k) to a constant η that is smaller than necessary
and make a few more corrections than it is to compute the optimal η(k) at each step
(Computer exercise 1).

5.5 Minimizing the Perceptron Criterion Function

5.5.1 The Perceptron Criterion Function

Consider now the problem of constructing a criterion function for solving the linear
inequalities atyi > 0. The most obvious choice is to let J(a; y1, ...,yn) be the number
of samples misclassified by a. However, because this function is piecewise constant, it
is obviously a poor candidate for a gradient search. A better choice is the Perceptron
criterion function

Jp(a) =
∑
y∈Y

(−aty), (16)
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Figure 5.10: The sequence of weight vectors given by a simple gradient descent method
(red) and by Newton’s (second order) algorithm (black). Newton’s method typically
leads to greater improvement per step, even when using optimal learning rates for both
methods. However the added computational burden of inverting the Hessian matrix
used in Newton’s method is not always justified, and simple descent may suffice.

where Y(a) is the set of samples misclassified by a. (If no samples are misclassified,
Y is empty and we define Jp to be zero.) Since aty ≤ 0 if y is misclassified, Jp(a)
is never negative, being zero only if a is a solution vector, or if a is on the decision
boundary. Geometrically, Jp(a) is proportional to the sum of the distances from the
misclassified samples to the decision boundary. Figure 5.11 illustrates Jp for a simple
two-dimensional example.

Since the jth component of the gradient of Jp is ∂Jp/∂aj , we see from Eq. 16 that

∇Jp =
∑
y∈Y

(−y), (17)

and hence the update rule becomes

a(k + 1) = a(k) + η(k)
∑

y∈Yk
y, (18)

where Yk is the set of samples misclassified by a(k). Thus the Perceptron algorithm
is:

Algorithm 3 (Batch Perceptron)

1 begin initialize a, η(·), criterion θ, k = 0
2 do k ← k + 1
3 a← a + η(k)

∑
y∈Yk

y

4 until η(k)
∑

y∈Yk
y < θ

5 return a
6 end
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Figure 5.11: Four learning criteria as a function of weights in a linear classifier. At the
upper left is the total number of patterns misclassified, which is piecewise constant
and hence unacceptable for gradient descent procedures. At the upper right is the
Perceptron criterion (Eq. 16), which is piecewise linear and acceptable for gradient
descent. The lower left is squared error (Eq. 32), which has nice analytic properties
and is useful even when the patterns are not linearly separable. The lower right is
the square error with margin (Eq. 33). A designer may adjust the margin b in order
to force the solution vector to lie toward the middle of the b = 0 solution region in
hopes of improving generalization of the resulting classifier.

Thus, the batch Perceptron algorithm for finding a solution vector can be stated
very simply: the next weight vector is obtained by adding some multiple of the sum
of the misclassified samples to the present weight vector. We use the term “batch”batch

training to refer to the fact that (in general) a large group of samples is used when com-
puting each weight update. (We shall soon see alternate methods based on single
samples.) Figure 5.12 shows how this algorithm yields a solution vector for a simple
two-dimensional example with a(1) = 0, and η(k) = 1. We shall now show that it
will yield a solution for any linearly separable problem.
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Figure 5.12: The Perceptron criterion, Jp is plotted as a function of the weights a1

and a2 for a three-pattern problem. The weight vector begins at 0, and the algorithm
sequentially adds to it vectors equal to the “normalized” misclassified patterns them-
selves. In the example shown, this sequence is y2,y3,y1,y3, at which time the vector
lies in the solution region and iteration terminates. Note that the second update (by
y3) takes the candidate vector farther from the solution region than after the first
update (cf. Theorem 5.1. (In an alternate, batch method, all the misclassified points
are added at each iteration step leading to a smoother trajectory in weight space.)

5.5.2 Convergence Proof for Single-Sample Correction

We shall begin our examination of convergence properties of the Perceptron algo-
rithm with a variant that is easier to analyze. Rather than testing a(k) on all of the
samples and basing our correction of the set Yk of misclassified training samples, we
shall consider the samples in a sequence and shall modify the weight vector when-
ever it misclassifies a single sample. For the purposes of the convergence proof, the
detailed nature of the sequence is unimportant as long as every sample appears in
the sequence infinitely often. The simplest way to assure this is to repeat the sam-
ples cyclically, though from a practical point of view random selection is often to be
preferred (Sec. 5.8.5). Clearly neither the batch nor this single-sample version of the
Perceptron algorithm are on-line since we must store and potentially revisit all of the
training patterns.

Two further simplifications help to clarify the exposition. First, we shall tem-
porarily restrict our attention to the case in which η(k) is constant — the so-called
fixed-increment case. It is clear from Eq. 18 that if η(t) is constant it merely serves to fixed

incrementscale the samples; thus, in the fixed-increment case we can take η(t) = 1 with no loss
in generality. The second simplification merely involves notation. When the samples
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are considered sequentially, some will be misclassified. Since we shall only change the
weight vector when there is an error, we really need only pay attention to the mis-
classified samples. Thus we shall denote the sequence of samples using superscripts,
i.e., by y1, y2, ..., yk, ..., where each yk is one of the n samples y1, ...,yn, and where
each yk is misclassified. For example, if the samples y1, y2, and y3 are considered
cyclically, and if the marked samples

↓
y1, y2,

↓
y3,

↓
y1,

↓
y2, y3, y1,

↓
y2, ... (19)

are misclassified, then the sequence y1, y2, y3, y4, y5, ... denotes the sequence
y1, y3, y1, y2, y2, ... With this understanding, the fixed-increment rule for generatingfixed-

increment
rule

a sequence of weight vectors can be written as

a(1) arbitrary
a(k + 1) = a(k) + yk k ≥ 1

}
(20)

where at(k)yk ≤ 0 for all k. If we let n denote the total number of patterns, the
algorithm is:

Algorithm 4 (Fixed-increment single-sample Perceptron)

1 begin initialize a, k = 0
2 do k ← (k + 1)modn
3 if yk is misclassified by a then a← a− yk
4 until all patterns properly classified
5 return a
6 end

The fixed-increment Perceptron rule is the simplest of many algorithms that have
been proposed for solving systems of linear inequalities. Geometrically, its interpre-
tation in weight space is particularly clear. Since a(k) misclassifies yk, a(k) is not on
the positive side of the yk hyperplane atyk = 0. The addition of yk to a(k) moves
the weight vector directly toward and perhaps across this hyperplane. Whether the
hyperplane is crossed or not, the new inner product at(k+ 1)yk is larger than the old
inner product at(k)yk by the amount ‖yk‖2, and the correction is clearly moving the
weight vector in a good direction (Fig. 5.13).
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1 2 3

Figure 5.13: Samples from two categories, ω1 (black) and ω2 (red) are shown in
augmented feature space, along with an augmented weight vector a. At each step
in a fixed-increment rule, one of the misclassified patterns, yk, is shown by the large
dot. A correction ∆a (proportional to the pattern vector yk) is added to the weight
vector — towards an ω1 point or away from an ω2 point. This changes the decision
boundary from the dashed position (from the previous update) to the solid position.
The sequence of resulting a vectors is shown, where later values are shown darker. In
this example, by step 9 a solution vector has been found and the categories successfully
separated by the decision boundary shown.

Clearly this algorithm can only terminate if the samples are linearly separable; we
now prove that indeed it terminates so long as the samples are linearly separable.

Theorem 5.1 (Perceptron Convergence) If training samples are linearly sepa-
rable then the sequence of weight vectors given by Algorithm 4 will terminate at a
solution vector.

Proof:

In seeking a proof, it is natural to try to show that each correction brings the weight
vector closer to the solution region. That is, one might try to show that if â is any
solution vector, then ‖a(k + 1)− â‖ is smaller than ‖a(k)− â‖. While this turns out
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not to be true in general (cf. steps 6 & 7 in Fig. 5.13), we shall see that it is true for
solution vectors that are sufficiently long.

Let â be any solution vector, so that âtyi is strictly positive for all i, and let α be
a positive scale factor. From Eq. 20,

a(k + 1)− αâ = (a(k)− αâ) + yk

and hence

‖a(k + 1)− αâ‖2 = ‖a(k)− αâ‖2 + 2(a(k)− αâ)tyk + ‖yk‖2.

Since yk was misclassified, at(k)yk ≤ 0, and thus

‖a(k + 1)− αâ‖2 ≤ ‖a(k)− αâ‖2 − 2αâtyk + ‖yk‖2.

Because âtyk is strictly positive, the second term will dominate the third if α is
sufficiently large. In particular, if we let β be the maximum length of a pattern
vector,

β2 = max
i
‖yi‖2, (21)

and γ be the smallest inner product of the solution vector with any pattern vector,
i.e.,

γ = min
i

[
âtyi

]
> 0, (22)

then we have the inequality

‖a(k + 1)− αâ‖2 ≤ ‖a(k)− αâ‖2 − 2αγ + β2.

If we choose

α =
β2

γ
, (23)

we obtain

‖a(k + 1)− αâ‖2 ≤ ‖a(k)− αâ‖2 − β2.

Thus, the squared distance from a(k) to αâ is reduced by at least β2 at each correction,
and after k corrections

‖a(k + 1)− αâ‖2 ≤ ‖a(k)− αâ‖2 − kβ2. (24)

Since the squared distance cannot become negative, it follows that the sequence of
corrections must terminate after no more than k0 corrections, where

k0 =
‖a(1)− αâ‖2

β2
. (25)
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Since a correction occurs whenever a sample is misclassified, and since each sample
appears infinitely often in the sequence, it follows that when corrections cease the
resulting weight vector must classify all of the samples correctly.

The number k0 gives us a bound on the number of corrections. If a(1) = 0, we
get the following particularly simple expression for k0:

k0 =
α2‖â‖2
β2

=
β2α2‖â‖2

γ2
=

max
i
‖yi‖2‖â‖2

min
i

[yti â]2
. (26)

The denominator in Eq. 26 shows that the difficulty of the problem is essentially
determined by the samples most nearly orthogonal to the solution vector. Unfortu-
nately, it provides no help when we face an unsolved problem, since the bound is
expressed in terms of a solution vector which is unknown. In general, it is clear that
linearly-separable problems can be made arbitrarily difficult to solve by making the
samples almost coplanar (Computer exercise 2). Nevertheless, if the training sam-
ples are linearly separable, the fixed-increment rule will yield a solution after a finite
number of corrections.

5.5.3 Some Direct Generalizations

The fixed increment rule can be generalized to provide a variety of related algorithms.
We shall briefly consider two variants of particular interest. The first variant intro-
duces a variable increment η(k) and a margin b, and calls for a correction whenever variable

incrementat(k)yk fails to excede the margin. The update is given by

a(1) arbitrary
a(k + 1) = a(k) + η(k)yk k ≥ 1,

}
(27)

where now at(k)yk ≤ b for all k. Thus for n patterns, our algorithm is:

Algorithm 5 (Variable increment Perceptron with margin)

1 begin initialize a, criterion θ,margin b, η(·), k = 0
2 do k ← k + 1
3 if atyk + b < 0 then a← a− η(k)yk
4 until atyk + b ≤ 0 for all k
5 return a
6 end

It can be shown that if the samples are linearly separable and if

η(k) ≥ 0, (28)

lim
m→∞

m∑
k=1

η(k) =∞ (29)

and
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lim
m→∞

m∑
k=1

η2(k)(
m∑
k=1

η(k)
)2 = 0, (30)

then a(k) converges to a solution vector a satisfying atyi > b for all i (Problem 18).
In particular, these conditions on η(k) are satisfied if η(k) is a positive constant, or if
it decreases like 1/k.

Another variant of interest is our original gradient descent algorithm for Jp,

a(1) arbitrary
a(k + 1) = a(k) + η(k)

∑
y∈Yk

y,

}
(31)

where Yk is the set of training samples misclassified by a(k). It is easy to see that this
algorithm will also yield a solution once one recognizes that if â is a solution vector
for y1, ...,yn, then it correctly classifies the correction vector

yk =
∑

y∈Yk
y.

In greater detail, then, the algorithm is

Algorithm 6 (Batch variable increment Perceptron)

1 begin initialize a, η(·), k = 0
2 do k ← k + 1
3 Yk = {}
4 j = 0
5 do j ← j + 1
6 if yj is misclassified then Append yj to Yk
7 until j = n
8 a← a + η(k)

∑
y∈Yk

y

9 until Yk = {}
10 return a
11 end

The benefit of batch gradient descent is that the trajectory of the weight vector is
smoothed, compared to that in corresponding single-sample algorithms (e.g., Algo-
rithm 5), since at each update the full set of misclassified patterns is used — the
local statistical variations in the misclassified patterns tend to cancel while the large-
scale trend does not. Thus, if the samples are linearly separable, all of the possible
correction vectors form a linearly separable set, and if η(k) satisfies Eqs. 28–30, the
sequence of weight vectors produced by the gradient descent algorithm for Jp(·) will
always converge to a solution vector.

It is interesting to note that the conditions on η(k) are satisfied if η(k) is a positive
constant, if it decreases as 1/k, or even if it increases as k. Generally speaking, one
would prefer to have η(k) become smaller as time goes on. This is particularly true
if there is reason to believe that the set of samples is not linearly separable, since it
reduces the disruptive effects of a few “bad” samples. However, in the separable case
it is a curious fact that one can allow η(k) to become larger and still obtain a solution.
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This observation brings out one of the differences between theoretical and practical
attitudes. From a theoretical viewpoint, it is interesting that we can obtain a solution
in a finite number of steps for any finite set of separable samples, for any initial weight
vector a(1), for any nonnegative margin b, and for any scale factor η(k) satisfying
Eqs. 28–30. From a practical viewpoint, we want to make wise choices for these
quantities. Consider the margin b, for example. If b is much smaller than η(k)‖yk‖2,
the amount by which a correction increases at(k)yk, it is clear that it will have little
effect at all. If it is much larger than η(k)‖yk‖2, many corrections will be needed
to satisfy the conditions at(k)yk > b. A value close to η(k)‖yk‖2 is often a useful
compromise. In addition to these choices for η(k) and b, the scaling of the components
of yk can also have a great effect on the results. The possession of a convergence
theorem does not remove the need for thought in applying these techniques.

A close descendant of the Perceptron algorithm is the Winnow algorithm, which
has applicability to separable training data. The key difference is that while the Winnow

algorithmweight vector returned by the Perceptron algorithm has components ai (i = 0, ...d),
in Winnow they are scaled according to 2sinh[ai]. In one version, the balanced Win-
now algorithm, there are separate “positive” and “negative” weight vectors, a+ and
a−, each associated with one of the two categories to be learned. Corrections on the
positive weight are made if and only if a training pattern in ω1 is misclassified; con-
versely, corrections on the negative weight are made if and only if a training pattern
in ω2 is misclassified.

Algorithm 7 (Balanced Winnow)

1 begin initialize a+,a−, η(·), k ← 0, α > 1
2 if sign[a+tyk − a−tyk] 6= zk (pattern misclassified)
3 then if zk = +1 then a+

i ← α+yia+
i ; a−i ← α−yia−i for all i

4 if zk = −1 then a+
i ← α−yia+

i ; a−i ← α+yia−i for all i
5 return a+,a−

6 end

There are two main benefits of such a version of the Winnow algorithm. The
first is that during training each of the two consituent weight vectors moves in a uni-
form direction and this means the “gap,” determined by these two vectors, can never
increase in size for separable data. This leads to a convergence proof that, while some-
what more complicated, is nevertheless more general than the Perceptron convergence
theorem (cf. Bibliography). The second benefit is that convergence is generally faster
than in a Perceptron, since for proper setting of learning rate, each constituent weight
does not overshoot its final value. This benefit is especially pronounced whenever a
large number of irrelevant or redundant features are present (Computer exercise 6).

5.6 Relaxation Procedures

5.6.1 The Descent Algorithm

The criterion function Jp is by no means the only function we can construct that is
minimized when a is a solution vector. A close but distinct relative is

Jq(a) =
∑
y∈Y

(aty)2, (32)
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where Y(a) again denotes the set of training samples misclassified by a. Like Jp, Jq
focuses attention on the misclassified samples. Its chief difference is that its gradient
is continuous, whereas the gradient of Jp is not. Thus, Jq presents a smoother surface
to search (Fig. 5.11). Unfortunately, Jq is so smooth near the boundary of the solution
region that the sequence of weight vectors can converge to a point on the boundary.
It is particularly embarrassing to spend some time following the gradient merely to
reach the boundary point a = 0. Another problem with Jq is that its value can be
dominated by the longest sample vectors. Both of these problems are avoided by the
criterion function

Jr(a) =
1
2

∑
y∈Y

(aty − b)2

‖y‖2 , (33)

where now Y(a) is the set of samples for which aty ≤ b. (If Y(a) is empty, we define
Jr to be zero.) Thus, Jr(a) is never negative, and is zero if and only if aty ≥ b for all
of the training samples. The gradient of Jr is given by

∇Jr =
∑
y∈Y

aty − b
‖y‖2 y,

and the update rule

a(1) arbitrary
a(k + 1) = a(k) + η(k)

∑
y∈Y

b−aty
‖y‖2 y.

 (34)

Thus the relaxation algorithm becomes

Algorithm 8 (Batch relaxation with margin)

1 begin initialize a, η(·), k = 0
2 do k ← k + 1
3 Yk = {}
4 j = 0
5 do j ← j + 1
6 if yj is misclassified then Append yj to Yk
7 until j = n

8 a← a + η(k)
∑

y∈Y

b−aty
‖y‖2 y

9 until Yk = {}
10 return a
11 end

As before, we find it easier to prove convergence when the samples are considered
one at a time rather than jointly, i.e., single-sample rather than batch. We also limit
our attention to the fixed-increment case, η(k) = η. Thus, we are again led to consider
a sequence y1,y2, ... formed from those samples that call for the weight vector to be
corrected. The single-sample correction rule analogous to Eq. 33 is

a(1) arbitrary
a(k + 1) = a(k) + η b−at(k)yk

‖yk‖2 yk,

}
(35)

where at(k)yk ≤ b for all k. The algorithm is:
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Algorithm 9 (Single-sample relaxation with margin)

1 begin initialize a, η(·), k = 0
2 do k ← k + 1
3 if yk is misclassified then a← a + η(k) b−aty

‖yk‖2 yk
4 until all patterns properly classified
5 return a
6 end

This algorithm is known as the single-sample relaxation rule with margin, and it
has a simple geometrical interpretation. The quantity

r(k) =
b− at(k)yk

‖yk‖ (36)

is the distance from a(k) to the hyperplane atyk = b. Since yk/‖yk‖ is the unit
normal vector for the hyperplane, Eq. 35 calls for a(k) to be moved a certain fraction
η of the distance from a(k) to the hyperplane. If η = 1, a(k) is moved exactly to the
hyperplane, so that the “tension” created by the inequality at(k)yk ≤ b is “relaxed”
(Fig. 5.14). From Eq. 35, after a correction,

at(k + 1)yk − b = (1− η)(at(k)yk − b). (37)

If η < 1, then at(k + 1)yk is still less than b, while if η > 1, then at(k + 1)yk is
greater than b. These conditions are referred to as underrelaxation and overrelaxation, under-

relaxation

over-
relaxation

respectively. In general, we shall restrict η to the range 0 < η < 2 (Figs. 5.14 & 5.15).

a ty k = b

a(k)

yk 

r(
k)

y1

y2

1−
 η

η

Figure 5.14: In each step of a basic relaxation algorithm, the weight vector is moved
a proportion η of the way towards the hyperplane defined by atyk = b.

5.6.2 Convergence Proof

When the relaxation rule is applied to a set of linearly separable samples, the number
of corrections may or may not be finite. If it is finite, then of course we have obtained
a solution vector. If it is not finite, we shall see that a(k) converges to a limit vector
on the boundary of the solution region. Since the region in which aty ≥ b is contained
in a larger region where aty > 0 if b > 0, this implies that a(k) will enter this larger
region at least once, eventually remaining there for all k greater than some finite k0.
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a1 a1

J(a) J(a)

Figure 5.15: At the left, underrelaxation (η < 1) leads to needlessly slow descent, or
even failure to converge. Overrelaxation (1 < η < 2, shown in the middle) describes
overshooting; nevertheless convergence will ultimately be achieved.

The proof depends upon the fact that if â is any vector in the solution region —
i.e., any vector satisfying âtyi > b for all i — then at each step a(k) gets closer to â.
This fact follows at once from Eq. 35, since

‖a(k + 1)− â‖2 = ‖a(k)− â‖2 − 2η
(b− at(k)yk)
‖yk‖2 (â− a(k))tyk

+η2 (b− at(k)yk)2

‖yk‖2 (38)

and

(â− a(k))tyk > b− at(k)yk ≥ 0, (39)

so that

‖a(k + 1)− â‖2 ≤ ‖a(k)− â‖2 − η(2− η)
(b− at(k)yk)2

‖yk‖2 . (40)

Since we restrict η to the range 0 < η < 2, it follows that ‖a(k+1)−â‖ ≤ ‖a(k)−â‖.
Thus, the vectors in the sequence a(1),a(2), ... get closer and closer to â, and in the
limit as k goes to infinity the distance ‖a(k)− â‖ approaches some limiting distance
r(â). This means that as k goes to infinity a(k) is confined to the surface of a
hypersphere with center â and radius r(â). Since this is true for any â in the solution
region, the limiting a(k) is confined to the intersection of the hyperspheres centered
about all of the possible solution vectors.

We now show that the common intersection of these hyperspheres is a single point
on the boundary of the solution region. Suppose first that there are at least two
points a′ and a′′ on the common intersection. Then ‖a′ − â‖ = ‖a′′ − â‖ for every â
in the solution region. But this implies that the solution region is contained in the
(d̂− 1)-dimensional hyperplane of points equidistant from a′ to a′′, whereas we know
that the solution region is d̂-dimensional. (Stated formally, if âtyi > 0 for i = 1, ..., n,
then for any d̂-dimensional vector v, we have (â + εv)ty > 0 for i = 1, ..., n if ε is
sufficiently small.) Thus, a(k) converges to a single point a. This point is certainly
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not inside the solution region, for then the sequence would be finite. It is not outside
either, since each correction causes the weight vector to move η times its distance
from the boundary plane, thereby preventing the vector from being bounded away
from the boundary forever. Hence the limit point must be on the boundary.

5.7 Nonseparable Behavior

The Perceptron and relaxation procedures give us a number of simple methods for
finding a separating vector when the samples are linearly separable. All of these
methods are called error-correcting procedures, because they call for a modification error-

correcting
procedure

of the weight vector when and only when an error is encountered. Their success on
separable problems is largely due to this relentless search for an error-free solution.
In practice, one would only consider the use of these methods if there was reason to
believe that the error rate for the optimal linear discriminant function is low.

Of course, even if a separating vector is found for the training samples, it does
not follow that the resulting classifier will perform well on independent test data.
A moment’s reflection will show that any set of fewer than 2d̂ samples is likely to
be linearly separable — a matter we shall return to in Chap. ??. Thus, one should
use several times that many design samples to overdetermine the classifier, thereby
ensuring that the performance on training and test data will be similar. Unfortunately,
sufficiently large design sets are almost certainly not linearly separable. This makes it
important to know how the error-correction procedures will behave when the samples
are nonseparable.

Since no weight vector can correctly classify every sample in a nonseparable set (by
definition), it is clear that the corrections in an error-correction procedure can never
cease. Each algorithm produces an infinite sequence of weight vectors, any member
of which may or may not yield a useful “solution.” The exact nonseparable behavior
of these rules has been studied thoroughly in a few special cases. It is known, for
example, that the length of the weight vectors produced by the fixed-increment rule
are bounded. Empirical rules for terminating the correction procedure are often based
on this tendency for the length of the weight vector to fluctuate near some limiting
value. From a theoretical viewpoint, if the components of the samples are integer-
valued, the fixed-increment procedure yields a finite-state process. If the correction
process is terminated at some arbitrary point, the weight vector may or may not be in
a good state. By averaging the weight vectors produced by the correction rule, one can
reduce the risk of obtaining a bad solution by accidentally choosing an unfortunate
termination time.

A number of similar heuristic modifications to the error-correction rules have been
suggested and studied empirically. The goal of these modifications is to obtain ac-
ceptable performance on nonseparable problems while preserving the ability to find a
separating vector on separable problems. A common suggestion is the use of a vari-
able increment η(k), with η(k) approaching zero as k approaches infinity. The rate
at which η(k) approaches zero is quite important. If it is too slow, the results will
still be sensitive to those training samples that render the set nonseparable. If it is
too fast, the weight vector may converge prematurely with less than optimal results.
One way to choose η(k) is to make it a function of recent performance, decreasing
it as performance improves. Another way is to program η(k) by a choice such as
η(k) = η(1)/k. When we examine stochastic approximation techniques, we shall see
that this latter choice is the theoretical solution to an analogous problem. Before we
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take up this topic, however, we shall consider an approach that sacrifices the ability
to obtain a separating vector for good compromise performance on both separable
and nonseparable problems.

5.8 Minimum Squared Error Procedures

5.8.1 Minimum Squared Error and the Pseudoinverse

The criterion functions we have considered thus far have focussed their attention on
the misclassified samples. We shall now consider a criterion function that involves all
of the samples. Where previously we have sought a weight vector a making all of the
inner products atyi positive, now we shall try to make atyi = bi, where the bi are
some arbitrarily specified positive constants. Thus, we have replaced the problem of
finding the solution to a set of linear inequalities with the more stringent but better
understood problem of finding the solution to a set of linear equations.

The treatment of simultaneous linear equations is simplified by introducing matrix
notation. Let Y be the n-by-d̂ matrix (d̂ = d + 1) whose ith row is the vector yti ,
and let b be the column vector b = (b1, ..., bn)t. Then our problem is to find a weight
vector a satisfying



Y10 Y11 · · · Y1d

Y20 Y21 · · · Y2d

...
...

...
...

...
...

...
...

...
Yn0 Yn1 · · · Ynd




a0

a1

...
ad


=



b1
b2
...
...
...
bn


or Ya = b. (41)

If Y were nonsingular, we could write a = Y−1b and obtain a formal solution at once.
However, Y is rectangular, usually with more rows than columns. When there are
more equations than unknowns, a is overdetermined, and ordinarily no exact solution
exists. However, we can seek a weight vector a that minimizes some function of the
error between Ya and b. If we define the error vector e by

e = Ya− b (42)

then one approach is to try to minimize the squared length of the error vector. This
is equivalent to minimizing the sum-of-squared-error criterion function

Js(a) = ‖Ya− b‖2 =
n∑
i=1

(atyi − bi)2. (43)

The problem of minimizing the sum of squared error is a classical one. It can be
solved by a gradient search procedure, as we shall see in Sect. ??. A simple closed-form
solution can also be found by forming the gradient

∇Js =
n∑
i=1

2(atyi − bi)yi = 2Yt(Ya− b) (44)
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and setting it equal to zero. This yields the necessary condition

YtYa = Ytb, (45)

and in this way we have converted the problem of solving Ya = b to that of solving
YtYa = Ytb. This celebrated equation has the great advantage that the d̂-by-d̂
matrix YtY is square and often nonsingular. If it is nonsingular, we can solve for a
uniquely as

a = (YtY)−1Ytb

= Y†b, (46)

where the d̂-by-n matrix

Y† ≡ (YtY)−1Yt (47)

is called the pseudoinverse of Y. Note that if Y is square and nonsingular, the pseu- pseudo-
inversedoinverse coincides with the regular inverse. Note also that Y†Y = I, but YY† 6= I

in general. However, a minimum-squared-error (MSE) solution always exists. In
particular, if Y† is defined more generally by

Y† ≡ lim
ε→0

(YtY + εI)−1Yt, (48)

it can be shown that this limit always exists, and that a = Y†b is an MSE solution
to Ya = b.

The MSE solution depends on the margin vector b, and we shall see that different
choices for b give the solution different properties. If b is fixed arbitrarily, there is
no reason to believe that the MSE solution yields a separating vector in the linearly
separable case. However, it is reasonable to hope that by minimizing the squared-
error criterion function we might obtain a useful discriminant function in both the
separable and the nonseparable cases. We shall now examine two properties of the
solution that support this hope.

Example 1: Constructing a linear classifier by matrix pseudoinverse

Suppose we have the following two-dimensional points for two categories: ω1:
(1, 2)t and (2, 0)t, and ω2: (3, 1)t and (2, 3)t, as shown in black and red, respectively,
in the figure.
Our matrix Y is therefore

Y =


1 1 2
1 2 0
−1 −3 −1
−1 −2 −3


and after a few simple calculations we find that its pseudoinverse is

Y† ≡ lim
ε→0

(YtY + εI)−1Yt =

 5/4 13/12 3/4 7/12
−1/2 −1/6 −1/2 −1/6

0 −1/3 0 −1/3
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 = 0, where a was found

by means of a pseudoinverse technique.

We arbitrarily let all the margins be equal, i.e., b = (1, 1, 1, 1)t. Our solution is
a = Y†b = (11/3,−4/3,−2/3)t, and leads to the decision boundary shown in the
figure. Other choices for b would typically lead to different decision boundaries, of
course.

5.8.2 Relation to Fisher’s Linear Discriminant

In this section we shall show that with the proper choice of the vector b, the MSE
discriminant function aty is directly related to Fisher’s linear discriminant. To do
this, we must return to the use of linear rather than generalized linear discriminant
functions. We assume that we have a set of n d-dimensional samples x1, ...,xn, n1 of
which are in the subset D1 labelled ω1, and n2 of which are in the subset D2 labelled
ω2. Further, we assume that a sample yi is formed from xi by adding a threshold
component x0 = 1 to make an augmented pattern vector. Further, if the sample isaugmented

pattern
vector

labelled ω2, then the entire pattern vector is multiplied by −1 — the “normlization”
we saw in Sect. 5.4.1. With no loss in generality, we can assume that the first n1

samples are labelled ω1 and the second n2 are labelled ω2. Then the matrix Y can
be partitioned as follows:

Y =
[

11 X1

−12 −X2

]
,

where 1i is a column vector of ni ones, and Xi is an ni-by-d matrix whose rows are
the samples labelled ωi. We partition a and b correspondingly, with

a =
[
w0

w

]
and with
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b =
[ n

n1
11

n
n2

12

]
.

We shall now show that this special choice for b links the MSE solution to Fisher’s
linear discriminant.

We begin by writing Eq. 47 for a in terms of the partitioned matrices:

[ 1t1 −1t2
Xt

1 −Xt
2

][ 11 X1

−12 −X2

][ w0

w

]
=
[ 1t1 −1t2

Xt
1 −Xt

2

] [ n
n1

11
n
n2

12

]
. (49)

By defining the sample means mi and the pooled sample scatter matrix SW as

mi =
1
ni

∑
x∈Di

x i = 1, 2 (50)

and

SW =
2∑
i=1

∑
x∈Di

(x−mi)(x−mi)t, (51)

we can multiply the matrices of Eq. 49 and obtain

[
n (n1m1 + n2m2)t

(n1m1 + n2m2) SW + n1m1mt
1 + n2m2mt

2

][
w0

w

]
=
[

0
n(m1 −m2)

]
.

This can be viewed as a pair of equations, the first of which can be solved for w0 in
terms of w:

w0 = −mtw, (52)

where m is the mean of all of the samples. Substituting this in the second equation
and performing a few algebraic manipulations, we obtain[ 1

n
SW +

n1n2

n2
(m1 −m2)(m1 −m2)t

]
w = m1 −m2. (53)

Since the vector (m1−m2)(m1−m2)tw is in the direction of m1−m2 for any value
of w, we can write

n1n2

n2
(m1 −m2)(m1 −m2)tw = (1− α)(m1 −m2),

where α is some scalar. Then Eq. 53 yields

w = αnS−1
W (m1 −m2), (54)

which, except for an unimportant scale factor, is identical to the solution for Fisher’s
linear discriminant. In addition, we obtain the threshold weight w0 and the following
decision rule: Decide ω1 if wt(x−m) > 0; otherwise decide ω2.
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5.8.3 Asymptotic Approximation to an Optimal Discriminant

Another property of the MSE solution that recommends its use is that if b = 1n it
approaches a minimum mean-squared-error approximation to the Bayes discriminant
function

g0(x) = P (ω1|x)− P (ω2|x) (55)

in the limit as the number of samples approaches infinity. To demonstrate this fact,
we must assume that the samples are drawn independently, identically distributed
(i.i.d.) according to the probability law

p(x) = p(x|ω1)P (ω1) + p(x|ω2)P (ω2). (56)

In terms of the augmented vector y, the MSE solution yields the series expansion
g(x) = aty, where y = y(x). If we define the mean-squared approximation error by

ε2 =
∫

[aty − g0(x)]2p(x) dx, (57)

then our goal is to show that ε2 is minimized by the solution a = Y†1n.
The proof is simplified if we preserve the distinction between category ω1 and

category ω2 samples. In terms of the unnormalized data, the criterion function Js
becomes

Js(a) =
∑

y∈Y1

(aty − 1)2 +
∑

y∈Y2

(aty + 1)2

= n
[n1

n

1
n1

∑
y∈Y1

(aty − 1)2 +
n2

n

1
n2

∑
y∈Y2

(aty + 1)2
]
. (58)

Thus, by the law of large numbers, as n approaches infinity (1/n)Js(a) approaches

J̄(a) = P (ω1)E1[(aty − 1)2] + P (ω2)E2[(aty + 1)2], (59)

with probability one, where

E1[(aty − 1)2] =
∫

(aty − 1)2p(x|ω1) dx

and

E2[(aty + 1)2] =
∫

(aty + 1)2p(x|ω2) dx.

Now, if we recognize from Eq. 55 that

g0(x) =
p(x, ω1)− p(x, ω2)

p(x)

we see that
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J̄(a) =
∫

(aty − 1)2p(x, ω1) dx +
∫

(aty + 1)2p(x, ω2) dx

=
∫

(aty)2p(x) dx− 2
∫

atyg0(x)p(x) dx + 1

=
∫

[aty − g0(x)]2p(x) dx︸ ︷︷ ︸
ε2

+
[
1−

∫
g2

0(x)p(x) dx
]

︸ ︷︷ ︸
indep. of a

. (60)

The second term in this sum is independent of the weight vector a. Hence, the a
that minimizes Js also minimizes ε2 — the mean-squared-error between aty and g(x)
(Fig. 5.16). In Chap. ?? we shall see that analogous properties also holds for many
multilayer networks.
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Figure 5.16: The top figure shows two class-conditional densities, and the middle figure
the posteriors, assuming equal priors. Minimizing the MSE error also minimizes the
mean-squared-error between aty and the discriminant function g(x) (here a 7th-order
polynomial) measured over the data distribution, as shown at the bottom. Note that
the resulting g(x) best approximates g0(x) in the regions where the data points lie.

This result gives considerable insight into the MSE procedure. By approximat-
ing g0(x), the discriminant function aty gives direct information about the posterior
probabilities P (ω1|x) = (1 + g0)/2 and P (ω2|x) = (1 − g0)/2. The quality of the
approximation depends on the functions yi(x) and the number of terms in the expan-
sion aty. Unfortunately, the mean-square-error criterion places emphasis on points
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where p(x) is larger, rather than on points near the decision surface g0(x) = 0. Thus,
the discriminant function that “best” approximates the Bayes discriminant does not
necessarily minimize the probability of error. Despite this property, the MSE solution
has interesting properties, and has received considerable attention in the literature.
We shall encounter the mean-square approximation of g0(x) again when we consider
stochastic approximation methods and multilayer neural networks.

5.8.4 The Widrow-Hoff Procedure

We remarked earlier that Js(a) = ‖Ya − b‖2 could be minimized by a gradient
descent procedure. Such an approach has two advantages over merely computing the
pseudoinverse: (1) it avoids the problems that arise when YtY is singular, and (2)
it avoids the need for working with large matrices. In addition, the computation
involved is effectively a feedback scheme which automatically copes with some of the
computational problems due to roundoff or truncation. Since ∇Js = 2Yt(Ya − b),
the obvious update rule is

a(1) arbitrary
a(k + 1) = a(k) + η(k)Yt(Yak − b).

}

In Problem 24 you are asked to show that if η(k) = η(1)/k, where η(1) is any positive
constant, then this rule generates a sequence of weight vectors that converges to a
limiting vector a satisfying

Yt(Ya− b) = 0.

Thus, the descent algorithm always yields a solution regardless of whether or not YtY
is singular.

While the d̂-by-d̂ matrix YtY is usually smaller than the d̂-by-n matrix Y†, the
storage requirements can be reduced still further by considering the samples sequen-
tially and using the Widrow-Hoff or LMS rule (least-mean-squared):LMS rule

a(1) arbitrary
a(k + 1) = a(k) + η(k)(bk − a(k)tyk)yk,

}
(61)

or in algorithm form:

Algorithm 10 (LMS)

1 begin initialize a,b, criterion θ, η(·), k = 0
2 do k ← k + 1
3 a← a + η(k)(bk − atyk)yk

4 until η(k)(bk − atyk)yk < θ
5 return a
6 end

At first glance this descent algorithm appears to be essentially the same as the re-
laxation rule. The primary difference is that the relaxation rule is an error-correction
rule, so that at(k)yk does not equal bk, and thus the corrections never cease. There-
fore, η(k) must decrease with k to obtain convergence, the choice η(k) = η(1)/k being
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common. Exact analysis of the behavior of the Widrow-Hoff rule in the deterministic
case is rather complicated, and merely indicates that the sequence of weight vectors
tends to converge to the desired solution. Instead of pursuing this topic further, we
shall turn to a very similar rule that arises from a stochastic descent procedure. We
note, however, that the solution need not give a separating vector, even if one exists,
as shown in Fig. 5.17 (Computer exercise 10).

y1

y2 separating hyperplane

LMS solution

Figure 5.17: The LMS algorithm need not converge to a separating hyperplane, even
if one exists. Since the LMS solution minimizes the sum of the squares of the distances
of the training points to the hyperplane, for this exmple the plane is rotated clockwise
compared to a separating hyperplane.

5.8.5 Stochastic Approximation Methods

All of the iterative descent procedures we have considered thus far have been described
in deterministic terms. We are given a particular set of samples, and we generate a
particular sequence of weight vectors. In this section we digress briefly to consider
an MSE procedure in which the samples are drawn randomly, resulting in a random
sequence of weight vectors. We will return in Chap. ?? to the theory of stochastic
approximation though here some of the main ideas will be presented without proof.

Suppose that samples are drawn independently by selecting a state of nature with
probability P (ωi) and then selecting an x according to the probability law p(x|ωi).
For each x we let θ be its label, with θ = +1 if x is labelled ω1 and θ = −1 if x
is labelled ω2. Then the data consist of an infinite sequence of independent pairs
(x, θ1), (x2, θ2), ..., (xk, θk), .... Even though the label variable θ is binary-valued it
can be thought of as a noisy version of the Bayes discriminant function g0(x). This
follows from the observation that

P (θ = 1|x) = P (ω1|x),

and

P (θ = −1|x) = P (ω2|x),

so that the conditional mean of θ is given by

Eθ|x[θ] =
∑
θ

θP (θ|x) = P (ω1|x)− P (ω2|x) = g0(x). (62)
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Suppose that we wish to approximate g0(x) by the finite series expansion

g(x) = aty =
d̂∑
i=1

aiyi(x),

where both the basis functions yi(x) and the number of terms d̂ are known. Then we
can seek a weight vector â that minimizes the mean-squared approximation error

ε2 = E [(aty − g0(x))2]. (63)

Minimization of ε2 would appear to require knowledge of Bayes discriminant g0(x).
However, as one might have guessed from the analogous situation in Sect. 5.8.3, it
can be shown that the weight vector â that minimizes ε2 also minimizes the criterion
function

Jm(a) = E [(aty − θ)2]. (64)

This should also be plausible from the fact that θ is essentially a noisy version of g0(x)
(Fig. ??). Since the gradient is

∇Jm = 2E [(aty − θ)y], (65)

we can obtain the closed-form solution

â = E [yyt]−1E [θy]. (66)

Thus, one way to use the samples is to estimate E [yyt] and E [θy], and use Eq. 66 to
obtain the MSE optimal linear discriminant. An alternative is to minimize Jm(a) by
a gradient descent procedure. Suppose that in place of the true gradient we substitute
the noisy version 2(atyk − θk)yk. This leads to the update rule

a(k + 1) = a(k) + η(θk − at(k)yk)yk, (67)

which is basically just the Widrow-Hoff rule. It can be shown (Problem ??) that if
E [yyt] is nonsingular and if the coefficients η(k) satisfy

lim
m→∞

m∑
k=1

η(k) = +∞ (68)

and

lim
m→∞

m∑
k=1

η2(k) <∞ (69)

then a(k) converges to â in mean square:

lim
k→∞

E [‖a(k)− â‖2] = 0. (70)

The reasons we need these conditions on η(k) are simple. The first condition keeps
the weight vector from converging so fast that a systematic error will remain forever
uncorrected. The second condition ensures that random fluctuations are eventually
suppressed. Both conditions are satisfied by the conventional choice η(k) = 1/k.
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Unfortunately, this kind of programmed decrease of η(k), independent of the problem
at hand, often leads to very slow convergence.

Of course, this is neither the only nor the best descent algorithm for minimizing
Jm. For example, if we note that the matrix of second partial derivatives for Jm is
given by

D = 2E [yyt],

we see that Newton’s rule for minimizing Jm (Eq. 15) is

a(k + 1) = a(k) + E [yyt]−1E [(θ − aty)y].

A stochastic analog of this rule is

a(k + 1) = a(k) + Rk+1(θk − at(k)yk)yk. (71)

with

R−1
k+1 = R−1

k + ykytk, (72)

or, equivalently,∗

Rk+1 = Rk −
Rkyk(Rkyk)t

1 + ytkRkyk
. (73)

This rule also produces a sequence of weight vectors that converges to the optimal
solution in mean square. Its convergence is faster, but it requires more computation
per step (Computer exercise 8).

These gradient procedures can be viewed as methods for minimizing a criterion
function, or finding the zero of its gradient, in the presence of noise. In the statistical
literature, functions such as Jm and ∇Jm that have the form E [f(a,x)] are called
regression functions, and the iterative algorithms are called stochastic approximation regression

functionprocedures. Two well known ones are the Kiefer-Wolfowitz procedure for minimizing a

stochastic
approxi-
mation

regression function, and the Robbins-Monro procedure for finding a root of a regression
function. Often the easiest way to obtain a convergence proof for a particular descent
or approximation procedure is to show that it satisfies the convergence conditions for
these more general procedures. Unfortunately, an exposition of these methods in their
full generality would lead us rather far afield, and we must close this digression by
referring the interested reader to the literature.

5.9 The Ho-Kashyap Procedures

5.9.1 The Descent Procedure

The procedures we have considered thus far differ in several ways. The Perceptron
and relaxation procedures find separating vectors if the samples are linearly separable,
but do not converge on nonseparable problems. The MSE procedures yield a weight
vector whether the samples are linearly separable or not, but there is no guarantee
∗ This recursive formula for computing Rk, which is roughly (1/k)E[yyt]−1, cannot be used if Rk

is singular. The equivalence of Eq. 72 and Eq. 73 follows from Problem ?? of Chap. ??.
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that this vector is a separating vector in the separable case (Fig. 5.17). If the margin
vector b is chosen arbitrarily, all we can say is that the MSE procedures minimize
‖Ya − b‖2. Now if the training samples happen to be linearly separable, then there
exists an â and a b̂ such that

Yâ = b̂ > 0,

where by b̂ > 0, we mean that every component of b̂ is positive. Clearly, were we
to take b = b̂ and apply the MSE procedure, we would obtain a separating vector.
Of course, we usually do not know b̂ beforehand. However, we shall now see how the
MSE procedure can be modified to obtain both a separating vector a and a margin
vector b. The underlying idea comes from the observation that if the samples are
separable, and if both a and b in the criterion function

Js(a,b) = ‖Ya− b‖2 (74)

are allowed to vary (subject to the constraint b > 0), then the minimum value of Js
is zero, and the a that achieves that minimum is a separating vector.

To minimize Js, we shall use a modified gradient descent procedure. The gradient
of Js with respect to a is given by

∇aJs = 2Yt(Ya− b), (75)

and the gradient of Js with respect to b is given by

∇bJs = −2(Ya− b). (76)

For any value of b, we can always take

a = Y†b, (77)

thereby obtaining ∇aJs = 0 and minimizing Js with respect to a in one step. We
are not so free to modify b, however, since we must respect the constraint b > 0,
and we must avoid a descent procedure that converges to b = 0. One way to prevent
b from converging to zero is to start with b > 0 and to refuse to reduce any of its
components. We can do this and still try to follow the negative gradient if we first set
all positive components of ∇bJs to zero. Thus, if we let |v| denote the vector whose
components are the magnitudes of the corresponding components of v, we are led to
consider an update rule for the margin of the form

b(k + 1) = b(k)− η 1
2

[∇bJs − |∇bJs|]. (78)

Using Eqs. 76 & 77, and being a bit more specific, we obtain the Ho-Kashyap rule for
minimizing Js(a,b):

b(1) > 0 but otherwise arbitrary
b(k + 1) = a(k) + 2η(k)e+(k),

}
(79)

where e(k) is the error vector
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e(k) = Ya(k)− b(k), (80)

e+(k) is the positive part of the error vector

e+(k) =
1
2

(e(k) + |e(k)|), (81)

and

a(k) = Y†b(k), k = 1, 2, ... (82)

Thus if we let bmin be a small convergence criterion and Abs[e] denote the positive
part of e, our algorithm is:

Algorithm 11 (Ho-Kashyap)

1 begin initialize a,b, η(·) < 1, criteria bmin, kmax
2 do k ← k + 1
3 e← Ya− b
4 e+ ← 1/2(e + Abs[e])
5 b← a + 2η(k)e+

6 a← Y†b
7 if Abs[e] ≤ bmin then return a,b and exit
8 until k = kmax
9 Print NO SOLUTION FOUND

10 end

Since the weight vector a(k) is completely determined by the margin vector b(k),
this is basically an algorithm for producing a sequence of margin vectors. The initial
vector b(1) is positive to begin with, and if η > 0, all subsequent vectors b(k) are
positive. We might worry that if none of the components of e(k) is positive, so that
b(k) stops changing, we might fail to find a solution. However, we shall see that in
that case either e(k) = 0 and we have a solution, or e(k) ≤ 0 and we have proof that
the samples are not linearly separable.

5.9.2 Convergence Proof

We shall now show that if the samples are linearly separable, and if 0 < η < 1, then
the Ho-Kashyap algorithm will yield a solution vector in a finite number of steps. To
make the algorithm terminate, we should add a terminating condition stating that
corrections cease once a solution vector is obtained or some large criterion number of
iterations have occurred. However, it is mathematically more convenient to let the
corrections continue and show that the error vector e(k) either becomes zero for some
finite k, or converges to zero as k goes to infinity.

It is clear that either e(k) = 0 for some k — say k0 — or there are no zero vectors
in the sequence e(1), e(2), ... In the first case, once a zero vector is obtained, no further
changes occur to a(k), b(k), or e(k), and Ya(k) = b(k) > 0 for all k ≥ k0. Thus, if
we happen to obtain a zero error vector, the algorithm automatically terminates with
a solution vector.

Suppose now that e(k) is never zero for finite k. To see that e(k) must nevertheless
converge to zero, we begin by asking whether or not we might possibly obtain an e(k)
with no positive components. This would be most unfortunate, since we would have
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Ya(k) ≤ b(k), and since e+(k) would be zero, we would obtain no further changes
in a(k), b(k), or e(k). Fortunately, this can never happen if the samples are linearly
separable. A proof is simple, and is based on the fact that if YtYa(k) = Ytb, then
Yte(k) = 0. But if the samples are linearly separable, there exists an â and a b̂ > 0
such that

Yâ = b̂.

Thus,

et(k)Yâ = 0 = et(k)b̂,

and since all the components of b̂ are positive, either e(k) = 0 or at least one of the
components of e(k) must be positive. Since we have excluded the case e(k) = 0, it
follows that e+(k) cannot be zero for finite k.

The proof that the error vector always converges to zero exploits the fact that the
matrix YY† is symmetric, positive semidefinite, and satisfies

(YY†)t(YY†) = YY†. (83)

Although these results are true in general, for simplicity we demonstrate them only for
the case where YtY is nonsingular. In this case YY† = Y(YtY)−1Yt, and the sym-
metry is evident. Since YtY is positive definite, so is (YtY)−1; thus, bY(YtY)−1Ytb ≥
0 for any b, and YY† is at least positive semidefinite. Finally, Eq. 83 follows from

(YY†)t(YY†) = [Y(YtY)−1Yt][Y(YtY)−1Yt].

To see that e(k) must converge to zero, we eliminate a(k) between Eqs. 80 & 82
and obtain

e(k) = (YY† − I)b(k).

Then, using a contant learning rate and Eq. 79 we obtain the recursion relation

e(k + 1) = (YY† − I)(b(k) + 2ηe+(k))
= e(k) + 2η(YY† − I)e+(k), (84)

so that

1
4
‖e(k + 1)‖2 =

1
4
‖e(k)‖2 + ηet(k)(YY† − I)e+(k) + ‖η(YY† − I)e+(k)‖2.

Both the second and the third terms simplify considerably. Since et(k)Y = 0, the
second term becomes

ηet(k)(YY† − I)e+(k) = −ηet(k)e+t(k) = −η‖e+(k)‖2,
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the nonzero components of e+(k) being the positive components of e(k). Since YY†

is symmetric and is equal to (YY†)t(YY†), the third term simplifies to

‖η(YY† − I)e+(k)‖2 = η2e+t(k)(YY† − I)t(YY† − I)e+(k)
= η2‖e+(k)‖2 − η2e+(k)YY†e+(k),

and thus we have

1
4

(‖e(k)‖2 − ‖e(k + 1)‖2) = η(1− η)‖e+(k)‖2 + η2e+t(k)YY†e+(k). (85)

Since e+(k) is nonzero by assumption, and since YY† is positive semidefinite,
‖e(k)‖2 > ‖e(k + 1)‖2 if 0 < η < 1. Thus the sequence ‖e(1)‖2, ‖e(2)‖2, ... is
monotonically decreasing and must converge to some limiting value ‖e‖2. But for
convergence to take place, e+(k) must converge to zero, so that all the positive com-
ponents of e(k) must converge to zero. Since et(k)b̂ = 0 for all k, it follows that all of
the components of e(k) must converge to zero. Thus, if 0 < η < 1 and if the samples
are linearly separable, a(k) will converge to a solution vector as k goes to infinity.

If we test the signs of the components of Ya(k) at each step and terminate the
algorithm when they are all positive, we will in fact obtain a separating vector in a
finite number of steps. This follows from the fact that Ya(k) = b(k) + e(k), and that
the components of b(k) never decrease. Thus, if bmin is the smallest component of b(1)
and if e(k) converges to zero, then e(k) must enter the hypersphere ‖e(k)‖ = bmin after
a finite number of steps, at which point Ya(k) > 0. Although we ignored terminating
conditions to simplify the proof, such a terminating condition would always be used
in practice.

5.9.3 Nonseparable Behavior

If the convergence proof just given is examined to see how the assumption of sepa-
rability was employed, it will be seen that it was needed twice. First, the fact that
et(k)b̂ = 0 was used to show that either e(k) = 0 for some finite k, or e+(k) is never
zero and corrections go on forever. Second, this same constraint was used to show
that if e+(k) converges to zero, e(k) must also converge to zero.

If the samples are not linearly separable, it no longer follows that if e+(k) is zero
then e(k) must be zero. Indeed, on a nonseparable problem one may well obtain a
nonzero error vector having no positive components. If this occurs, the algorithm
automatically terminates and we have proof that the samples are not separable.

What happens if the patterns are not separable, but e+(k) is never zero? In this
case it still follows that

e(k + 1) = e(k) + 2η(YY† − I)e+(k) (86)

and

1
4

(‖e(k)‖2 − ‖e(k + 1)‖2) = η(1− η)‖e+(k)‖2 + η2e+t(k)YY†e+(k). (87)

Thus, the sequence ‖e(1)‖2, ‖e(2)‖2, ... must still converge, though the limiting value
‖e‖2 cannot be zero. Since convergence requires that e+(k) = 0 for some finite k,
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or e+(k) converges to zero while ‖e(k)‖ is bounded away from zero. Thus, the Ho-
Kashyap algorithm provides us with a separating vector in the separable case, and
with evidence of nonseparability in the nonseparable case. However, there is no bound
on the number of steps needed to disclose nonseparability.

5.9.4 Some Related Procedures

If we write Y† = (YtY)−1Yt and make use of the fact that Yte(k) = 0, we can
modify the Ho-Kashyap rule as follows

b(1) > 0 but otherwise arbitrary
a(1) = Y†b(1)

b(k + 1) = b(k) + η(e(k) + |e(k)|)
a(k + 1) = a(k) + ηY†|e(k)|,

 (88)

where, as usual,

e(k) = Ya(k)− b(k). (89)

This then gives the algorithm for fixed learning rate:

Algorithm 12 (Modified Ho-Kashyap)

1 begin initialize a,b, η < 1, criterion bmin, kmax
2 do k ← k + 1
3 e← Ya− b
4 e+ ← 1/2(e + Abs[e])
5 b← b + 2η(k)(e + Abs[e])
6 a← Y†b
7 if Abs[e] ≤ bmin then return a,b and exit
8 until k = kmax
9 print NO SOLUTION FOUND

10 end

This algorithm differs from the Perceptron and relaxation algorithms for solving
linear inequalities in at least three ways: (1) it varies both the weight vector a and
the margin vector b, (2) it provides evidence of nonseparability, but (3) it requires
the computation of the pseudoinverse of Y. Even though this last computation need
be done only once, it can be time consuming, and it requires special treatment if YtY
is singular. An interesting alternative algorithm that resembles Eq. 88 but avoids the
need for computing Y† is

b(1) > 0 but otherwise arbitrary
a(1) = arbitrary

b(k + 1) = b(k) + (e(k) + |e(k)|)
a(k + 1) = a(k) + ηRYt|e(k)|

 , (90)

where R is an arbitrary, constant, postive-definite d̂-by-d̂ matrix. We shall show that
if η is properly chosen, this algorithm also yields a solution vector in a finite number
of steps, provided that a solution exists. Furthermore, if no solution exists, the vector
Yt|e(k)| either vanishes, exposing the nonseparability, or converges to zero.

The proof is fairly straightforward. Whether the samples are linearly separable or
not, Eqs. 89 & 90 show that
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e(k + 1) = Ya(k + 1)− b(k + 1)
= (ηYRYt − I)|e(k)|.

We can find, then, that the squared magnitude is

‖e(k + 1)‖2 = |e(k)|t(η2YRYtYRY − 2ηYRYt + I)|e(k)|,

and furthermore

‖e‖2 − ‖e(k + 1)‖2 = (Yt|e(k)|)tA(Yt|e(k)|), (91)

where

A = 2ηR− η2RYtR. (92)

Clearly, if η is positive but sufficiently small, A will be approximately 2ηR and hence
positive definite. Thus, if Yt|e(k)| 6= 0 we will have ‖e(k)‖2 > ‖e(k + 1)‖2.

At this point we must distinguish between the separable and the nonseparable
case. In the separable case there exists an â and a b̂ > 0 satisfying Yâ = b̂. Thus, if
|e(k)| 6= 0,

|e(k)|tYâ = |e(k)|tb̂ > 0,

so that Yt|e(k)| can not be zero unless e(k) is zero. Thus, the sequence ‖e(1)‖2, ‖e(2)‖2, ...
is monotonically decreasing and must converge to some limiting value ‖e‖2. But for
convergence to take place, Yt|e(k)| must converge to zero, which implies that |e(k)|
and hence e(k) must converge to zero. Since e(k) starts out positive and never de-
creases, it follows that a(k) must converge to a separating vector. Moreover, by the
same argument used before, a solution must actually be obtained after a finite number
of steps.

In the nonseparable case, e(k) can neither be zero nor converge to zero. It may
happen that Yt|e(k)| = 0 at some step, which would provide proof of nonseparability.
However, it is also possible for the sequence of corrections to go on forever. In this
case, it again follows that the sequence ‖e(1)‖2, ‖e(2)‖2, ... must converge to a limiting
value ‖e‖2 6= 0, and that Yt|e(k)| must converge to zero. Thus, we again obtain
evidence of nonseparability in the nonseparable case.

Before closing this discussion, let us look briefly at the question of choosing η and
R. The simplest choice for R is the identity matrix, in which case A = 2ηI− η2YtY.
This matrix will be positive definite, thereby assuring convergence, if 0 < η < 2/λmax,
where λmax is the largest eigenvalue of YtY. Since the trace of YtY is both the sum
of the eigenvalues of YtY and the sum of the squares of the elements of Y, one can
use the pessimistic bound d̂λmax ≤

∑
i

‖yi‖2 in selecting a value for η.

A more interesting approach is to change η at each step, selecting that value that
maximizes ‖e(k)‖2 − ‖e(k + 1)‖2. Equations 91 & 92 give

‖e(k)‖2 − ‖e(k + 1)‖2 = |e(k)|tY(2ηR− η2RYtYR)Yt|e(k)|. (93)

By differentiating with respect to η, we obtain the optimal value
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η(k) =
|e(k)|tYRYt|e(k)|

|e(k)|tYRYtYRYt|e(k)|
, (94)

which, for R = I, simplifies to

η(k) =
‖Yt|e(k)| ‖2
‖YYt|e(k)| ‖2

. (95)

This same approach can also be used to select the matrix R. By replacing R in Eq. 93
by the symmetric matrix R + δR and neglecting second-order terms, we obtain

δ(‖e(k)‖2 − ‖e(k + 1)‖2) = |e(k)|Y[δRt(I− ηYtYR) + (I− ηRYtY)δR]Yt|e(k)|.

Thus, the decrease in the squared error vector is maximized by the choice

R =
1
η

(YtY)−1 (96)

and since ηRYt = Y†, the descent algorithm becomes virtually identical with the
original Ho-Kashyap algorithm.

5.10 Linear Programming Algorithms

5.10.1 Linear Programming

The Perceptron, relaxation and Ho-Kashyap procedures are basically gradient de-
scent procedures for solving simultaneous linear inequalities. Linear programming
techniques are procedures for maximizing or minimizing linear functions subject to
linear equality or inequality constraints. This at once suggests that one might be able
to solve linear inequalities by using them as the constraints in a suitable linear pro-
gramming problem. In this section we shall consider two of several ways that this can
be done. The reader need have no knowledge of linear programming to understand
these formulations, though such knowledge would certainly be useful in applying the
techniques.

A classical linear programming problem can be stated as follows: Find a vector
u = (u1, ..., um)t that minimizes the linear (scalar) objective functionobjective

function

z = αtu (97)

subject to the constraint

Au ≥ β, (98)

where α is an m-by-1 cost vector, β is an l-by-1 vector, and A is an l-by-m matrix.
The simplex algorithm is the classical iterative procedure for solving this problemsimplex

algorithm (Fig. 5.18). For technical reasons, it requires the imposition of one more constraint,
viz., u ≥ 0.
If we think of u as being the weight vector a, this constraint is unacceptable, since
in most cases the solution vector will have both positive and negative components.
However, suppose that we write
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u1

u2

u3

Figure 5.18: Surfaces of constant z = αtu are shown in gray, while constraints of the
form Au.β are shown in red. The simplex algorithm finds an extremum of z given
the constraints, i.e., where the gray plan intersects the red at a single point.

a ≡ a+ − a−, (99)

where

a+ ≡ 1
2

(|a|+ a) (100)

and

a− ≡ 1
2

(|a| − a). (101)

Then both a+ and a− are nonnegative, and by identifying the components of u with
the components of a+ and a−, for example, we can accept the constraint u ≥ 0.

5.10.2 The Linearly Separable Case

Suppose that we have a set of n samples y1, ...,yn and we want a weight vector a that
satisfies atyi ≥ bi > 0 for all i. How can we formulate this as a linear programming
problem? One approach is to introduce what is called an artificial variable τ ≥ 0 by
writing

atyi + τ ≥ bi.

If τ is sufficiently large, there is no problem in satisfying these constraints; for example,
they are satisfied if a = 0 and τ = maxi bi.∗ However, this hardly solves our original
problem. What we want is a solution with τ = 0, which is the smallest value τ can
have and still satisfy τ ≥ 0. Thus, we are led to consider the following problem:
Minimize τ over all values of τ and a that satisfy the conditions atyi ≥ bi and τ ≥ 0.
∗ In the terminology of linear programming, any solution satisfying the constraints is called a feasible

solution. A feasible solution for which the number of nonzero variables does not exceed the number
of constraints (not counting the simplex requirement for nonnegative variables) is called a basic
feasible solution. Thus, the solution a = 0 and τ = maxi bi is a basic feasible solution. Possession
of such a solution simplifies the application of the simplex algorithm.
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If the answer is zero, the samples are linearly separable, and we have a solution. If the
answer is positive, there is no separating vector, but we have proof that the samples
are nonseparable.

Formally, our problem is to find a vector u that minimizes the objective function
z = αtu subject to the constraints Au ≥ β and u ≥ 0, where

A =


yt1 −yt1 1
yt2 −yt2 1
...

...
...

ytn −ytn 1

 , u =

 a+

a−

τ

 , α =

 0
0
1

 , β =


b1
b2
...
bn

 .
Thus, the linear programming problem involves m = 2d̂ + 1 variables and l = n
constraints, plus the simplex algorithm constraints u ≥ 0. The simplex algorithm will
find the minimum value of the objective function z = αtu = τ in a finite number
of steps, and will exhibit a vector û yielding that value. If the samples are linearly
separable, the minimum value of τ will be zero, and a solution vector â can be obtained
from û. If the samples are not separable, the minimum value of τ will be positive.
The resulting û is usually not very useful as an approximate solution, but at least one
obtains proof of nonseparability.

5.10.3 Minimizing the Perceptron Criterion Function

In the vast majority of pattern classification applications we cannot assume that the
samples are linearly separable. In particular, when the patterns are not separable,
one still wants to obtain a weight vector that classifies as many samples correctly as
possible. Unfortunately, the number of errors is not a linear function of the compo-
nents of the weight vector, and its minimization is not a linear programming problem.
However, it turns out that the problem of minimizing the Perceptron criterion func-
tion can be posed as a problem in linear programming. Since minimization of this
criterion function yields a separating vector in the separable case and a reasonable
solution in the nonseparable case, this approach is quite attractive.

Recall from Sect. ?? that the basic Perceptron criterion function is given by

Jp(a) =
∑
y∈Y

(−aty), (102)

where Y(a) is the set of training samples misclassified by a. To avoid the useless
solution a = 0, we introduce a positive margin vector b and write

J ′p(a) =
∑
y∈Y′

(bi − aty), (103)

where yi ∈ Y ′ if atyi ≤ bi. Clearly, J ′p is a piecewise-linear function of a, not a
linear function, and linear programming techniques are not immediately applicable.
However, by introducing n artificial variables and their constraints we can construct
an equivalent linear objective function. Consider the problem of finding vectors a and
τ that minimize the linear function

a =
n∑
i=1

τi
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subject to the constraints

τk ≥ 0 and τi ≥ bi − atyi.

Of course for any fixed value of a, the minimum value of z is exactly equal to J ′p(a),
since under these constraints the best we can do is to take τi = max[0, bi − atyi]. If
we minimize z over t and a, we shall obtain the minimum possible value of J ′p(a).
Thus, we have converted the problem of minimizing J ′p(a) to one of minimizing a
linear function z subject to linear inequality constraints. Letting un denote an n-
dimensional unit vector, we obtain the following problem with m = 2d̂ + n variables
and l = n constraints: Minimize αtu subject to Au ≥ β and u ≥ 0, where

A =


yt1 −yt1 1 0 · · · 0
yt2 −yt2 0 1 · · · 0
...

...
...

...
. . .

...
ytn −ytn 0 0 · · · 1

 , u =

 a+

a−

τ

 , α =

 0
0
1n

 , β =


b1
b2
...
bn

 .
The choice a = 0 and τi = bi provides a basic feasible solution to start the simplex
algorithm, and the simplex algorithm will provide an â minimizing J ′p(a) in a finite
number of steps.

We have shown two ways to formulate the problem of finding a linear discriminant
function as a problem in linear programming. There are other possible formulations,
the ones involving the so-called dual problem being of particular interest from a com-
putational standpoint. Generally speaking, methods such as the simplex method are
merely sophisticated gradient descent methods for extremizing linear functions sub-
ject to linear constraints. The coding of a linear programming algorithm is usually
more complicated than the coding of the simpler descent procedures we described ear-
lier, and these descent procedures generalize naturally to multilayer neural networks.
However, general purpose linear programming packages can often be used directly or
modified appropriately with relatively little effort. When this can be done, one can
secure the advantage of guaranteed convergence on both separable and nonseparable
problems.

The various algorithms for finding linear discriminant functions presented in this
chapter are summarized in Table 5.1. It is natural to ask which one is best, but none
uniformly dominates or is uniformly dominated by all others. The choice depends
upon such considerations as desired characteristics, ease of programming, the number
of samples, and the dimensionality of the samples. If a linear discriminant function
can yield a low error rate, any of these procedures, intelligently applied, can provide
good performance.
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Table 5.1: Descent Procedures for Obtaining Linear Discriminant Functions
Name Criterion Algorithm Conditions Rema

Fixed
Increment Jp =

∑
aty≤0

(−aty)
a(k + 1) = a(k) + yk

(at(k)yk ≤ 0)
—

Finite
linear
soluti
a(k) a

Variable
Increment J ′p =

∑
aty≤0

−(aty − b)
a(k + 1) = a(k) + η(k)yk

(at(k)yk ≤ b)

η(k) ≥ 0∑
η(k)→∞∑
η2(k)

(
∑

η(k))2 → 0

Conve
separ
with a
Finite
0 < α

Relaxation Jr = 1
2

∑
aty≤b

(aty−b)2

‖y‖2
a(k + 1) = a(k) + η b−at(k)yk

‖yk‖2 yk

(at(k)yk ≤ b)
0 < η < 2

Conve
separ
with a
finite
soluti

Widrow-Hoff
(LMS) Js =

∑
i

(atyi − bi)2 a(k + 1) =
a(k) + η(k)(bk − at(k)yk)yk

η(k) > 0
η(k)→ 0

Tends
minim

Stochastic Jm = E
[
(aty − z)2

]
a(k + 1) =

a(k) + η(k)(zk − at(k)yk)yk

∑
η(k)→∞∑

η2(k)→ L <∞

Involv
numb
drawn
verges
to a s

Approx.
a(k + 1) =

a(k) + R(k)(z(k)− a(k)tyk)yk R−1(k + 1) = R−1(k) + ykytk

mizin
vides
imatio
discri

Pseudo-
inverse Js = ‖Ya− b‖2 a = Y†b —

Classi
specia
yield
discri
appro
Bayes

Ho-Kashyap Js = ‖Ya− b‖2

b(k + 1) = b(k) + η(e(k) + |e(k)|)

e(k) = Ya(k)− b(k)

a(k) = Y†b(k)

0 < η < 1

b(1) > 0

a(k) i
for ea
vergen
separ
but e
sampl
non-s

b(k + 1) = b(k) + η(e(k) + (|e(k)|)

a(k + 1) = a(k) + ηRYt|e(k)|

η(k) =
|e(k)|tYRYt|e(k)|

|e(k)|tYRYtYRYt|e(k)|
is optimum;

R sym., pos. def.;
b(1) > 0

Finite
linear
if Yt|
e(k) 6=
are no

Linear

τ =max
atyi≤bi

[−(atyi − bi)] Simplex algorithm
atyi + τ ≥ bi

b ≥ 0

Finite
both
nonse
useful
if sep

Program-
ming J ′p =

n∑
i=1

τi

=
∑

atyi≤bi
−(atyi − bi)

Simplex algorithm
atyi + τ ≥ bi

b ≥ 0

Finite
both
nonse
useful
if sep
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5.11 *Support Vector Machines

We have seen how to train linear machines with margins. Support Vector Machines
(SVMs) are motivated by many of the same considerations, but rely on preprocessing
the data to represent patterns in a high dimension — typically much higher than the
original feature space. With an appropriate nonlinear mapping ϕ() to a sufficiently
high dimension, data from two categories can always be separated by a hyperplane
(Problem 27). Here we assume each pattern xk has been transformed to yk = ϕ(xk);
we return to the choice of ϕ() below. For each of the n patterns, k = 1, 2, ..., n, we let
zk = ±1, according to whether pattern k is in ω1 or ω2. A linear discriminant in an
augmented y space is

g(y) = aty, (104)

where both the weight vector and the transformed pattern vector are augmented (by
a0 = w0 and y0 = 1, respectively). Thus a separating hyperplane insures

zkg(yk) ≥ 1 k = 1, ..., n, (105)

much as was shown in Fig. 5.8.
In Sect. ??, the margin was any positive distance from the decision hyperplane.

The goal in training a Support Vector Machine is to find the separating hyperplane
with the largest margin; we expect that the larger the margin, the better generalization
of the classifier. As illustrated in Fig. 5.2 the distance from any hyperplane to a
(transformed) pattern y is |g(y)|/||a||, and assuming that a positive margin b exists,
Eq. 105 implies

zkg(yk)
||a|| ≥ b k = 1, ..., n; (106)

the goal is to find the weight vector a that maximizes b. Of course, the solution
vector can be scaled arbitrarily and still preserve the hyperplane, and thus to insure
uniqueness we impose the constraint b ||a|| = 1; that is, we demand the solution to
Eqs. 104 & 105 also minimize ||a||2.

The support vectors are the (transformed) training patterns for which Eq. 105 rep- support
vectorresents an equality — that is, the support vectors are (equally) close to the hyperplane

(Fig. 5.19). The support vectors are the training samples that define the optimal sepa-
rating hyperplane and are the most difficult patterns to classify. Informally speaking,
they are the patterns most informative for the classification task.

If Ns denotes the total number of support vectors, then for n training patterns
the expected value of the generalization error rate is bounded, according to

En[error rate] ≤ En[Ns]
n

, (107)

where the expectation is over all training sets of size n drawn from the (stationary)
distributions describing the categories. This bound is independent of the dimension-
ality of the space of transformed vectors, determined by ϕ(). We will return to this
equation in Chap. ??, but for now we can understand this informally by means of
the leave one out bound. Suppose we have n points in the training set, and train a leave-one-

out boundSupport Vector Machine on n − 1 of them, and test on the single remaining point.
If that remaining point happens to be a support vector for the full n sample case,
then there will be an error; otherwise, there will not. Note that if we can find a
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transformation ϕ() that well separates the data — so the expected number of support
vectors is small — then Eq. 107 shows that the expected error rate will be lower.
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Figure 5.19: Training a Support Vector Machine consists of finding the optimal hy-
perplane, i.e., the one with the maximum distance from the nearest training patterns.
The support vectors are those (nearest) patterns, a distance b from the hyperplane.
The three support vectors are shown in solid dots.

5.11.1 SVM training

We now turn to the problem of training an SVM. The first step is, of course, to choose
the nonlinear ϕ-functions that map the input to a higher dimensional space. Often
this choice will be informed by the designer’s knowledge of the problem domain. In
the absense of such information, one might choose to use polynomials, Gaussians or
yet other basis functions. The dimensionality of the mapped space can be arbitrarily
high (though in practice it may be limited by computational resources).

We begin by recasting the problem of minimizing the magnitude of the weight
vector constrained by the separation into an unconstrained problem by the method
of Lagrange undetermined multipliers. Thus from Eq. 106 and our goal of minimizing
||a||, we construct the functional

L(a, α) =
1
2
||a||2 −

n∑
k=1

αk[zkatyk − 1]. (108)

and seek to minimize L() with respect to the weight vector a, and maximize it with
respect to the undetermined multipliers αk ≥ 0. The last term in Eq. 108 expresses
the goal of classifying the points correctly. It can be shown using the so-called Kuhn-
Tucker construction (Problem 30) (also associated with Karush whose 1939 thesis
addressed the same problem) that this optimization can be reformulated as maximiz-
ing

L(α) =
n∑
k=1

αi −
1
2

n∑
k,j

αkαjzkzjytjyk, (109)

subject to the constraints
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n∑
k=1

zkαk = 0 αk ≥ 0, k = 1, ..., n, (110)

given the training data. While these equations can be solved using quadratic pro-
gramming, a number of alternate schemes have been devised (cf. Bibliography).

Example 2: SVM for the XOR problem

The exclusive-OR is the simplest problem that cannot be solved using a linear
discriminant operating directly on the features. The points k = 1, 3 at x = (1, 1)t

and (−1,−1)t are in category ω1 (red in the figure), while k = 2, 4 at x = (1,−1)t

and (−1, 1)t are in ω2 (black in the figure). Following the approach of Support Vector
Machines, we preprocess the features to map them to a higher dimension space where
they can be linearly separated. While many ϕ-functions could be used, here we use
the simplest expansion up to second order: 1,

√
2x1,

√
2x2,

√
2x1x2, x2

1 and x2
2, where

the
√

2 is convenient for normalization.
We seek to maximize Eq. 109,

4∑
k=1

αk −
1
2

n∑
k,j

αkαjzkzjytjyk

subject to the constraints (Eq. 110)

α1 − α2 + α3 − α4 = 0
0 ≤ αk k = 1, 2, 3, 4.

It is clear from the symmetry of the problem that α1 = α3 and that α2 = α4 at the
solution. While we could use iterative gradient descent as described in Sect. 5.9, for
this small problem we can use analytic techniques instead. The solution is a∗k = 1/8,
for k = 1, 2, 3, 4, and from the last term in Eq. 108 this implies that all four training
patterns are support vectors — an unusual case due to the highly symmetric nature
of the XOR problem.

The final discriminant function is g(x) = g(x1, x2) = x1x2, and the decision
hyperplane is defined by g = 0, which properly classifies all training patterns. The
margin is easily computed from the solution ||a|| and is found to be b = 1/||a|| =

√
2.

The figure at the right shows the margin projected into two dimensions of the five
dimensional transformed space. Problem 28 asks you to consider this margin as viewed
in other two-dimensional projected sub-spaces.

An important benefit of the Support Vector Machine approach is that the com-
plexity of the resulting classifier is characterized by the number of support vectors —
independent of the dimensionality of the transformed space. This
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The XOR problem in the original x1 − x2 feature space is shown at the left; the two
red patterns are in category ω1 and the two black ones in ω2. These four training
patterns x are mapped to a six-dimensional space by 1,

√
2x1,

√
2x2,

√
2x1x2, x2

1 and
x2

2. In this space, the optimal hyperplane is found to be g(x1, x2) = x1x2 = 0 and the
margin is b =

√
2. A two-dimensional projection of this space is shown at the right.

The hyperplanes through the support vectors are
√

2x1x2 = ±1, and correspond to
the hyperbolas x1x2 = ±1 in the original feature space, as shown.

5.12 Multicategory Generalizations

5.12.1 Kesler’s Construction

There is no uniform way to extend all of the two-category procedures we have discussed
to the multicategory case. In Sect. 5.2.2 we defined a multicategory classifier called a
linear machine which classifies a pattern by computing c linear discriminant functions

gi(x) = wtx + wi0 i = 1, ..., c,

and assigning x to the category corresponding to the largest discriminant. This is
a natural generalization for the multiclass case, particularly in view of the results
of Chap. ?? for the multivariate normal problem. It can be extended simply to
generalized linear discriminant functions by letting y(x) be a d̂-dimensional vector of
functions of x, and by writing

gi(x) = atiy i = 1, ..., c, (111)

where again x is assigned to ωi if gi(x) > gj(x) for all j 6= i.
The generalization of our procedures from a two-category linear classifier to a

multicategory linear machine is simplest in the linearly-separable case. Suppose that
we have a set of labelled samples y1,y2, ...,yn, with n1 in the subset Y1 labelled ω1,
n2 in the subset Y2 labelled ω2,..., and nc in the subset Yc labelled ωc. We say that
this set is linearly separable if there exists a linear machine that classifies all of them
correctly. That is, if these samples are linearly separable, then there exists a set of
weight vectors â1, ..., âc such that if yk ∈ Yi, then

âtiyk > âtjyk (112)

for all j 6= i.
One of the pleasant things about this definition is that it is possible to manipulate

these inequalities and reduce the multicategory problem to the two-category case.
Suppose for the moment that y ∈ Y1, so that Eq. 112 becomes



5.12. MULTICATEGORY GENERALIZATIONS 53

âtiyk − âtjyk > 0, j = 2, ..., c. (113)

This set of c − 1 inequalities can be thought of as requiring that the cd̂-dimensional
weight vector

α̂ =


a1

a2

...
ac


correctly classifies all c− 1 of the cd̂-dimensional sample sets

η12 =


y
−y
0
...
0

 , η13 =


y
0
−y

...
0

 , · · · , η1c =


y
0
0
...
−y

 .

In other words, each η1j corresponds to “normalizing” the patterns in ω1 and ωj .
More generally, if y ∈ Yi, we construct (c− 1)cd̂-dimensional training samples ηij by
partitioning ηij into cd̂-dimensional subvectors, with the ith subvector being y, the
jth being −y, and all others being zero. Clearly, if α̂tηij > 0 for j 6= i, then the
linear machine corresponding to the components of α̂ classifies y correctly.

This so-called Kesler construction multiplies the dimensionality of the data by c
and the number of samples by c − 1, which does not make its direct use attractive.
Its importance resides in the fact that it allows us to convert many multicategory
error-correction procedures to two-category procedures for the purpose of obtaining
a convergence proof.

5.12.2 Convergence of the Fixed-Increment Rule

We now use use Kesler’s construction to prove convergence for a generalization of the
fixed-increment rule for a linear machine. Suppose that we have a set of n linearly-
separable samples y1, ...,yn, and we use them to form an infinite sequence in which
every sample appears infinitely often. Let Lk denote the linear machine whose weight
vectors are a1(k), ...,ac(k). Starting with an arbitrary initial linear machine L1, we
want to use the sequence of samples to construct a sequence of linear machines that
converges to a solution machine, one that classifies all of the samples correctly. We
shall propose an error-correction rule in which weight changes are made if and only
if the present linear machine misclassifies a sample. Let yk denote the kth sample
requiring correction, and suppose that yk ∈ Yi. Since yk requires correction, there
must be at least one j 6= i for which

ati(k)yk ≤ aj(k)tyk. (114)

Then the fixed-increment rule for correcting Lk is



54 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

ai(k + 1) = ai(k) + yk

aj(k + 1) = aj(k)− yk

al(k + 1) = al(k), l 6= i and l 6= j.

 (115)

That is, the weight vector for the desired category is incremented by the pattern, the
weight vector for the incorrectly chosen category is decremented, and all other weights
are left unchanged (Problem 33, Computer exercise 12).

We shall now show that this rule must lead to a solution machine after a finite
number of corrections. The proof is simple. For each linear machine Lk there corre-
sponds a weight vector

αk =

 a1(k)
...

ac(k)

 .
For each sample y ∈ Yi there are c − 1 samples ηij formed as described in Sect. ??.
In particular, corresponding to the vector yk satisfying Eq. 114 there is a vector

ηkij =



·
·
·

yk

·
·
·
−yk

·
·
·



← i

← j

satisfying

αt(k)ηkij ≤ 0.

Furthermore, the fixed-increment rule for correcting Lk is the fixed-increment rule for
correcting α(k), viz.,

α(k + 1) = α(k) + ηkij .

Thus, we have obtained a complete correspondence between the multicategory case
and the two-category case, in which the multicategory procedure produces a sequence
of samples η1,η2, ...,ηk, ... and a sequence of weight vectors α1,α2, ...,αk, ... By our
results for the the two-cateogry case, this latter sequence can not be infinite, but must
terminate in a solution vector. Hence, the sequence L1, L2, ..., Lk, ... must terminate
in a solution machine after a finite number of corrections.

This use of Kesler’s construction to establish equivalences between multicategory
and two-category procedures is a powerful theoretical tool. It can be used to extend
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all of our results for the Perceptron and relaxation procedures to the multicategory
case, and applies as well to the error-correction rules for the method of potential
functions (Problem ??). Unfortunately, it is not as directly useful in generalizing the
MSE or the linear programming approaches.

5.12.3 Generalizations for MSE Procedures

Perhaps the simplest way to obtain a natural generalization of the MSE procedures
to the multiclass case is to consider the problem as a set of c two-class problems. The
ith problem is to obtain a weight vector ai that is minimum-squared-error solution to
the equations

atiy = 1 for all y ∈ Yi
atiy = −1 for all y /∈ Yi.

}
In view of the results of Sect. 5.8.3 the number of samples is very large we will obtain
a minimum mean-squared-error approximation to the Bayes discriminant function

P (ωi|x)− P (not ωi|x) = 2P (ωi|x)− 1.

This observation has two immediate consequences. First, it suggests a modification
in which we seek a weight vector ai that is a minimum-squared-error solution to the
equations

atiy = 1 for all y ∈ Yi
atiy = 0 for all y /∈ Yi

}
(116)

so that aty will be a minimum mean-squared-error approximation to P (ωi|x). Second,
it justifies the use of the resulting discriminant functions in a linear machine, in which
we assign y to ωi if atiy > atjy for all j 6= i.

The pseudoinverse solution to the multiclass MSE problem can be written in a
form analogous to the form for the two-class case. Let Y be the n-by-d̂ matrix of
training samples, which we assume to be partitioned as

Y =


Y1

Y2

...
Yc

 , (117)

with the samples labelled ωi comprising the rows of Yi. Similarly, let A be the d̂-by-c
matrix of weight vectors

A = [a1 a2 · · · ac], (118)

and let B be the n-by-c matrix

B =


B1

B2

...
Bc

 , (119)
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where all of the elements of Bi are zero except for those in the ith column, which
are unity. Then the trace of the “squared” error matrix (YA − B)t × (YA − B) is
minimized by the solution∗

A = Y†B, (120)

where, as usual, Y† is the pseudoinverse of Y.
This result can be generalized in a theoretically interesting fashion. Let λij be

the loss incurred for deciding ωi when the true state of nature is ωj , and let the jth
submatrix of B be given by

Bj = −


λ1j λ2j · · · λcj
λ1j λ2j · · · λcj

...
...

λ1j λ2j · · · λcj


x
njy j = 1, ..., c. (121)

Then, as the number of samples approaches infinity, the solution A = Y†B yields dis-
criminant functions atiy which provide a minimum-mean-square-error approximation
to the Bayes discriminant function

g0i = −
c∑
j=1

λijP (ωi|x). (122)

The proof of this is a direct extension of the proof given in Sect. 5.8.3 (Problem 34).

Summary

This chapter considers discriminant functions that are a linear function of a set of
parameters, generally called weights. In all two-category cases, such discriminants
lead to hyperplane decision boundaries, either in the feature space itself, or in a
space where the features have been mapped by a nonlinear function (general linear
discriminants).

In broad overview, techniques such as the Perceptron algorithm adjust the param-
eters to increase the inner product with patterns in category ω1 and decrease the inner
product with those in ω2. A very general approach is to form some criterion function
and perform gradient descent. Different creiterion functions have different strengths
and weaknesses related to computation and convergence, none uniformly dominates
the others. One can use linear algebra to solve for the weights (parameters) directly,
by means of pseudoinverse matrixes for small problems.

In Support Vector Machines, the input is mapped by a nonlinear function to a high-
dimensional space, and the optimal hyperplane found, the one that has the largest
margin. The support vectors are those (transformed) patterns that determine the
margin; they are informally the hardest patterns to classify, and the most informative
ones for designing the classifier. An upper bound on expected error rate of the classifier
depends linearly upon the expected number of support vectors.

For multi-category problems, the linear machines create decision boundaries con-
sisting of sections of such hyperplanes. One can prove convergence of multi-category

∗ If we let bi denote the ith column of B, the trace of (YA − B)t(YA − B) is equal to the sum
of the squared lengths of the error vectors Yai − bi. The solution A = Y†B not only minimizes
this sum, but it also minimizes each term in the sum.
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algorithms by first converting them to two-category algorithms and using the two-
category proofs. The simplex algorithm finds the optimimun of a linear function
subject to (inequality) constraints, and can be used for training linear classifiers.

Linear discriminants, while useful, are not sufficiently general for arbitrary chal-
lenging pattern recognition problems (such as those involving multi-modal densities)
unless an appropriate nonlinear mapping (ϕ function) can be found. In this chapter
we have not considered any principled approaches to choosing such functions, but
turn to that topic in Chap. ??.

Bibliographical and Historical Remarks

Because linear discriminant functions are so amenable to analysis, far more papers
have been written about them than the subject deserves. Historically, all of this work
begins with the classic paper by Ronald A. Fisher [4]. The application of linear dis-
criminant function to pattern classification was well described in [7], which posed the
problem of optimal (minimum-risk) linear discriminant, and proposed plausible gra-
dient descient procedures to determine a solution from samples. Unfortunately, little
can be said about such procedures without knowing the underlying distributions, and
even then the situation is analytically complex. The design of multicategory classifiers
using two-category procedures stems from [12]. Minsky and Papert’s Perceptrons
[11] was influential in pointing out the weaknesses of linear classifiers — weaknesses
that were overcome by the methods we shall study in Chap. ??. The Winnow algo-
rithms [8] in the error-free case and [9, 6] and subsequent work in the general case
have been useful in the computational learning community, as they allow one to derive
convergence bounds.

While this work was statistically oriented, many of the pattern recognition papers
that appeared in the late 1950s and early 1960s adopted other viewpoints. One
viewpoint was that of neural networks, in which individual neurons were modelled as
threshold elements, two-category linear machines — work that had its origins in the
famous paper by McCulloch and Pitts [10].

As linear machines have been applied to larger and larger data sets in higher and
higher dimensions, the computational burden of linear programming [2] has made this
approach less popular. Stochastic approximations, e.g, [15],

An early paper on the key ideas in Support Vector Machines is [1]. A more
extensive treatment, including complexity control, can be found in [14] — material
we shall visit in Chap. ??. A readable presentation of the method is [3], which provided
the inspiration behind our Example 2. The Kuhn-Tucker construction, used in the
SVM training method described in the text and explored in Problem 30, is from [5]
and used in [13]. The fundamental result is that exactly one of the following three
cases holds. 1) The original (primal) conditions have an optimal solution; in that case
the dual cases do too, and their objective values are equal, or 2) the primal conditions
are infeasible; in that case the dual is either unbounded or itself infeasible, or 3) the
primal conditions are unbounded; in that case the dual is infeasible.

Problems

⊕
Section 5.2
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1. Consider a linear machine with discriminant functions gi(x) = wtx + wi0, i =
1, ..., c. Show that the decision regions are convex by showing that if x1 ∈ Ri and
x2 ∈ Ri then λx1 + (1− λ)x2 ∈ Ri if 0 ≤ λ ≤ 1.
2. Figure 5.3 illustrates the two most popular methods for designing a c-category

classifier from linear boundary segments. Another method is to save the full
(
c
2

)
linear ωi/ωj boundaries, and classify any point by taking a vote based on all these
boundaries. Prove whether the resulting decision regions must be convex. If they need
not be convex, construct a non-pathological example yielding at least one non-convex
decision region.
3. Consider the hyperplane used for discriminant functions.

(a) Show that the distance from the hyperplane g(x) = wtx + w0 = 0 to the point
xa is |g(xa)|/‖w‖ by minimizing ‖x− xa‖2 subject to the constraint g(x) = 0.

(b) Show that the projection of xa onto the hyperplane is given by

xp = xa −
g(xa)
‖w‖2 w.

4. Consider the three-category linear machine with discriminant functions gi(x) =
wt
ix + wi0, i = 1, 2, 3.

(a) For the special case where x is two-dimensional and the threshold weights wi0
are zero, sketch the weight vectors with their tails at the origin, the three lines
joining their heads, and the decision boundaries.

(b) How does this sketch change when a constant vector c is added to each of the
three weight vectors?

5. In the multicategory case, a set of samples is said to be linearly separable if there
exists a linear machine that can classify them all correctly. If any samples labelled
ωi can be separated from all others by a single hyperplane, we shall say the samples
are totally linearly separable. Show that totally linearly separable samples must betotal

linear
separability

linearly separable, but that the converse need not be true. (Hint: For the converse,
consider a case in which a linear machine like the one in Problem 4 separates the
samples.)
6. A set of samples is said to be pairwise linearly separable if there exist c(c− 1)/2pairwise

linear
separability

hyperplanes Hij such that Hij separates samples labelled ωi from samples ωj . Show
that a pairwise-linearly-separable set of patterns may not be linearly separable.
7. Let {y1, ...,yn} be a finite set of linearly separable training samples, and let a be

called a solution vector if atyi ≥ 0 for all i. Show that the minimum-length solution
vector is unique. (Hint: Consider the effect of averaging two solution vectors.)
8. The convex hull of a set of vectors xi, i = 1, . . . , n is the set of all vectors of theconvex

hull form

x =
n∑
i=1

αixi,

where the coefficients αi are nonnegative and sum to one. Given two sets of vectors,
show that either they are linearly separable or their convex hulls intersect. (Hint:
Suppose that both statements are true, and consider the classification of a point in
the intersection of the convex hulls.)
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9. A classifier is said to be a piecewise linear machine if its discriminant functionspiecewise
linear
machine

have the form

gi(x) = max
j=1,...,ni

gij(x),

where

gij(x) = wt
ijx + wij0,

i = 1, ..., c
j = 1, ..., ni.

(a) Indicate how a piecewise linear machine can be viewed in terms of a linear
machine for classifying subclasses of patterns.

(b) Show that the decision regions of a piecewise linear machine can be nonconvex
and even multiply connected.

(c) Sketch a plot of gij(x) for a one-dimensional example in which n1 = 2 and
n2 = 1 to illustrate your answer to part (b).

10. Let the d components of x be either 0 or 1. Suppose we assign x to ω1 if the
number of non-zero components of x is odd, and to ω2 otherwise. (This is called the
d-bit parity problem.)

(a) Show that this dichotomy is not linearly separable if d > 1.

(b) Show that this problem can be solved by a piecewise linear machine with d+ 1
weight vectors wij (see Problem 9). (Hint: Consider vectors of the form wij =
αij(1, 1, ..., 1)t.)

⊕
Section 5.3

11. Consider the quadratic discriminant function (Eq. 4)

g(x) = w0 +
d∑
i=1

wixi +
d∑
i=1

d∑
j=1

wijxixj ,

and define the symmetric, nonsingular matrix W = [wij ]. Show that the basic
character of the decision boundary can be described in terms of the scaled matrix
W̄ = W/(wtW−1w − 4w0) as follows:

(a) If W̄ ∝ I (the identity matrix), then the decision boundary is a hypersphere.

(b) If W̄ is positive definite, then the decision boundary is a hyperellipsoid.

(c) If some eigenvalues of W̄ are positive and some negative, then the decision
boundary is a hyperhyperboloid.

(d) Suppose w =

 5
2
-3

 and W =

 1 2 0
2 5 1
0 1 -3

. What is the character of

the solution?
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(e) Repeat part (d) for w =

 2
-1
3

 and W =

 1 2 3
2 0 4
3 4 -5

.

⊕
Section 5.4

12. Derive Eq. 14, where J(·) depends on the iteration step k.
13. Consider the sum-of-squared-error criterion function (Eq. 43),

Js(a) =
n∑
i=1

(atyi − bi)2.

Let bi = b and consider the following six training points:

ω1 : (1, 5)t, (2, 9)t, (−5,−3)t

ω2 : (2,−3)t, (−1,−4)t, (0, 2)t

(a) Calculate the Hessian matrix for this problem.

(b) Assuming the quadratic criterion function calculate the optimal learning rate η.

⊕
Section 5.5

14. In the convergence proof for the Perceptron algorithm (Theorem 5.1) the scale
factor α was taken to be β2/γ.

(a) Using the notation of Sect. 5.5, show that if α is greater than β2/(2γ) the
maximum number of corrections is given by

k0 =
‖a1 − αa‖2
2αγ − β2

.

(b) If a1 = 0, what value of α minimizes k0?

15. Modify the convergence proof given in Sect. 5.5.2 (Theorem 5.1) to prove the
convergence of the following correction procedure: starting with an arbitrary initial
weight vector a1, correct a(k) according to

a(k + 1) = a(k) + η(k)yk,

if and only if at(k)yk fails to exceed the margin b, where η(k) is bounded by 0 < ηa ≤
η(k) ≤ ηb <∞. What happens if b is negative?
16. Let {y1, ...,yn} be a finite set of linearly separable samples in d dimensions.

(a) Suggest an exhaustive procedure that will find a separating vector in a finite
number of steps. (Hint: Consider weight vectors whose components are integer
valued.)
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(b) What is the computational complexity of your procedure?

17. Consider the criterion function

Jq(a) =
∑

y∈Y(a)

(aty − b)2

where Y(a) is the set of samples for which aty ≤ b. Suppose that y1 is the only
sample in Y(a(k)). Show that ∇Jq(a(k)) = 2(at(k)y1 − b)y1 and that the matrix of
second partial derivatives is given by D = 2y1yt1. Use this to show that when the
optimal η(k) is used in Eq. ?? the gradient descent algorithm yields

a(k + 1) = a(k) +
b− aty1

‖y1‖2
y1.

18. Given the conditions in Eqs. 28 – 30, show that a(k) in the variable increment
descent rule indeed converges for atyi > b for all i.⊕

Section 5.6

19. Sketch a figure to illustrate the proof in Sec. 5.6.2. Be sure to take a general
case, and label all variables.⊕

Section 5.7

⊕
Section 5.8

20. Show that the scale factor α in the MSE solution corresponding to Fisher’s linear
discriminant (Sect. ??) is given by

α =
[
1 +

n1n2

n
(m1 −m2)tS−1

W (m1 −m2)
]−1

21. Generalize the results of Sect. 5.8.3 to show that the vector a that minimizes
the criterion function

J ′s(a) =
∑

y∈Y1

(aty − (λ21 − λ11))2 +
∑

y∈Y2

(aty − (λ12 − λ22))2

provides asymptotically a minimum-mean-squared-error approximation to the Bayes
discriminant function (λ21 − λ11)P (ω1|x)− (λ12 − λ22)P (ω2|x).
22. Consider the criterion function Jm(a) = E [(aty(x)− z)2] and the Bayes discrim-

inant function g0(x).

(a) Show that

Jm = E [(aty − g0)2]− 2E [(aty − g0)(z − g0)] + E [(z − g0)2].

(b) Use the fact that the conditional mean of z is g0(x) in showing that the â that
minimizes Jm also minimizes E [(aty − g0)2] .
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23. A scalar analog of the relation R−1
k+1 = R−1

k + ykytk used in stochastic approxi-
mation is η−1(k + 1) = η−1(k) + y2

k.

(a) Show that this has the closed form solution

η(k) =
η(1)

1 + η(1)
k−1∑
i=1

y2
i

.

(b) Assume that η(1) > 0 and 0 < a ≤ y2
i ≤ b <∞, and indicate why this sequence

of coefficients will satisfy
∑
η(k)→∞ and

∑
η(k)2 → L <∞.

24. Show that for the Widrow-Hoff or LMS rule that if η(k) = η(1)/k then the
sequence of weight vectors converges to a limiting vector a satisfying Y†(Ya−b) = 0
(Eq. 61).⊕

Section 5.9

25. Consider the following six data points:

ω1 : (1, 2)t, (2,−4)t, (−3,−1)t

ω2 : (2, 4)t, (−1,−5)t, (5, 0)t

(a) Are they linearly separable?

(b) Using the approach in the text, assume R = I, the identity matrix, and calculate
the optimal learning rate η by Eq. 85.

⊕
Section 5.10

26. The linear programming problem formulated in Sect. 5.10.2 involved minimizing
a single artificial variable τ under the constraints atyi + τ > bi and τ ≥ 0. Show that
the resulting weight vector minimizes the criterion function

Jτ (a) = max
atyi≤bi

[bi − atyi].

⊕
Section 5.11

27. Discuss qualitatively why if samples from two categories are distinct (i.e., no
feature point is labelled by both categories), there always exists a nonlinear mapping
to a higher dimension that leaves the points linearly separable.
28. The figure in Example 2 shows the maximum margin for a Support Vector

Machine applied to the exclusive-OR problem mapped to a five-dimensional space.
That figure shows the training patterns and contours of the discriminant function, as
projected in the two-dimensional subspace defined by the features

√
2x1 and

√
2x1x2.

Ignore the constant feature, and consider the other four features. For each of the(
4
2

)
− 1 = 5 pairs of features other than the one shown in the Example, show the
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patterns and the lines corresponding to the discriminant g = ±1. Are the margins in
your figures the same? Explain why or why not?
29. Consider a Support Vector Machine and the following training data from two

categories:

category x1 x2

ω1 1 1
ω1 2 2
ω1 2 0
ω2 0 0
ω2 1 0
ω2 0 1

(a) Plot these six training points, and construct by inspection the weight vector for
the optimal hyperplane, and the optimal margin.

(b) What are the support vectors?

(c) Construct the solution in the dual space by finding the Lagrange undetermined
multipliers, αi. Compare your result to that in part (a).

30. This problem asks you to follow the Kuhn-Tucker theorem to convert the con-
strained optimization problem in Support Vector Machines into a dual, unconstrained
one. For SVMs, the goal is to find the minimum length weight vector a subject to
the (classification) constraints

zkatyk ≥ 1 k = 1, ..., n,

where zk = ±1 indicates the target getegory of each of the n patterns yk. Note that
a and y are augmented (by a0 and y0 = 1, respectively).

(a) Consider the unconstrained optimization associated with SVMS:

L(a,α) =
1
2
||a||2 −

n∑
k=1

αk[zkatyk − 1].

In the space determined by the components of a, and the n (scalar) undeter-
mined multipliers αk, the desired solution is a saddle point, rather than a global
maximum or minimum. Explain.

(b) Next eliminate the dependency of this (“primal”) functional upon a, i.e., refor-
mulated the optimization in a dual form, by the following steps. Note that at
the saddle point of the primal functional, we have

∂L(a∗,α∗)
∂a

= 0.

Solve for the partial derivatives and conclude

n∑
k=1

α∗kzk = 0 α∗k ≥ 0, k = 1, ...n.
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(c) Prove that at this inflection point, the optimal hyperplane is a linear combina-
tion of the training vectors:

a∗ =
n∑
k=1

α∗kzkyk.

(d) According to the Kuhn-Tucker theorem (cf. Bibliography), an undetermined
multiplier α∗k is non-zero only if the corresponding sample yk satisfies zkatyk =
0. Show that this can be expressed as

α∗k[zka∗tyk − 1] = 0, k = 1, ..., n.

(The samples where α∗k are nonzero, i.e., zkatyk = 1, are the support vectors.)

(e) Use the results from parts (b) – (c) to eliminate the weight vector in the func-
tional, and thereby construct the dual functional

L̃(a,α) =
1
2
||a||2 −

n∑
k=1

αkzkatyk +
n∑
k=1

αk.

(f) Substitute the solution a∗ from part (c) to find the dual functional

L̃(α) = −1
2

n∑
j,k=1

αjαkzjzk(ytjyk) +
n∑
j=1

αj .

31. Repeat Example 2.⊕
Section 5.12

32. Suppose that for each two-dimensional training point yi in category ω1 there is
a corresponding (symmetric) point in ω2 at −yi.

(a) Prove that a separating hyperplane (should one exist) or LMS solution must go
through the origin.

(b) Consider such a symmetric, six-point problem with the following points:

ω1 : (1, 2)t, (2,−4)t,y
ω2 : (−1,−2)t, (−2, 4)t,−y

Find the matematical conditions on y such that the LMS solution for this prob-
lem not give a separating hyperplane.

(c) Generalize your result as follows. Suppose ω1 consists of y1 and y2 (known)
and the symmetric versions in ω2. What is the condition on y3 such that the
LMS solution does not separate the points.
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33. Write pseudocode for a fixed increment multicategory algorithm based on
Eq. 115. Discuss the strenths and weakness of such an implementation.
34. Generalize the discussion in Sect. 5.8.3 in order to prove that the solution

derived from Eq. 120 provieds a minimum-mean-square-error approximation to the
Bayes discriminant function given in Eq. 122.

Computer exercises

Several of the exercises use the data in the following table.
ω1 ω2 ω3 ω4

sample x1 x2 x1 x2 x1 x2 x1 x2

1 0.1 1.1 7.1 4.2 -3.0 -2.9 -2.0 -8.4
2 6.8 7.1 -1.4 -4.3 0.5 8.7 -8.9 0.2
3 -3.5 -4.1 4.5 0.0 2.9 2.1 -4.2 -7.7
4 2.0 2.7 6.3 1.6 -0.1 5.2 -8.5 -3.2
5 4.1 2.8 4.2 1.9 -4.0 2.2 -6.7 -4.0
6 3.1 5.0 1.4 -3.2 -1.3 3.7 -0.5 -9.2
7 -0.8 -1.3 2.4 -4.0 -3.4 6.2 -5.3 -6.7
8 0.9 1.2 2.5 -6.1 -4.1 3.4 -8.7 -6.4
9 5.0 6.4 8.4 3.7 -5.1 1.6 -7.1 -9.7
10 3.9 4.0 4.1 -2.2 1.9 5.1 -8.0 -6.3⊕

Section 5.4

1. Consider basic gradient descent (Algorithm 1) and Newton’s algorithm (Algo-
rithm 2) applied to the data in the tables.

(a) Apply both to the three-dimensional data in categories ω1 and ω3. For the
gradient descent use η(k) = 0.1. Plot the criterion function as function of the
iteration number.

(b) Estimate the total number of mathematical operations in the two algorithms.

(c) Plot the convergence time versus learning rate. What is the minimum learning
rate that fails to lead to convergence?

⊕
Section 5.5

2. Write a program to implement the Perceptron algorithm.

(a) Starting with a = 0, apply your program to the training data from ω1 and ω2.
Note the number of iterations required for convergence.

(b) Apply your program to ω3 and ω2. Again, note the number of iterations required
for convergence.

(c) Explain the difference between the iterations required in the two cases.

3. The Pocket algorithm uses the criterion of longest sequence of correctly classified Pocket
algorithmpoints, and can be used in conjunction a number of basic learning algorithms. For

instance, one use the Pocket algorithm in conjunction with the Perceptron algorithm
in a sort of ratchet scheme as follows. There are two sets of weights, one for the normal
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Perceptron algorithm, and a separate one (not directly used for training) which is kept
“in your pocket.” Both are randomly chosen at the start. The “pocket” weights are
tested on the full data set to find the longest run of patterns properly classified. (At
the beginning, this run will be short.) The Perceptron weights are trained as usual,
but after every weight update (or after some finite number of such weight updates),
the Perceptron weight is tested on data points, randomly selected, to determine the
longest run of properly classified points. If this length is greater than the pocket
weights, the Perceptron weights replace the pocket weights, and perceptron training
continues. In this way, the poscket weights continually improve, classifying longer and
longer runs of randomly selected points.

(a) Write a pocket algorithm to be employed with Perceptron algorithm.

(b) Apply it to the data from ω1 and ω3. How often are the pocket weights updated?

4. Start with a randomly chosen a, Calculate β2 (Eq. 21 At the end of training
calculate γ (Eq. 22). Verify k0 (Eq. 25).
5. Show that the first xx points of categories ωx and ωxxx. Construct by hand

a nonlinear mapping of the feature space to make them linearly separable. Train a
Perceptron classifier on them.
6. Consider a version of the Balanced Winnow training algorithm (Algorithm 7).

Classification of test data is given by line 2. Compare the converge rate of Balanced
Winnow with the fixed-increment, single-sample Perceptron (Algorithm 4) on a prob-
lem with large number of redundant features, as follows.

(a) Generate a training set of 2000 100-dimensional patterns (1000 from each of two
categories) in which only the first ten features are informative, in the following
way. For patterns in category ω1, each of the first ten features are chosen ran-
domly and uniformly from the range +1 ≤ xi ≤ 2, for i = 1, ..., 10. Conversely,
for patterns in ω2, each of the first ten features are chosen randomly and uni-
formly from the range −2 ≤ xi ≤ −1. All other features from both categories
are chosen from the range −2 ≤ xi ≤ +2.

(b) Construct by hand the obvious separating hyperplane.

(c) Adjust the learning rates so that your two algorithms have roughly the same
convergence rate on the full training set when only the first ten features are
considered. That is, assume each of the 2000 training patterns consists of just
the first ten features.

(d) Now apply your two algorithms to 2000 50-dimensional patterns, in which the
first ten features are informative and the remaining 40 are not. Plot the total
number of errors versus iteration.

(e) Now apply your two algorithms to the full training set of 2000 100-dimensional
patterns.

(f) Summarize your answers to parts (c) - (e).

⊕
Section 5.6

7. Consider relaxation methods.
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(a) Implement batch relaxation with margin (Algorithm 8), set b = 0.1 and a(1) = 0
and apply it to the data in ω1 and ω3. Plot the criterion function as a function
of the number of passes through the training set.

(b) Repeat for b = 0.5 and a(1) = 0. Explain qualitatively any difference you find
in the convergence rates.

(c) Modify your program to use single sample learning. Again, plot the criterion as
a function of the number of passes through the training set.

(d) Discuss any differences, being sure to consider the learning rate.

⊕
Section 5.8

8. Write a single-sample relaxation algorithm and use Eq. ?? for updating R. Apply
your program to the data in ω2 and ω3.⊕

Section 5.9

9. Implement the Ho-Kashyap algorithm (Algorithm 11) and apply to the data in
categories ω1 and ω3. Repeat for categories ω4 and ω2.⊕

Section 5.10

10. example where the LMS rule need not give the separating vector, even if one
exists⊕

Section 5.11

11. Support Vector Machine xxx. Apply it to the classification of ω3 and ω4.⊕
Section 5.12

12. Write a programto implement a multicategory generalization of basic single-
sample relaxation without margin (Algorithm ??).

(a) Apply it to the data in all four categories in the table.

(b) Use your algorithm in a two-category mode to form ωi/notωi boundaries for i =
1, 2, 3, 4. Find any regions whose categorization by your system is ambiguous.
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hyperquadratic, 7
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multicategory, 6
optimal, 3

quadratic, 6

dual functional, 63

error
training, 3

problems, 3
estimation

nonparametric, 3
exclusive-OR, 51

fixed increment, 48
training

Algorithm, 18, 21

gap
Winnow algorithm, see Winnow al-

gorithm, gap
gradient descent, 13

Algorithm, 13
convergence, 17
fixed increment, 17, 18

Hessian
singular, 14
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Ho-Kashyap

bound, 43
convergence, 43
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Algorithm, 39
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fixed increment, 53

Kiefer-Wolfowitz, 37
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leave-one-out bound, see bound, leave-
one-out

linear discriminant
dual, 47

linear machine
fixed increment, 53

linear programming
objective, 44

linear separability, 11, 16, 40
LMS, see least-mean-square, 48
LMs

training
Algorithm, 34

margin, see classifier,linear,margin
Modified Ho-Kashyap

training
Algorithm, 42

MSE algorithm
generalizations, 55

Newton
descent

Algorithm, 14
Newton’s algorithm, 14

Perceptron
Batch

Algorithm, 15
batch

Algorithm, 22
perceptron

criterion, 14
Perceptron algorithm

criterion, 46
phi function, 51
Pocket algorithm, 65
polynomial discriminant, 7
primal functional, 63
pseudoinverse, 48

quadratic programming, 51

relaxation
batch

Algorithm, 24
training

Algorithm, 25
relaxation rule

single-sample, 25
risk

sample, see error, training

simplex algorithm, 44, 48
constraint, 46
feasible solution, 45
nonseparability, 46

solution region, 12
stochastic descent, 48
support vector, 49
Support Vector Machines, 49–51

translation
axis, 7

variable increment, 48
vector

separating, see vector, solution
solution, 11
support, see support vector
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weight space, 11
weight vector, 19
Winnow

Algorithm
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Winnow algorithm, 23
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