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Chapter 4

Nonparametric techniques

4.1 Introduction

I n Chap. ?? we treated supervised learning under the assumption that the forms
of the underlying density functions were known. Alas, in most pattern recognition

applications this assumption is suspect; the common parametric forms rarely fit the
densities actually encountered in practice. In particular, all of the classical parametric
densities are unimodal (have a single local maximum), whereas many practical prob-
lems involve multimodal densities. Further, our hopes are rarely fulfilled that a high-
dimensional density might be simply represented as the product of one-dimensional
functions. In this chapter we shall examine nonparametric procedures that can be
used with arbitrary distributions and without the assumption that the forms of the
underlying densities are known.

There are several types of nonparametric methods of interest in pattern recogni-
tion. One consists of procedures for estimating the density functions p(x|ωj) from
sample patterns. If these estimates are satisfactory, they can be substituted for the
true densities when designing the classifier. Another consists of procedures for directly
estimating the a posteriori probabilities P (ωj |x). This is closely related to nonpara-
metric design procedures such as the nearest-neighbor rule, which bypass probability
estimation and go directly to decision functions. Finally, there are nonparametric
procedures for transforming the feature space in the hope that it may be possible to
employ parametric methods in the transformed space. These discriminant analysis
methods include the Fisher linear discriminant, which provides an important link be-
tween the parametric techniques of Chap. ?? and the adaptive techniques of Chaps. ??
& ??.

4.2 Density estimation

The basic ideas behind many of the methods of estimating an unknown probability
density function are very simple, although rigorous demonstrations that the estimates
converge require considerable care. The most fundamental techniques rely on the fact
that the probability P that a vector x will fall in a region R is given by
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P =
∫
R

p(x′) dx′. (1)

Thus P is a smoothed or averaged version of the density function p(x), and we can
estimate this smoothed value of p by estimating the probability P . Suppose that n
samples x1, ...,xn are drawn independently and identically distributed (i.i.d.) accord-
ing to the probability law p(x). Clearly, the probability that k of these n fall in R is
given by the binomial law

Pk =
(

n

k

)
P k(1− P )n−k, (2)

and the expected value for k is

E [k] = nP. (3)

P = .7 1
k/n
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Figure 4.1: The probability Pk of finding k patterns in a volume where the space
averaged probability is P as a function of k/n. Each curve is labelled by the total
number of patterns n. For large n, such binomial distributions peak strongly at
k/n = P (here chosen to be 0.7).

Moreover, this binomial distribution for k peaks very sharply about the mean, so that
we expect that the ratio k/n will be a very good estimate for the probability P , and
hence for the smoothed density function. This estimate is especially accurate when n
is very large (Fig. 4.1). If we now assume that p(x) is continuous and that the region
R is so small that p does not vary appreciably within it, we can write∫

R

p(x′) dx′ ' p(x)V, (4)

where x is a point within R and V is the volume enclosed by R. Combining Eqs. 1,
3 & 4, we arrive at the following obvious estimate for p(x):
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p(x) ' k/n

V
. (5)

There are several problems that remain — some practical and some theoretical.
If we fix the volume V and take more and more training samples, the ratio k/n will
converge (in probability) as desired, but we have only obtained an estimate of the
space-averaged value of p(x),

P

V
=

∫
R

p(x′) dx′∫
R

dx′
. (6)

If we want to obtain p(x) rather than just an averaged version of it, we must be
prepared to let V approach zero. However, if we fix the number n of samples and let
V approach zero, the region will eventually become so small that it will enclose no
samples, and our estimate p(x) ' 0 will be useless. Or if by chance one or more of
the training samples coincide at x, the estimate diverges to infinity, which is equally
useless.

From a practical standpoint, we note that the number of samples is always limited.
Thus, the volume V can not be allowed to become arbitrarily small. If this kind of
estimate is to be used, one will have to accept a certain amount of variance in the
ratio k/n and a certain amount of averaging of the density p(x).

From a theoretical standpoint, it is interesting to ask how these limitations can
be circumvented if an unlimited number of samples is available. Suppose we use the
following procedure. To estimate the density at x, we form a sequence of regions
R1,R2, ..., containing x — the first region to be used with one sample, the second
with two, and so on. Let Vn be the volume of Rn, kn be the number of samples falling
in Rn, and pn(x) be the nth estimate for p(x):

pn(x) =
kn/n

Vn
. (7)

If pn(x) is to converge to p(x), three conditions appear to be required:

• lim
n→∞

Vn = 0

• lim
n→∞

kn =∞

• lim
n→∞

kn/n = 0.

The first condition assures us that the space averaged P/V will converge to p(x),
provided that the regions shrink uniformly and that p(·) is continuous at x. The
second condition, which only makes sense if p(x) 6= 0, assures us that the frequency
ratio will converge (in probability) to the probability P . The third condition is clearly
necessary if pn(x) given by Eq. 7 is to converge at all. It also says that although a
huge number of samples will eventually fall within the small region Rn, they will form
a negligibly small fraction of the total number of samples.

There are two common ways of obtaining sequences of regions that satisfy these
conditions (Fig. 4.2). One is to shrink an initial region by specifying the volume Vn
as some function of n, such as Vn = 1/

√
n. It then must be shown that the random

variables kn and kn/n behave properly, or more to the point, that pn(x) converges to
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p(x). This is basically the Parzen-window method that will be examined in Sect. 4.3.
The second method is to specify kn as some function of n, such as kn =

√
n. Here

the volume Vn is grown until it encloses kn neighbors of x. This is the kn-nearest-
neighbor estimation method. Both of these methods do in fact converge, although it
is difficult to make meaningful statements about their finite-sample behavior.

Figure 4.2: Two methods for estimating the density at a point x (at the center of
each square) are to xxx.

4.3 Parzen Windows

The Parzen-window approach to estimating densities can be introduced by temporar-
ily assuming that the region Rn is a d-dimensional hypercube. If hn is the length of
an edge of that hypercube, then its volume is given by

Vn = hdn. (8)

We can obtain an analytic expression for kn, the number of samples falling in the
hypercube, by defining the following window function:window

function

ϕ(u) =
{

1 |uj | ≤ 1/2 j = 1, ..., d
0 otherwise. (9)

Thus, ϕ(u) defines a unit hypercube centered at the origin. It follows that ϕ((x− xi)/hn)
is equal to unity if xi falls within the hypercube of volume Vn centered at x, and is
zero otherwise. The number of samples in this hypercube is therefore given by

kn =
n∑
i=1

ϕ

(
x− xi

hn

)
, (10)

and when we substitute this into Eq. 7 we obtain the estimate

pn(x) =
1
n

n∑
i=1

1
Vn

ϕ

(
x− xi

hn

)
. (11)

This equation suggests a more general approach to estimating density functions.
Rather than limiting ourselves to the hypercube window function of Eq. 9, suppose
we allow a more general class of window functions. In such a case, Eq. 11 expresses
our estimate for p(x) as an average of functions of x and the samples xi. In essence,
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the window function is being used for interpolation — each sample contributing to
the estimate in accordance with its distance from x.

It is natural to ask that the estimate pn(x) be a legitimate density function, i.e.,
that it be nonnegative and integrate to one. This can be assured by requiring the
window function itself be a density function. To be more precise, if we require that

ϕ(x) ≥ 0 (12)

and ∫
ϕ(u) du = 1, (13)

and if we maintain the relation Vn = hdn, then it follows at once that pn(x) also
satisfies these conditions.

Let us examine the effect that the window width hn has on pn(x). If we define the
function δn(x) by

δn(x) =
1
Vn

ϕ

(
x
hn

)
, (14)

then we can write pn(x) as the average

pn(x) =
1
n

n∑
i=1

δn(x− xi). (15)

Since Vn = hdn, hn clearly affects both the amplitude and the width of δn(x) (Fig. 4.3).
If hn is very large, the amplitude of δn is small, and x must be far from xi before
δn(x − xi) changes much from δn(0). In this case, pn(x) is the superposition of n
broad, slowly changing functions and is a very smooth “out-of-focus” estimate of
p(x). On the other hand, if hn is very small, the peak value of δn(x−xi) is large and
occurs near x = xi. In this case p(x) is the superposition of n sharp pulses centered
at the samples — an erratic, “noisy” estimate (Fig. 4.4). For any value of hn, the
distribution is normalized, i.e.,∫

δn(x− xi) dx =
∫

1
Vn

ϕ

(
x− xi

hn

)
dx =

∫
ϕ(u) du = 1. (16)

Thus, as hn approaches zero, δn(x−xi) approaches a Dirac delta function centered at
xi, and pn(x) approaches a superposition of delta functions centered at the samples.

Clearly, the choice of hn (or Vn) has an important effect on pn(x). If Vn is too
large, the estimate will suffer from too little resolution; if Vn is too small, the estimate
will suffer from too much statistical variability. With a limited number of samples, the
best we can do is to seek some acceptable compromise. However, with an unlimited
number of samples, it is possible to let Vn slowly approach zero as n increases and
have pn(x) converge to the unknown density p(x).

In discussing convergence, we must recognize that we are talking about the con-
vergence of a sequence of random variables, since for any fixed x the value of pn(x)
depends on the random samples x1, ...,xn. Thus, pn(x) has some mean p̄n(x) and
variance σ2

n(x). We shall say that the estimate pn(x) converges to p(x) if

lim
n→∞

p̄n(x) = p(x) (17)
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Figure 4.3: Examples of two-dimensional circularly symmetric normal Parzen windows
ϕ(x/h) for three different values of h. Note that because the δk(·) are normalized,
different vertical scales must be used to show their structure.

p(x)
p(x) p(x)

Figure 4.4: Three Parzen-window density estimates based on the same set of five
samples, using the window functions in Fig. 4.3. As before, the vertical axes have
been scaled to show the structure of each function.

and

lim
n→∞

σ2
n(x) = 0. (18)

To prove convergence we must place conditions on the unknown density p(x), on
the window function ϕ(u), and on the window width hn. In general, continuity of
p(·) at x is required, and the conditions imposed by Eqs. 12 & 13 are customarily
invoked. With care, it can be shown that the following additional conditions assure
convergence (Problem 1):

sup
u

ϕ(u) <∞ (19)

lim
‖u‖→∞

ϕ(u)
d∏
i=1

ui = 0 (20)
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lim
n→∞

Vn = 0 (21)

and

lim
n→∞

nVn =∞. (22)

Equations 19 & 20 keep ϕ(·) well behaved, and are satisfied by most density functions
that one might think of using for window functions. Equations 21 & 22 state that the
volume Vn must approach zero, but at a rate slower than 1/n. We shall now see why
these are the basic conditions for convergence.

4.3.1 Convergence of the Mean

Consider first p̄n(x), the mean of pn(x). Since the samples xi are i.i.d. according to
the (unknown) density p(x), we have

p̄n(x) = E [pn(x)]

=
1
n

n∑
i=1

E
[ 1
Vn

ϕ
(x− xi

hn

)]
=

∫
1
Vn

ϕ
(x− v

hn

)
p(v) dv

=
∫

δn(x− v)p(v) dv. (23)

This equation shows that the expected value of the estimate is an averaged value
of the unknown density — a convolution of the unknown density and the window convolution
function (Appendix ??). Thus, p̄n(x) is a blurred version of p(x) as seen through the
averaging window. But as Vn approaches zero, δn(x−v) approaches a delta function
centered at x. Thus, if p is continuous at x, Eq. 21 ensures that p̄n(x) will approach
p(x) as n approaches infinity.

4.3.2 Convergence of the Variance

Equation 23 shows that there is no need for an infinite number of samples to make
p̄n(x) approach p(x); one can achieve this for any n merely by letting Vn approach
zero. Of course, for a particular set of n samples the resulting “spiky” estimate is
useless; this fact highlights the need for us to consider the variance of the estimate.
Since pn(x) is the sum of functions of statistically independent random variables, its
variance is the sum of the variances of the separate terms, and hence

σ2
n(x) =

n∑
i=1

E
[(

1
nVn

ϕ

(
x− xi

hn
− 1

n
p̄n(x)

))2
]

= n E
[ 1
n2V 2

n

ϕ2
(x− xi

hn

)]
− 1

n
p̄2
n(x)

=
1

nVn

∫
1
Vn

ϕ2
(x− v

hn

)
p(v) dv − 1

n
p̄2
n(x). (24)
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By dropping the second term, bounding ϕ(·) and using Eq. 21, we obtain

σ2
n(x) ≤ sup(ϕ(·)) p̄n(x)

nVn
. (25)

Clearly, to obtain a small variance we want a large value for Vn, not a small one —
a large Vn smooths out the local variations in density. However, since the numerator
stays finite as n approaches infinity, we can let Vn approach zero and still obtain zero
variance, provided that nVn approaches infinity. For example, we can let Vn = V1/

√
n

or V1/ln n or any other function satisfying Eqs. 21 & 22.
This is the principal theoretical result. Unfortunately, it does not tell us how to

choose ϕ(·) and Vn to obtain good results in the finite sample case. Indeed, unless we
have more knowledge about p(x) than the mere fact that it is continuous, we have no
direct basis for optimizing finite sample results.

4.3.3 Illustrations

It is interesting to see how the Parzen window method behaves on some simple ex-
amples, and particularly the effect of the window function. Consider first the case
where p(x) is a zero-mean, unit-variance, univariate normal density. Let the window
function be of the same form:

ϕ(u) =
1√
2π

e−u
2/2. (26)

Finally, let hn = h1/
√

n, where h1 is a parameter at our disposal. Thus pn(x) is an
average of normal densities centered at the samples:

pn(x) =
1
n

n∑
i=1

1
hn

ϕ
(x− xi

hn

)
. (27)

While it is not hard to evaluate Eqs. 23 & 24 to find the mean and variance of
pn(x), it is even more interesting to see numerical results. When a particular set of
normally distributed random samples was generated and used to compute pn(x), the
results shown in Fig. 4.5 were obtained. These results depend both on n and h1. For
n = 1, pn(x) is merely a single Gaussian centered about the first sample, which of
course has neither the mean nor the variance of the true distribution. For n = 10
and h1 = 0.1 the contributions of the individual samples are clearly discernible; this
is not the case for h1 = 1 and h1 = 5. As n gets larger, the ability of pn(x) to resolve
variations in p(x) increases. Concomitantly, pn(x) appears to be more sensitive to
local sampling irregularities when n is large, although we are assured that pn(x) will
converge to the smooth normal curve as n goes to infinity. While one should not judge
on visual appearance alone, it is clear that many samples are required to obtain an
accurate estimate. Figure 4.6 shows analogous results in two dimensions.

As a second one-dimensional example, we let ϕ(x) and hn be the same as in
Fig. 4.5, but let the unknown density be a mixture of two uniform densities:

p(x) =

 1 −2.5 < x < −2
1/4 0 < x < 2
0 otherwise.

(28)

Figure 4.7 shows the behavior of Parzen-window estimates for this density. As before,
the case n = 1 tells more about the window function than it tells about the unknown
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h = 1 h = .5 h = .1

n = 1

n = 10

n = 100

n = ∞

Figure 4.5: Parzen-window estimates of a univariate normal density using different
window widths and numbers of samples. The vertical axes have been scaled to best
show the structure in each graph. Note particularly that the n =∞ estimates are the
same (and match the true generating function), regardless of window width h.
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Figure 4.6: Parzen-window estimates of a bivariate normal density using different
window widths and numbers of samples. The vertical axes have been scaled to best
show the structure in each graph. Note particularly that the n =∞ estimates are the
same (and match the true generating distribution), regardless of window width h.
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density. For n = 16, none of the estimates is particularly good, but results for n = 256
and h1 = 1 are beginning to appear acceptable.
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Figure 4.7: Parzen-window estimates of a bimodal distribution using different window
widths and numbers of samples. Note particularly that the n =∞ estimates are the
same (and match the true generating distribution), regardless of window width h.

4.3.4 Classification example

In classifiers based on Parzen-window estimation, we estimate the densities for each
category and classify a test point by the label corresponding to the maximum poste-
rior. If there are multiple categories with unequal priors we can easily include these
too (Problem 4). The decision regions for a Parzen-window classifier depend upon
the choice of window function, of course, as illustrated in Fig. 4.8. In general, the
training error — the empirical error on the training points themselves — can be made
arbitrarily low by making the window width sufficiently small.∗ However, the goal of
creating a classifier is to classify novel patterns, and alas a low training error does
not guarantee a small test error, as we shall explore in Chap. ??. Although a generic
Gaussian window shape can be justified by considerations of noise, statistical inde-
pendence and uncertainty, in the absense of other information about the underlying
distributions there is little theoretical justification of one window width over another.

These density estimation and classification examples illustrate some of the power
and some of the limitations of nonparametric methods. Their power resides in their
generality. Exactly the same procedure was used for the unimodal normal case and
the bimodal mixture case and we did not need to make any assumptions about the

∗ We ignore cases in which the same feature vector has been assigned to multiple categories.
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Figure 4.8: The decision boundaries in a two-dimensional Parzen-window di-
chotomizer depend on the window width h. At the left a small h leads to boundaries
that are more complicated than for large h on same data set, shown at the right.
Apparently, for this data a small h would be appropriate for the upper region, while
a large h for the lower region; no single window width is ideal overall.

distributions ahead of time. With enough samples, we are essentially assured of
convergence to an arbitrarily complicated target density. On the other hand, the
number of samples needed may be very large indeed — much greater than would be
required if we knew the form of the unknown density. Little or nothing in the way of
data reduction is provided, which leads to severe requirements for computation time
and storage. Moreover, the demand for a large number of samples grows exponentially
with the dimensionality of the feature space. This limitation is related to the “curse of
dimensionality,” and severely restricts the practical application of such nonparametric
procedures (Problem 11). The fundamental reason for the curse of dimensionality is
that high-dimensional functions have the potential to be much more complicated than
low-dimensional ones, and that those complications are harder to discern. The only
way to beat the curse is to incorporate knowledge about the data that is correct.

4.3.5 Probabilistic Neural Networks (PNNs)

A hardware implementation of the Parzen windows approach is found in Probabilistic
Neural Networks (Fig. 4.9). Suppose we wish to form a Parzen estimate based on n
patterns, each of which is d-dimensional, randomly sampled from c classes. The PNN
for this case consists of d input units comprising the input layer, each unit is connect input unit
to each of the n pattern units; each pattern unit is, in turn, connected to one and

pattern
unit

only one of the c category units. The connections from the input to pattern units

category
unit

represent modifiable weights, which will be trained. (While these weights are merely

weight

parameters and could be represented by a vector θ, in keeping with the established
terminology in neural networks we shall use the symbol w.) Each link from a pattern
unit to its associated category unit is of a single constant magnitude.

The PNN is trained in the following way. First, each pattern x of the training set is
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Figure 4.9: A probabilistic neural network (PNN) consists of d input units, n pattern
units and c category units. Each pattern unit forms the inner product of its weight
vector and the normalized pattern vector x to form z = wtx, and then emits exp[(z−
1)/σ2]. Each category unit sums such contributions from the pattern unit connected
to it. This insures that the activity in each of the category units represents the Parzen-
window density estimate using a circularly symmetric Gaussian window of covariance
σ2I, where I is the d× d identity matrix.

normalized to have unit length, i.e., is scaled so that
d∑
i=1

x2
i = 1.∗ The first normalized

training pattern is placed on the input units. The modifiable weights linking the input
units and the first pattern unit are set such that w1 = x1. (Note that because of the
normalization of x1, w1 is normalized too.) Then, a single connection from the first
pattern unit is made to the category unit corresponding to the known class of that
pattern. The process is repeated with each of the remaining training patterns, setting
the weights to the successive pattern units such that wk = xk for k = 1, 2, ..., n.
After such training we have a network that is fully connected between input and
pattern units, and sparsely connected from pattern to category units. If we denote
the components of the jth pattern as xjk and the weights to the jth pattern unit wjk,
for j = 1, 2, ..., n and k = 1, 2, ..., d, then our algorithm is:

Algorithm 1 (PNN training)

1 begin initialize j = 0, n = #patterns
2 do j ← j + 1

3 normalize : xjk ← xjk/

(
d∑
i

x2
ji

)1/2

4 train : wjk ← xjk
5 if x ∈ ωi then aic ← 1
6 until j = n

∗ Such normalization collapses two vectors having the same direction but different magnitude. In
order to avoid this, we can augment the pattern with a feature of magnitude 1.0, making it (d+1)-
dimensional, and then normalize.
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7 end

The trained network is then used for classification in the following way. A nor-
malized test pattern x is placed at the input units. Each pattern unit computes the
inner product

zk = wt
kx, (29)

and emits a nonlinear function of zk; each output unit sums the contributions from
all pattern units connected to it. The nonlinear function is e(zk−1)/σ2

, where σ is a
parameter set by the user and is equal to

√
2 times the width of the effective Gaussian

window. To understand this choice of nonlinearity, consider an (unnormalized) Gaus-
sian window centered on the position of one of the training patterns wk. We work
backwards from the desired Gaussian window function to infer the nonlinear transfer
function that should be employed by the pattern units. That is, if we let our effective
width hn be a constant, the window function is

ϕ

(
xk −wk

hn

)
∝

desired Gaussian︷ ︸︸ ︷
e−(x−wk)t(x−wk)/2σ2

= e−(xtx+wt
kwk−2xtwk)/2σ2

= e(zk−1)/σ2︸ ︷︷ ︸
transfer

function

, (30)

where we have used our normalization conditions xtx = wt
kwk = 1. Thus each pattern

unit contributes to its associated category unit a signal equal to the probability the
test point was generated by a Gaussian centered on the associated training point.
The sum of these local estimates (computed at the corresponding category unit) gives
the discriminant function gi(x) — the Parzen window estimate of the underlying
distribution. The max

i
gi(x) operation gives the desired category for the test point

(Algorithm 2).

Algorithm 2 (PNN classification)

1 begin initialize k = 0,x = test pattern
2 do k ← k + 1
3 zk ← wt

kx
4 if akc = 1 then gc ← gc + exp[(zk − 1)/σ2]
5 until k = n
6 return class← arg max

i
gi(x)

7 end

One of the benefits of PNNs is their speed of learning, since the learning rule
(i.e., setting wk = xk) is simple and requires only a single pass through the training
data. The space complexity (amount of memory) for the PNN is easy to determine by
counting the number of wires in Fig. 4.9 — O((n + 1)d). This can be quite severe for
instance in a hardware application, since both n and d can be quite large. The time
complexity for classification by the parallel implementation of Fig. 4.9 is O(1), since
the n inner products of Eq. 29 can be done in parallel. Thus this PNN architecture
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could find uses where recognition speed is important and storage is not a severe
limitation. Another benefit is that new training patterns can be incorporated into
a previously trained classifier quite easily; this might be important for a particular
on-line application.

4.3.6 Choosing the window function

As we have seen, one of the problems encountered in the Parzen-window/PNN ap-
proach concerns the choice of the sequence of cell volumes sizes V1, V2, ... or overall
window size (or indeed other window parameters, such as shape or orientation). For
example, if we take Vn = V1/

√
n, the results for any finite n will be very sensitive to

the choice for the initial volume V1. If V1 is too small, most of the volumes will be
empty, and the estimate pn(x) will be very erratic (Fig. 4.7). On the other hand, if
V1 is too large, important spatial variations in p(x) may be lost due to averaging over
the cell volume. Furthermore, it may well be the case that a cell volume appropriate
for one region of the feature space might be entirely unsuitable in a different region
(Fig. 4.8). In Chap. ?? we shall consider general methods, including cross-validation,
which are often used in conjunction with Parzen windows. Now, though, we turn to an
important alternative method that is both useful and has solvable analytic properties.

4.4 kn–Nearest-Neighbor Estimation

A potential remedy for the problem of the unknown “best” window function is to
let the cell volume be a function of the training data, rather than some arbitrary
function of the overall number of samples. For example, to estimate p(x) from n
training samples or prototypes we can center a cell about x and let it grow until itprototypes
captures kn samples, where kn is some specified function of n. These samples are
the kn nearest-neighbors of x. It the density is high near x, the cell will be relatively
small, which leads to good resolution. If the density is low, it is true that the cell will
grow large, but it will stop soon after it enters regions of higher density. In either
case, if we take

pn(x) =
kn/n

Vn
(31)

we want kn to go to infinity as n goes to infinity, since this assures us that kn/n
will be a good estimate of the probability that a point will fall in the cell of volume
Vn. However, we also want kn to grow sufficiently slowly that the size of the cell
needed to capture kn training samples will shrink to zero. Thus, it is clear from
Eq. 31 that the ratio kn/n must go to zero. Although we shall not supply a proof,
it can be shown that the conditions lim

n→∞
kn = ∞ and lim

n→∞
kn/n = 0 are necessary

and sufficient for pn(x) to converge to p(x) in probability at all points where p(x) is
continuous (Problem 5). If we take kn =

√
n and assume that pn(x) is a reasonably

good approximation to p(x) we then see from Eq. 31 that Vn ' 1/(
√

np(x)). Thus,
Vn again has the form V1/

√
n, but the initial volume V1 is determined by the nature

of the data rather than by some arbitrary choice on our part. Note that there are
nearly always discontinuities in the slopes of these estimates, and these lie away from
the prototypes themselves (Figs. 4.10 & 4.11).

It is instructive to compare the performance of this method with that of the
Parzen-window/PNN method on the data used in the previous examples. With n = 1
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Figure 4.10: Eight points in one dimension and the k-nearest-neighbor density esti-
mates, for k = 3 and 5. Note especially that the discontinuities in the slopes in the
estimates generally occur away fom the positions of the points themselves.

0
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Figure 4.11: The k-nearest-neighbor estimate of a two-dimensional density for k = 5.
Notice how such a finite n estimate can be quite “jagged,” and that discontinuities in
the slopes generally occur along lines away from the positions of the points themselves.
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Figure 4.12: Several k-nearest-neighbor estimates of two unidimensional densities: a
Gaussian and a bimodal distribution. Notice how the finite n estimates can be quite
“spiky.”

and kn =
√

n = 1, the estimate becomes

pn(x) =
1

2|x− x1|
. (32)

This is clearly a poor estimate of p(x), with its integral embarrassing us by diverging
to infinity. As shown in Fig. 4.12, the estimate becomes considerably better as n gets
larger, even though the integral of the estimate remains infinite. This unfortunate fact
is compensated by the fact that pn(x) never plunges to zero just because no samples
fall within some arbitrary cell or window. While this might seem to be a meager
compensation, it can be of considerable value in higher-dimensional spaces.

As with the Parzen-window approach, we could obtain a family of estimates by
taking kn = k1

√
n and choosing different values for k1. However, in the absense of

any additional information, one choice is as good as another, and we can be confident
only that the results will be correct in the infinite data case. For classification, one
popular method is to adjust the window width until the classifier has the lowest error
on a separate set of samples, also drawn from the target distributions, a technique we
shall explore in Chap. ??.
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4.4.1 Estimation of a posteriori probabilities

The techniques discussed in the previous sections can be used to estimate the a pos-
teriori probabilities P (ωi|x) from a set of n labelled samples by using the samples
to estimate the densities involved. Suppose that we place a cell of volume V around
x and capture k samples, ki of which turn out to be labelled ωi. Then the obvious
estimate for the joint probability p(x, ωi) is

pn(x, ωi) =
ki/n

V
, (33)

and thus a reasonable estimate for P (ωi|x) is

Pn(ωi|x) =
pn(x, ωi)
c∑
j=1

pn(x, ωj)
=

ki
k

. (34)

That is, the estimate of the a posteriori probability that ωi is the state of nature is
merely the fraction of the samples within the cell that are labelled ωi. Consequently,
for minimum error rate we select the category most frequently represented within the
cell. If there are enough samples and if the cell is sufficiently small, it can be shown
that this will yield performance approaching the best possible.

When it comes to choosing the size of the cell, it is clear that we can use either
the Parzen-window approach or the kn-nearest-neighbor approach. In the first case,
Vn would be some specified function of n, such as Vn = 1/

√
n. In the second case,

Vn would be expanded until some specified number of samples were captured, such
as k =

√
n. In either case, as n goes to infinity an infinite number of samples will fall

within the infinitely small cell. The fact that the cell volume could become arbitrarily
small and yet contain an arbitrarily large number of samples would allow us to learn
the unknown probabilities with virtual certainty and thus eventually obtain optimum
performance. Interestingly enough, we shall now see that we can obtain comparable
performance if we base our decison solely on the label of the single nearest neighbor
of x.

4.5 The Nearest-Neighbor Rule

While the k-nearest-neighbor algorithm was first proposed for arbitrary k, the crucial
matter of determining the error bound was first solved for k = 1. This nearest-
neighbor algorithm has conceptual and computational simplicity. We begin by letting
Dn = {x1, ...,xn} denote a set of n labelled prototypes, and x′ ∈ Dn be the prototype
nearest to a test point x. Then the nearest-neighbor rule for classifying x is to assign
it the label associated with x′. The nearest-neighbor rule is a sub-optimal procedure;
its use will usually lead to an error rate greater than the minimum possible, the Bayes
rate. We shall see, however, that with an unlimited number of prototypes the error
rate is never worse than twice the Bayes rate.

Before we get immersed in details, let us try to gain a heuristic understanding of
why the nearest-neighbor rule should work so well. To begin with, note that the label
θ′ associated with the nearest neighbor is a random variable, and the probability
that θ′ = ωi is merely the a posteriori probability P (ωi|x′). When the number of
samples is very large, it is reasonable to assume that x′ is sufficiently close to x that
P (ω|x′) ' P (ωi|x). Since this is exactly the probability that nature will be in state
ωi, the nearest-neighbor rule is effectively matching probabilities with nature.
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If we define ωm(x) by

P (ωm|x) = max
i

P (ωi|x), (35)

then the Bayes decision rule always selects ωm. This rule allows us to partition the
feature space into cells consisting of all points closer to a given training point x′ than
to any other training points. All points in such a cell are thus labelled by the category
of the training point — a so-called Voronoi tesselation of the space (Fig. 4.13).Voronoi

tesselation

Figure 4.13: In two dimensions, the nearest-neighbor algorithm leads to a partitioning
of the input space into Voronoi cells, each labelled by the category of the training point
it contains. In three dimensions, the cells are three-dimensional, and the decision
boundary resembles the surface of a crystal.

When P (ωm|x) is close to unity, the nearest-neighbor selection is almost always
the same as the Bayes selection. That is, when the minimum probability of error
is small, the nearest-neighbor probability of error is also small. When P (ωm|x) is
close to 1/c, so that all classes are essentially equally likely, the selections made by
the nearest-neighbor rule and the Bayes decision rule are rarely the same, but the
probability of error is approximately 1 − 1/c for both. While more careful analysis
is clearly necessary, these observations should make the good performance of the
nearest-neighbor rule less surprising.

Our analysis of the behavior of the nearest-neighbor rule will be directed at ob-
taining the infinite-sample conditional average probability of error P (e|x), where the
averaging is with respect to the training samples. The unconditional average proba-
bility of error will then be found by averaging P (e|x) over all x:

P (e) =
∫

P (e|x)p(x) dx. (36)

In passing we should recall that the Bayes decision rule minimizes P (e) by minimizing
P (e|x) for every x. Recall from Chap. ?? that if we let P ∗(e|x) be the minimum
possible value of P (e|x), and P ∗ be the minimum possible value of P (e), then

P ∗(e|x) = 1− P (ωm|x) (37)
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and

P ∗ =
∫

P ∗(e|x)p(x) dx. (38)

4.5.1 Convergence of the Nearest Neighbor

We now wish to evaluate the average probability of error for the nearest-neighbor
rule. In particular, if Pn(e) is the n-sample error rate, and if

P = lim
n→∞

Pn(e), (39)

then we want to show that

P ∗ ≤ P ≤ P ∗
(
2− c

c− 1
P ∗
)
. (40)

We begin by observing that when the nearest-neighbor rule is used with a par-
ticular set of n samples, the resulting error rate will depend on the accidental char-
acteristics of the samples. In particular, if different sets of n samples are used to
classify x, different vectors x′ will be obtained for the nearest-neighbor of x. Since
the decision rule depends on this nearest-neighbor, we have a conditional probability
of error P (e|x,x′) that depends on both x and x′. By averaging over x′, we obtain

P (e|x) =
∫

P (e|x,x′)p(x′|x) dx′. (41)

where we understand that there is an implicit dependence upon the number n of
training points.

It is usually very difficult to obtain an exact expression for the conditional density
p(x′|x). However, since x′ is by definition the nearest-neighbor of x, we expect this
density to be very peaked in the immediate vicinity of x, and very small elsewhere.
Furthermore, as n goes to infinity we expect p(x′|x) to approach a delta function
centered at x, making the evaluation of Eq. 41 trivial. To show that this is indeed the
case, we must assume that at the given x, p(·) is continuous and not equal to zero.
Under these conditions, the probability that any sample falls within a hypersphere S
centered about x is some positive number Ps:

Ps =
∫

x′∈S

p(x′) dx′. (42)

Thus, the probability that all n of the independently drawn samples fall outside
this hypersphere is (1 − Ps)n, which approaches zero as n goes to infinity. Thus x′

converges to x in probability, and p(x′|x) approaches a delta function, as expected. In
fact, by using measure theoretic methods one can make even stronger (as well as more
rigorous) statements about the convergence of x′ to x, but this result is sufficient for
our purposes.

4.5.2 Error Rate for the Nearest-Neighbor Rule

We now turn to the calculation of the conditional probability of error Pn(e|x,x′).
To avoid a potential source of confusion, we must state the problem with somewhat
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greater care than has been exercised so far. When we say that we have n inde-
pendently drawn labelled samples, we are talking about n pairs of random variables
(x1, θ1), (x2, θ2), ..., (xn, θn), where θj may be any of the c states of nature ω1, ..., ωc.
We assume that these pairs were generated by selecting a state of nature ωj for θj with
probability P (ωj) and then selecting an xj according to the probability law p(x|ωj),
with each pair being selected independently. Suppose that during classification nature
selects a pair (x, θ), and that x′j , labelled θ′j , is the training sample nearest x. Since
the state of nature when x′j was drawn is independent of the state of nature when x
is drawn, we have

P (θ, θ′j |x,x′j) = P (θ|x)P (θ′j |x′j). (43)

Now if we use the nearest-neighbor decision rule, we commit an error whenever θ 6= θ′j .
Thus, the conditional probability of error Pn(e|x,x′j) is given by

Pn(e|x,x′j) = 1−
c∑
i=1

P (θ = ωi, θ
′ = ωi|x,x′j)

= 1−
c∑
i=1

P (ωi|x)P (ωi|x′j). (44)

To obtain Pn(e) we must substitute this expression into Eq. 41 for Pn(e|x) and
then average the result over x. This is very difficult, in general, but as we remarked
earlier the integration called for in Eq. 41 becomes trivial as n goes to infinity and
p(x′|x) approaches a delta function. If P (ωi|x) is continuous at x, we thus obtain

lim
n→∞

Pn(e|x) =
∫ [

1−
c∑
i=1

P (ωi|x)P (ωi|x′)
]
δ(x′ − x) dx′

= 1−
c∑
i=1

P 2(ωi|x). (45)

Therefore, provided we can exchange some limits and integrals, the asymptotic nearest-
neighbor error rate is given by

P = lim
n→∞

Pn(e)

= lim
n→∞

∫
Pn(e|x)p(x) dx

=
∫ [

1−
c∑
i=1

P 2(ωi|x)
]
p(x) dx. (46)

4.5.3 Error Bounds

While Eq. 46 presents an exact result, it is more illuminating to obtain bounds on P in
terms of the Bayes rate P ∗. An obvious lower bound on P is P ∗ itself. Furthermore,
it can be shown that for any P ∗ there is a set of conditional and prior probabilities
for which the bound is achieved, so in this sense it is a tight lower bound.
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The problem of establishing a tight upper bound is more interesting. The basis
for hoping for a low upper bound comes from observing that if the Bayes rate is
low, P (ωi|x) is near 1.0 for some i, say i = m. Thus the integrand in Eq. 46 is
approximately 1− P 2(ωm|x) ' 2(1− P (ωm|x)), and since

P ∗(e|x) = 1− P (ωm|x), (47)

integration over x might yield about twice the Bayes rate, which is still low and
acceptable for some applications. To obtain an exact upper bound, we must find out
how large the nearest-neighbor error rate P can become for a given Bayes rate P ∗.

Thus, Eq. 46 leads us to ask how small
c∑
i=1

P 2(ωi|x) can be for a given P (ωm|x). First

we write

c∑
i=1

P 2(ωi|x) = P 2(ωm|x) +
∑
i 6=m

P 2(ωi|x), (48)

and then seek to bound this sum by minimizing the second term subject to the
following constraints:

• P (ωi|x) ≥ 0

•
∑
i 6=m

P (ωi|x) = 1− P (ωm|x) = P ∗(e|x).

With a little thought we see that
c∑
i=1

P 2(ωi|x) is minimized if all of the a posteriori

probabilities except the mth are equal. The second constraint yields

P (ωi|x) =
{

P∗(e|x)
c−a i 6= m

1− P ∗(e|x) i = m.
(49)

Thus we have the inequalities

c∑
i=1

P 2(ωi|x) ≥ (1− P ∗(e|x))2 +
P ∗2(e|x)

c− 1
(50)

and

1−
c∑
i=1

P 2(ωi|x) ≤ 2P ∗(e|x)− c

c− 1
P ∗2(e|x). (51)

This immediately shows that P ≤ 2P ∗, since we can substitute this result in
Eq. 46 and merely drop the second term. However, a tighter bound can be obtained
by observing that the variance is:

Var[P ∗(e|x)] =
∫

[P ∗(e|x)− P ∗]2p(x) dx

=
∫

P ∗2(e|x)p(x) dx− P ∗2 ≥ 0,

so that
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∫
P ∗2(e|x)p(x) dx ≥ P ∗2, (52)

with equality holding if and only if the variance of P ∗(e|x) is zero. Using this result
and substituting Eq. 51 into Eq. 46, we obtain the desired bounds on the nearest-
neighbor error P in the case of an infinite number of samples:

P ∗ ≤ P ≤ P ∗
(
2− c

c− 1
P ∗
)
. (53)

It is easy to show that this upper bound is achieved in the so-called zero-information
case in which the densities p(x|ωi) are identical, so that P (ωi|x) = P (ωi) and further-
more P ∗(e|x) is independent of x (Problem 17). Thus the bounds given by Eq. 53 are
as tight as possible, in the sense that for any P ∗ there exist conditional and a priori
probabilities for which the bounds are achieved. In particular, the Bayes rate P ∗ can
be anywhere between 0 and (c− 1)/c and the bounds meet at the two extreme values
for the probabilities. When the Bayes rate is small, the upper bound is approximately
twice the Bayes rate (Fig. 4.14).

___c-1
c

___c-1
c

P*

P

Figure 4.14: Bounds on the nearest-neighbor error rate P in a c-category problem
given infinite training data, where P ∗ is the Bayes error (Eq. 53). At low error rates,
the nearest-neighbor error rate is bounded above by twice the Bayes rate.

Since P is always less than or equal to 2P ∗, if one had an infinite collection of data
and used an arbitrarily complicated decision rule, one could at most cut the error rate
in half. In this sense, at least half of the classification information in an infinite data
set resides in the nearest neighbor.

It is natural to ask how well the nearest-neighbor rule works in the finite-sample
case, and how rapidly the performance converges to the asymptotic value. Unfor-
tunately, despite prolonged effort on such problems, the only statements that can
be made in the general case are negative. It can be shown that convergence can
be arbitrarily slow, and the error rate Pn(e) need not even decrease monotonically
with n. As with other nonparametric methods, it is difficult to obtain anything other
than asymptotic results without making further assumptions about the underlying
probability structure (Problems 13 & 14).

4.5.4 The k-Nearest-Neighbor Rule

An obvious extension of the nearest-neighbor rule is the k-nearest-neighbor rule. As
one would expect from the name, this rule classifies x by assigning it the label most
frequently represented among the k nearest samples; in other words, a decision is made
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by examining the labels on the k nearest neighbors and taking a vote (Fig. 4.15). We
shall not go into a thorough analysis of the k-nearest-neighbor rule. However, by
considering the two-class case with k odd (to avoid ties), we can gain some additional
insight into these procedures.

x

x1

x2

Figure 4.15: The k-nearest-neighbor query starts at the test point and grows a spher-
ical region until it encloses k training samples, and labels the test point by a majority
vote of these samples. In this k = 5 case, the test point x would be labelled the
category of the black points.

The basic motivation for considering the k-nearest-neighbor rule rests on our ear-
lier observation about matching probabilities with nature. We notice first that if
k is fixed and the number n of samples is allowed to approach infinity, then all of
the k nearest neighbors will converge to x. Hence, as in the single-nearest-neighbor
cases, the labels on each of the k-nearest-neighbors are random variables, which in-
dependently assume the values ωi with probabilities P (ωi|x), i = 1, 2. If P (ωm|x)
is the larger a posteriori probability, then the Bayes decision rule always selects ωm.
The single-nearest-neighbor rule selects ωm with probability P (ωm|x). The k-nearest-
neighbor rule selects ωm if a majority of the k nearest neighbors are labeled ωm, an
event of probability

k∑
i=(k+1)/2

(
k

i

)
P (ωm|x)i[1− P (ωm|x)]k−i. (54)

In general, the larger the value of k, the greater the probability that ωm will be
selected.

We could analyze the k-nearest-neighbor rule in much the same way that we
analyzed the single-nearest-neighbor rule. However, since the arguments become more
involved and supply little additional insight, we shall content ourselves with stating
the results. It can be shown that if k is odd, the large-sample two-class error rate for
the k-nearest-neighbor rule is bounded above by the function Ck(P ∗), where Ck(P ∗)
is defined to be the smallest concave function of P ∗ greater than

(k−1)/2∑
i=0

(
k

i

)[
(P ∗)i+1(1− P ∗)k−i + (P ∗)k−i(1− P ∗)i+1

]
. (55)
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Here the summation over the first bracketed term represents the probability of error
due to i points coming from the category having the minimum probability and k−i > i
points from the other category. The summation over the second term in the brackets
is the probability that k − i points are from the minimum-probability category and
i + 1 < k − i from the higher probability category. Both of these cases constitute
errors under the k-nearest-neighbor decision rule, and thus we must add them to find
the full probability of error (Problem 18).

Figure 4.16 shows the bounds on the k-nearest-neighbor error rates for several
values of k. As k increases, the upper bounds get progressively closer to the lower
bound — the Bayes rate. In the limit as k goes to infinity, the two bounds meet and
the k-nearest-neighbor rule becomes optimal.
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Figure 4.16: The error-rate for the k-nearest-neighbor rule for a two-category problem
is bounded by Ck(P ∗) in Eq. 55. Each curve is labelled by k; when k = ∞, the
estimated probabilities match the true probabilities and thus the error rate is equal
to the Bayes rate, i.e., P = P ∗.

At the risk of sounding repetitive, we conclude by commenting once again on the
finite-sample situation encountered in practice. The k-nearest-neighbor rule can be
viewed as another attempt to estimate the a posteriori probabilities P (ωi|x) from
samples. We want to use a large value of k to obtain a reliable estimate. On the
other hand, we want all of the k nearest neighbors x′ to be very near x to be sure
that P (ωi|x′) is approximately the same as P (ωi|x). This forces us to choose a
compromise k that is a small fraction of the number of samples. It is only in the limit
as n goes to infinity that we can be assured of the nearly optimal behavior of the
k-nearest-neighbor rule.

4.5.5 Computational Complexity of the k–Nearest-Neighbor
Rule

The computational complexity of the nearest-neighbor algorithm — both in space
(storage of prototypes) and time (search) — has received a great deal of analy-
sis. There are a number of elegant theorems from computational geometry on the
construction of Voronoi tesselations and nearest-neighbor searches in one- and two-
dimensional spaces. However, because the greatest use of nearest-neighbor techniques
is for problems with many features, we concentrate on the more general d-dimensional
case.

Suppose we have n labelled training samples in d dimensions, and seek to find
the closest to a test point x (k = 1). In the most naive approach we inspect each
stored point in turn, calculate its Euclidean distance to x, retaining the identity only
of the current closest one. Each distance calculation is O(d), and thus this search
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Figure 4.17: A parallel nearest-neighbor circuit can perform search in constant —
i.e., O(1) — time. The d-dimensional test pattern x is presented to each box, which
calculates which side of a cell’s face x lies on. If it is on the “close” side of every face
of a cell, it lies in the Voronoi cell of the stored pattern, and receives its label.

is O(dn2). An alternative but straightforward parallel implementation is shown in
Fig. 4.17, which is O(1) in time and O(n) in space.

There are three general algorithmic techniques for reducing the computational
burden in nearest-neighbor searches: computing partial distances, prestructuring, and
editing the stored prototypes. In partial distance, we calculate the distance using some partial

distancesubset r of the full d dimensions, and if this partial distance is too great we do not
compute further. The partial distance based on r selected dimensions is

Dr(a,b) =

(
r∑

k=1

(ak − bk)2

)1/2

(56)

where r < d. Intuitively speaking, partial distance methods assume that what we
know about the distance in a subspace is indicative of the full space. Of course, the
partial distance is strictly non-decreasing as we add the contributions from more and
more dimensions. Consequently, we can confidently terminate a distance calculation
to any prototype once its partial distance is greater than the full r = d Euclidean
distance to the current closest prototype.

In presturcturing we create some form of search tree in which prototypes are selec- search
treetively linked. During classification, we compute the distance of the test point to one

or a few stored “entry” or “root” prototypes and then consider only the prototypes
linked to it. Of these, we find the one that is closest to the test point, and recursively
consider only subsequent linked prototypes. If the tree is properly structured, we will
reduce the total number of prototypes that need to be searched.

Consider a trivial illustration of prestructuring in which we store a large number
of prototypes that happen to be distributed uniformly in the unit square, i.e., p(x) ∼
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U
((

0
0

)
,
(

1
1

))
. Imagine we prestructure this set using four entry or root prototypes —

at
(

1/4
1/4

)
,
(

1/4
3/4

)
,
(

3/4
1/4

)
and

(
3/4
3/4

)
— each fully linked only to points in its corresponding

quadrant. When a test pattern x is presented, the closest of these four prototypes
is determined, and then the search is limited to the prototypes in the corresponding
quadrant. In this way, 3/4 of the prototypes need never be queried.

Note that in this method we are no longer guaranteed to find the closest prototype.
For instance, suppose the test point is near a boundary of the quadrants, e.g., x =(

0.499
0.499

)
. In this particular case only prototypes in the first quadrant will be searched.

Note however that the closest prototype might actually be in one of the other three
quadrants, somewhere near

(
0.5
0.5

)
. This illustrates a very general property in pattern

recognition: the tradeoff of search complexity against accuracy.
More sophisticated search trees will have each stored prototype linked to a small

number of others, and a full analysis of these methods would take us far afield. Nev-
ertheless, here too, so long as we do not query all training prototypes, we are not
guaranteed that the nearest prototype will be found.

The third method for reducing the complexity of nearest-neighbor search is to
eliminate “useless” prototypes during training, a technique known variously as editing,editing
pruning or condensing. A simple method to reduce the O(n) space complexity is to
eliminate prototypes that are surrounded by training points of the same category
label. This leaves the decision boundaries — and hence the error — unchanged, while
reducing recall times. A simple editing algorithm is as follows.

Algorithm 3 (Nearest-neighbor editing)

1 begin initialize j = 0,D = data set, n = #prototypes
2 construct the full Voronoi diagram of D
3 do j ← j + 1; for each prototype x′j
4 Find the Voronoi neighbors of x′j
5 if any neighbor is not from the same class as x′j then mark x′j
6 until j = n
7 Discard all points that are not marked
8 Construct the Voronoi diagram of the remaining (marked) prototypes
9 end

The complexity of this editing algorithm is O(d3nbd/2clnn), where here the “floor”
operation (b·c) implies bd/2c = k if d is even, and 2k − 1 if d is odd (Problem 10).

According to Algorithm 3, if a prototype contributes to a decision boundary (i.e.,
at least one of its neighbors is from a different category), then it remains in the set;
otherwise it is edited away (Problem 15). This algorithm does not guarantee that the
minimal set of points is found (Problem 16), nevertheless, it is one of the examples in
pattern recognition in which the computational complexity can be reduced — some-
times significantly — without affecting the accuracy. One drawback of such pruned
nearest neighbor systems is that one generally cannot add training data later, since
the pruning step requires knowledge of all the training data ahead of time (Computer
exercise ??). We conclude this section by noting the obvious, i.e., that we can com-
bine these three complexity reduction methods. We might first edit the prototypes,
then form a search tree during training, and finally compute partial distances during
classification.
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4.6 Metrics and Nearest-Neighbor Classification

The nearest-neighbor classifier relies on a metric or “distance” function between pat-
terns. While so far we have assumed the Euclidean metric in d dimensions, the notion
of a metric is far more general, and we now turn to the use alternate measures of
distance to address key problems in classification. First let us review the properties of
a metric. A metric D(·, ·) is merely a function that gives a generalized scalar distance
between two argument patterns. A metric must have four properties: for all vectors
a, b and c

non-negativity: D(a,b) ≥ 0

reflexivity: D(a,b) = 0 if and only if a = b

symmetry: D(a,b) = D(b,a)

triangle inequality: D(a,b) + D(b, c) ≥ D(a, c).

It is easy to verify that if the Euclidean formula for distance in d dimensions,

D(a,b) =

(
d∑
k=1

(ak − bk)2

)1/2

, (57)

obeys the properties of metric. Moreover, if each coordinate is multiplied by an
arbitrary constant, the resulting space also obeys a metric (Problem 19), though it
can lead to problems in nearest-neighbor classifiers (Fig. 4.18).

x1

x2 x2

αx1

x x

Figure 4.18: Even if each coordinate is scaled by some constant, the resulting space
still obeys the properties of a metric. However, a nearest-neighbor classifier would
have different results depending upon such rescaling. Consider the test point x and
its nearest neighbor. In the original space (left), the black prototype is closest. In
the figure at the right, the x1 axis has been rescaled by a factor 1/3; now the nearest
prototype is the red one. If there is a large disparity in the ranges of the full data in
each dimension, a common procedure is to rescale all the data to equalize such ranges,
and this is equivalent to changing the metric in the original space.

One general class of metrics for d-dimensional patterns is the Minkowski metric Minkowsi
metric

Lk(a,b) =

(
d∑
i=1

|ai − bi|k
)1/k

, (58)

also referred to as the Lk norm (Problem 20); thus, the Euclidean distance is the L2

norm. The L1 norm is sometimes called the Manhattan or city block distance, the Manhattan
distanceshortest path between a and b, each segment of which is parallel to a coordinate axis.
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(The name derives from the fact that the streets of Manhattan run north-south and
east-west.) Suppose we compute the distances between the projections of a and b
onto each of the d coordinate axes. The L∞ distance between a and b corresponds
to the maximum of these projected distances (Fig. 4.19).

1

4
2

∞

0,0,0

1,0,0

0,1,0

1,1,1

Figure 4.19: Each colored surface consists of points a distance 1.0 from the origin,
measured using different values for k in the Minkowski metric (k is printed in red).
Thus the white surfaces correspond to the L1 norm (Manhattan distance), light gray
the L2 norm (Euclidean distance), dark gray the L4 norm, and red the L∞ norm.

The Tanimoto metric finds most use in taxonomy, where the distance between twoTanimoto
metric sets is defined as

DTanimoto(S1,S2) =
n1 + n2 − 2n12

n1 + n2 − n12
, (59)

where n1 and n2 are the number of elements in sets S1 and S2, respectively, and n12 is
the number that is in both sets. The Tanimoto metric finds greatest use for problems
in which two patterns or features — the elements in the set — are either the same or
different, and there is no natural notion of graded similarity (Problem 27).

The selection among these or other metrics is generally dictated by computational
concerns, and it is hard to base a choice on prior knowledge about the distributions.
One exception is when there is great difference in the range of the data along different
axes in a multidmensional data. Here, we should scale the data — or equivalently
alter the metric — as suggested in Fig. 4.18.

4.6.1 Tangent distance

There may be drawbacks inherent in the uncritical use of a particular metric in
nearest-neighbor classifiers, and these drawbacks can be overcome by the careful use
of more general measures of distance. On crucial such problem is that of invariance.
Consider a 100-dimensional pattern x′ representing a 10× 10 pixel grayscale image of
a handwritten 5. Consider too the Euclidean distance from x′ to the pattern repre-
senting an image that is shifted horizontally but otherwise identical (Fig. 4.20). Even
if the relative shift is a mere three pixels, the Euclidean distance grows very large —
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much greater than the distance to an unshifted 8. Clearly the Euclidean metric is of
little use in a nearest-neighbor classifier that must be insensitive to such translations.

Likewise, other transformations, such as overall rotation or scale of the image,
would not be well accommodated by Euclidean distance in this manner. Such draw-
backs are especially pronounced if we demand that our classifier be simultaneously
invariant to several transformations, such as horizontal translation, vertical transla-
tion, overall scale, rotation, line thickness, shear, and so on (Computer exercise 7 &
8). While we could preprocess the images by shifting their centers to coalign, then
have the same bounding box, and so forth, such an approach has its own difficulties,
such as sensitivity to outlying pixels or to noise. We explore here alternatives to such
preprocessing.

1 2 3 4 5

2.58

x8 x' x'(s=3)

D(x,x(s))

D(x',x8)

s

Figure 4.20: The uncritical use of Euclidean metric cannot address the problem of
translation invariance. Pattern x′ represents a handwritten 5, and x′(s = 3) the same
shape but shifted three pixels to the right. The Euclidean distance D(x′,x′(s = 3)) is
much larger than D(x′,x8), where x8 represents the handwritten 8. Nearest-neighbor
classification based on the Euclidean distance in this way leads to very large errors.
Instead, we seek a distance measure that would be insensitive to such translations, or
indeed other known invariances, such as scale or rotation.

Ideally, during classification we would like to first transform the patterns to be
as similar to one another and only then compute their similarity, for instance by
the Euclidean distance. Alas, the computational complexity of such transformations
make this ideal unattainable. Merely rotating a k× k image by a known amount and
interpolating to a new grid is O(k2). But of course we do not know the proper rotation
angle ahead of time and must search through several values, each value requiring a
distance calculation to test the whether the optimal setting has been found. If we must
search for the optimal set of parameters for several transformations for each stored
prototype during classification, the computational burden is prohibitive (Problem 25).

The general approach in tangent distance classifiers is to use a novel measure of
distance and a linear approximation to the arbitrary transforms. Suppose we believe
there are r transformations applicable to our problem, such as horizontal translation,
vertical translation, shear, rotation, scale, and line thinning. During construction of
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the classifier we take each stored prototype x′ and perform each of the transformations
Fi(x′; αi) on it. Thus Fi(x′; αi) could represent the image described by x′, rotated
by a small angle αi. We then construct a tangent vector TVi for each transformation:tangent

vector
TVi = Fi(x′; αi)− x′. (60)

While such a transformation may be compute intensive — as, for instance, the line
thinning transform — it need be done only once, during training when computational
constraints are lax. In this way we construct for each prototype x′ an r × d matrix
T, consisting of the tangent vectors at x′. (Such vectors can be orthonormalized, but
we need assume here only that they are linearly independent.) It should be clear, too
that this method will not work with binary images, since they lack a proper notion
of derivative. If the data are binary, then, it is traditional to blur the images before
creating a tangent distance based classifier.

Each point in the subspace spanned by the r tangent vectors passing through
x′ represents the linearized approximation to the full combination of transforms, as
shown in Fig. 4.21. During classification we search for the point in the tangent space
that is closest to a test point x — the linear approximation to our ideal. As we shall
see, this search can be quite fast.

Now we turn to computing the tangent distance from a test point x to a particular
stored prototype x′. Formally, given a matrix T consisting of the r tangent vectors
at x′, the tangent distance from x′ to x is

Dtan(x′,x) = min
a

[‖(x′ + Ta)− x‖], (61)

i.e., the Euclidean distance from x to the tangent space of x′. Equation 61 describes
the so-called “one-sided” tangent distance, because only one pattern, x′, is trans-
formed. The two-sided tangent distance allows both x and x′ to be transformed but
improves the accuracy only slightly at a large added computational burden (Prob-
lem 23); for this reason we shall concentrate on the one-sided version.

During classification of x we will find its tangent distance to x′ by finding the
optimizing value of a required by Eq. 61. This minimization is actually quite simple,
since the argument is a paraboloid as a function of a, as shown in pink in Fig. 4.22.
We find the optimal a via iterative gradient descent. For gradient descent we need
the derivative of the (squared) Euclidean distance. The Euclidean distance in Eq. 61
obeys

D2(x′ + Ta,x) = ‖(x′ + Ta)− x‖2, (62)

and we compute the gradient with respect to the vector of parameters a — the pro-
jections onto the tangent vectors — as

∇aD2(x′ + Ta,x) = 2Tt(x′ + Ta− x). (63)

Thus we can start with an arbitrary a and take a step in the direction of the negative
gradient, updating our parameter vector as

a(t + 1) = a(t)− ηTt(Ta(t) + x′ − x), (64)

where η is the scalar step size controlling the rate of convergence. So long as the step
is not too large, we will reduce the squared Euclidean distance. When the minimum
of such Euclidean distance is found, we have our tangent distance (Eq. 61). The
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Figure 4.21: The pixel image of the handwritten 5 prototype at the lower left was
subjected to two transformations, rotation, and line thinning, to obtain the tangent
vectors TV1 and TV2; images corresponding to these tangent vectors are shown out-
side the axes. Each of the 16 images within the axes represents the prototype plus
linear combination of the two tangent vectors with coefficients a1 and a2. The small
red number in each image is the Euclidean distance between the tangent approxi-
mation and the image generated by the unapproximated transformations. Of course,
this Euclidean distance is 0 for the prototype and for the cases a1 = 1, a2 = 0 and
a1 = 0, a2 = 1. (The patterns generated with a1 + a2 > 1 have a gray background
because of automatic grayscale conversion of images with negative pixel values.)

optimal a can also be found by standard matrix methods, but these generally have
higher computational complexities, as is explored in Problems 21 & 22. We note that
the methods for editing and prestructuring data sets described in Sec. 4.5.5 can be
applied to tangent distance classifers too.

Nearest-neighbor classifiers using tangent distance have been shown to be highly
accurate, but they require the designer to know which invariances and to be able to
perform them on each prototype. Some of the insights from tangent approach can
also be used for learning which invariances underly the training data — a topic we
shall revisit in Chap. ??.
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Figure 4.22: A stored prototype x′, if transformed by combinations of two basic
transformations, would fall somewhere on a complicated curved surface in the full
d-dimensional space (gray). The tangent space at x′ is an r-dimensional Euclidean
space, spanned by the tangent vectors (here TV1 and TV2). The tangent distance
Dtan(x′,x) is the smallest Euclidean distance from x to the tangent space of x′, shown
in the solid red lines for two points, x1 and x2. Thus although the Euclidean distance
from x′ to x1 is less than to x2, for the tangent distance the situation is reversed. The
Euclidean distance from x2 to the tangent space of x′ is a quadratic function of the
parameter vector a, as shown by the pink paraboloid. Thus simple gradient descent
methods can find the optimal vector a and hence the tangent distance Dtan(x′,x2).

4.7 Fuzzy Classification

Occassionally we may have informal knowledge about a problem domain where we
seek to build a classifier. For instance, we might feel, generally speaking, that an
adult salmon is oblong and light in color, while a sea bass is stouter and dark. The
approach taken in fuzzy classification is to create so-called “fuzzy category member-
ships functions,” which convert an objectively measurable parameter into a subjective
“category memberships,” which are then used for classification. We must stress im-
mediately that the term “categories” used by fuzzy practitioners refers not to the final
class as we have been discussing, but instead just overlapping ranges of feature values.
For instance, if we consider the feature value of lightness, fuzzy practitioners might
split this into five “categories” — dark, medium-dark, medium, medium-light and
light. In order to avoid misunderstandings, we shall use quotations when discussing
such “categories.”

For example we might have the lightness and shape of a fish be judged as in
Fig. 4.23. Next we need a way to convert an objective measurement in several features
into a category decision about the fish, and for this we need a merging or conjunction
rule — a way to take the “category memberships” (e.g., lightness and shape) andconjunction

rule yield a number to be used for making the final decision. Here fuzzy practitioners have
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1

x

Figure 4.23: “Category membership” functions, derived from the designer’s prior
knowledge, together with a lead to discriminants. In this figure x might represent an
objectively measureable value such as the reflectivity of a fish’s skin. The designer
believes there are four relevant ranges, which might be called dark, medium-dark,
medium-light and light. Note, the memberships are not in true categories we wish to
classify, but instead merely ranges of feature values.

at their disposal a large number of possible functions. Indeed, most functions can be
used and there are few principled criteria to preference one over another. One guiding
principle that is often invoked is that that in the extreme cases the membership
functions have value 0 or 1, the conjunction reduces to standard predicate logic;
likewise, symmetry in the arguments is virtually always assumed. Nevertheless, there
are no strong principled reasons to impose these conditions, nor are they sufficient to
determine the “categories.”

Suppose the designer feels that the final category based on lightness ahd shape can
be described as medium-light and oblong. While the heuristic category membership
function (µ(·)) converts the objective measurements to two “category memberships,”
we now need a conjunction rule to transform the component “membership values” conjunction

ruleinto a discriminant function. There are many ways to do this, but the most popular
is

1−Min[µx(x), µy(y)]. (65)

and the obvious extension if there are more then two features.
It must be emphasized that fuzzy techniques are completely and thoroughly sub-

sumed by the general notion of discriminant function discussed in Chap. ?? (Prob-
lem 29).

4.7.1 Are Fuzzy Category Memberships just Probabilities?

Even before the introduction of fuzzy methods and category membership functions,
the statistics, pattern recognition and even mathematical philosophy communities ar-
gued a great deal over the fundamental nature of probability. Some questioned the
applicability of the concept to single, non-repeatable events, feeling that statements
about a single event — what was the probability of rain on Tuesday? — were mean-
ingless. Such discussion made it quite clear that “probability” need not apply only
to repeatable events. Instead, since the first half of the 20th century, probability has
been used as the logic of reasonable inference — work that highlighted the notion of
subjective probability. Moreover, pattern recognition practitioners had happily used
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Figure 4.24: “Category membership” functions and a conjunction rule based on the
designer’s prior knowledge lead to discriminant functions. Here x1 and x2 are objec-
tively measurable feature values. The designer believes that a particular class can be
described as the conjunction of two “category memberships,” here shown bold. Here
the conjunction rule of Eq. 65 is used to give the discriminant function. The resulting
discriminant function for the final category is indicated by the grayscale in the middle:
the greater the discriminant, the darker. The designer constructs discriminant func-
tions for other categories in a similar way (possibly also using disjunctions). During
classification, the maximum discriminant function is chosen.

discriminant functions without concern over whether they represented probabilities,
subjective probabilities, approximations to frequencies, or other fundamental entities.

While a full analysis of these topics would lead us away from our development of
pattern recognition techniques, it pays to consider the claims of fuzzy logic proponents,
since in order to be a good pattern recognition practitioner, we must understand what
is or is not afforded by any technique. Proponents of fuzzy logic are adamant that
category membership functions do not represent probabilities — subjective or not.
Fuzzy practitioners point to examples such as when a half teaspoon of sugar is placed
in a cup of tea, and conclude that the “membership” in the category sweet is 0.5, and
that it would be incorrect to state that the probability the tea was sweet was 50%.
But this situation be viewed simply as some sweetness feature value is 0.5, and there
is some discriminant function, whose arguments include this feature value. One need
not entertain xxx

Rather than debate the fundamental nature of probability, we should really be
concerned with the nature of inference, i.e., how we take measurements and infer a
category. Cox’s axioms — sometimes called CoxJaynesaxioms−−− are

1. If P (a|d) > P (b|d) and P (b|d) > P (c|d) then P (a|d) > P (c|d). That is, degrees
of belief have a natural ordering, given by real numbers.

2. P (not a|d) = F1[P (a|d)]. That is, the degree of belief that a proposition is not
the case is some function of the degree of belief that it is the case. Note that
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such degrees of belief are graded values.

3. P (a, b|d) = F2[P (a|d), P (b|a, d)]

The first axiom states merely that the probability of not having proposition b
given a, is some function F1 of the probability of b given a. The second, though not
as evident, is

From these two, along with classical inference, we get the laws of probability. Any
consistent inference method is formally equivalent to standard probabilistic inference.

In spite of the arguments on such foundational issues, many practitioners are happy
to use fuzzy logic feeling that “whatever works” should be part of their repertoire. It
is important, therefore, to understand the methodological strengths and limitations
of the method. The limitations are formidable:

• Fuzzy methods are of very limited use in high dimensions or on complex prob-
lems. Pure fuzzy methods contribute little or nothing to problems with dozens
or hundreds of features, and where there is training data.

• The amount of information the designer can be expected to bring to a problem
is quite limited — the number, positions and widths of “category memberships.”

• Because of their lack of normalization, pure fuzzy methods are poorly suited to
problems in which there is a changing cost matrix λij (Computer exercise 9).

• Pure fuzzy methods do not make use of training data. When such pure fuzzy
methods (as outlined above) have unacceptable performance, it has been tradi-
tional to try to graft on adaptive (e.g., “neuro-fuzzy”) methods.

If there is a contribution of fuzzy approaches to pattern recognition, it would lie
in giving the steps by which one takes knowledge in a linguistic form and casts it
into discriminant functions. It is unlikely that the verbal knowledge could extend to
problems with dozens — much less hundreds — of features, the domain of the majority
of real-world pattern recognition problems. A severe limitation of pure fuzzy methods
is they do not rely on data, and when unsatisfactory results on problems of moderate
size, it has been traditional to try to use neural or other adaptive techniques to
compensate. At best, these are equivalent to maximum likelihood methods.

4.8 Relaxation methods

We have seen how the Parzen-window method uses a fixed window throughout the
feature space, and that this could lead to difficulties: in some regions a small window
width was appropriate while elsewhere a large one would be best. The k-nearest-
neighbor method addressed this problem by adjusting the region based on the density
of the points. Informally speaking, an approach that is intermediate between these
two is to adjust the size of the window during training according to the distance to the
nearest point of a different category. This is the method of some relaxation techniques.
(The term “relaxation” refers to the underlying mathematical techniques for setting
the parameters; we will consider only such relaxation issues, and concentrate instead
on their effects.)

The simplest method is that of potential functions — which merely consists of an potential
functioninterpolation function. The difference with Parzen windows is that the magnitude
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of each is adjusted so as to properly classify the training data. One representative
method — called the reduced coulomb energy or RCE network — has the form shown reduced

coulomb
energy

in Fig. 4.25, which has the same topology as a Probabilistic neural network (Fig. 4.9).

1 2 3 n

1 2 c

x1 x2 xd

input

pattern

category

λ1 λ2 λ3 λn

Figure 4.25: An RCE network is topologically equivalent to the PNN of Fig. 4.9. Dur-
ing training the wghts are adjusted to have the same values as the pattern presented,
just as in a PNN. However, pattern units in an RCE network also have a modifiable
“radius” parameter λ. During training, each λ is adjusted so that the region is as
large as possible without containing training patterns from a different category.

The primary difference is that in an RCE network each pattern unit has an ad-
justable parameter that corresponds to the radius of the d-dimensional sphere. During
training, each radius is adjusted so that each pattern unit covers a region as large as
possible without containing a training point from another category.

Algorithm 4 (RCE training)

1 begin initialize j = 0, n = #patterns, ε = small param, λm = max radius
2 do j ← j + 1
3 train weight: wjk ← xk
4 find nearest pt not in ωi: x̂← arg min

x/∈ωi
D(x,x′)

5 set radius: λj ←Min[D(x̂,x′)− ε, λm]
6 if x ∈ ωi then aic ← 1
7 until j = n
8 end

There are several subtleties that we need not consider right here. For instance, if
the radius of a pattern unit becomes too small (i.e., less than some threshold λmin),
then it indicates that different categories are highly overlapping. In that case, the
pattern unit is called a “probabilistic” unit, and so marked.

During classification, a test point is classified by the label of any point is by
presenting the unit, getting activation. If probabilistic units overlap, Any region that
is overlapped is considered ambiguous. Such ambiguous regions can be useful, since
the teacher can be queried as to the identity of points in that region. If we continue
to let λj be the radius around stored prototype x′j and now let Dt be the set of stored
prototypes in whose hypershperes test point x lies, then our classification algorithm
is written as:

Algorithm 5 (RCE classification)
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1 begin initialize j = 0, k = 0,x = test pattern,Dt = {}
2 do j ← j + 1
3 if D(x,x′j) < λj then Dt ← Dt ∪ x′j
4 until j = n
5 if cat of all x′j ∈ Dt is the same then return label of all xk ∈ Dt
6 else return “ambiguous” label
7 end

λm

301510

4 5 6

1 2 3

Figure 4.26: During training, each pattern has a parameter — equivalent to a radius
in the d-dimensional space — that is adjusted to be as large as possible, without
enclosing any points from a different category. As new patterns are presented, each
such radius is decreased accordingly (and can never increase). In this way, each
pattern unit can enclose several prototypes, but only those having the same category
label. The number of points is shown in each component figure. The figure at the
bottom shows the final complicated decision regions, colored by category.
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4.9 Approximations by Series Expansions

The nonparametric methods described thus far suffer from the requirement that in
general all of the samples must be stored or that the designer have extensive knowledge
of the problem. Since a large number of samples is needed to obtain good estimates,
the memory requirements can be severe. In addition, considerable computation time
may be required each time one of the methods is used to estimate p(x) or classify a
new x.

In certain circumstances the Parzen-window procedure can be modified to reduce
these problems considerably. The basic idea is to approximate the window function
by a finite series expansion that is acceptably accurate in the region of interest. If
we are fortunate and can find two sets of functions ψj(x) and χj(x) that allow the
expansion

ϕ
(x− xi

hn

)
=

m∑
j=1

ajψj(x)χj(xi), (66)

then we can split the dependence upon x and xi as

n∑
i=1

ϕ
(x− xi

hn

)
=

m∑
j=1

ajψj(x)
n∑
i=1

χj(xi). (67)

Then from Eq. 11 we have

pn(x) =
m∑
j=1

bjψj(x), (68)

where

bj =
aj

nVn

n∑
i=1

χj(xi). (69)

If a sufficiently accurate expansion can be obtained with a reasonable value for
m, this approach has some obvious advantages. The information in the n samples
is reduced to the m coefficients bj . If additional samples are obtained, Eq. 69 for
bj can be updated easily, and the number of coefficients remains unchanged. If the
functions ψj(·) and χj(·) are polynomial functions of the components of x and xi,
the expression for the estimate pn(x) is also a polynomial, which can be computed
relatively efficiently. Furthermore, use of this estimate p(x|ωi)P (ωi) leads to a simple
way of obtaining polynomial discriminant functions.polynomial

discriminant Before becoming too enthusiastic, however, we should note one of the problems
with this approach. A key property of a useful window function is its tendency
to peak at the origin and fade away elsewhere. Thus ϕ((x − xi)/hn) should peak
sharply at x = xi, and contribute little to the approximation of pn(x) for x far from
xi. Unfortunately, polynomials have the annoying property of becoming unbounded.
Thus, in a polynomial expansion we might find the terms associated with an xi far
from x contributing most (rather than least) to the expansion. It is quite important,
therefore, to be sure that the expansion of each windown function is in fact accurate
in the region of interest, and this may well require a large number of terms.

There are many types of series expansions one might consider. Readers familiar
with integral equations will naturally interpret Eq. 66 as an expansion of the kernel
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ϕ(x,xi) in a series of eigenfunctions. (In analogy with eigenvectors and eigenvalues,eigen-
function eigenfunctions are solutions to certain differential equations with fixed real-number

coefficients.) Rather than computing eigenfunctions, one might choose any reasonable
set of functions orthogonal over the region of interest and obtain a least-squares fit
to the window function. We shall take an even more straightforward approach and
expand the window function in a Taylor series. For simplicity, we confine our attention
to a one-dimensional example using a Gaussian window function:

√
π ϕ(u) = e−u

2

'
m−1∑
j=0

(−1)j
u2j

j!
.

This expansion is most accurate near u = 0, and is in error by less than u2m/m!. If
we substitute u = (x− xi)/h, we obtain a polynomial of degree 2(m− 1) in x and xi.
For example, if m = 2 the window function can be approximated as

√
πϕ
(x− xi

h

)
' 1−

(x− xi
h

)2

= 1 +
2
h2

x xi −
1
h2

x2 − 1
h2

x2
i ,

and thus

√
πpn(x) =

1
nh

n∑
i=1

√
πϕ
(x− xi

h

)
' b0 + b1x + b2x

2, (70)

where the coefficients are

b0 =
1
h
− 1

h3

1
n

n∑
i=1

x2
i

b1 =
2
h3

1
n

n∑
i=1

xi

b2 = − 1
h3

.

This simple expansion condenses the information in n samples into the values,
b0, b1, and b2. It is accurate if the largest value of |x − xi| is not greater than h.
Unfortunately, this restricts us to a very wide window that is not capable of much
resolution. By taking more terms we can use a narrower window. If we let r be the
largest value of |x − xi| and use the fact that the error is the m-term expansion of√

π ϕ((x− xi)/h) is less than (r/h)2mm!, then using Stirling’s approximation for m!
we find that the error in approximating pn(x) is less than

1√
πh

(
r/h
)2m

m!
' 1
√

πh
√

2πm

[( e

m

)( r

h

)2
]m

. (71)

Thus, the error becomes small only when m > e(r/h)2. This implies the need for
many terms if the window size h is small relative to the distance r from x to the most
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distant sample. Although this example is rudimentary, similar considerations arise
in the multidimensional case even when more sophisticated expansions are used, and
the procedure is most attractive when the window size is relatively large.

4.10 Fisher Linear Discriminant

One of the recurring problems encountered in applying statistical techniques to pat-
tern recognition problems has been called the “curse of dimensionality.” Procedures
that are analytically or computationally manageable in low-dimensional spaces can be-
come completely impractical in a space of 50 or 100 dimensions. Pure fuzzy methods
are particularly ill-suited to such high-dimensional problems since it is implausible
that the designer’s linguistic intuition extends to such spaces. Thus, various tech-
niques have been developed for reducing the dimensionality of the feature space in
the hope of obtaining a more manageable problem.

We can reduce the dimensionality from d dimensions to one dimension if we merely
project the d-dimensional data onto a line. Of course, even if the samples formed
well-separated, compact clusters in d-space, projection onto an arbitrary line will
usually produce a confused mixture of samples from all of the classes, and thus poor
recognition performance. However, by moving the line around, we might be able to
find an orientation for which the projected samples are well separated. This is exactly
the goal of classical discriminant analysis.

Suppose that we have a set of n d-dimensional samples x1, ...,xn, n1 in the subset
D1 labelled ω1 and n2 in the subset D2 labelled ω2. If we form a linear combination
of the components of x, we obtain the scalar dot product

y = wtx (72)

and a corresponding set of n samples y1, ..., yn divided into the subsets Y1 and Y2.
Geometrically, if ‖w‖ = 1, each yi is the projection of the corresponding xi onto a
line in the direction of w. Actually, the magnitude of w is of no real significance,
since it merely scales y. The direction of w is important, however. If we imagine
that the samples labelled ω1 fall more or less into one cluster while those labelled ω2

fall in another, we want the projections falling onto the line to be well separated, not
thoroughly intermingled. Figure 4.27 illustrates the effect of choosing two different
values for w for a two-dimensional example. It should be abundantly clear that if the
original distributions are multimodal and highly overlapping, even the “best” w is
unlikely to provide adequate seaparation, and thus this method will be of little use.

We now turn to the matter of finding the best such direction w, one we hope will
enable accurate classification. A measure of the separation between the projected
points is the difference of the sample means. If mi is the d-dimensional sample mean
given by

mi =
1
ni

∑
x∈Di

x, (73)

then the sample mean for the projected points is given by

m̃i =
1
ni

∑
y∈Yi

y
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Figure 4.27: Projection of samples onto two different lines. The figure on the right
shows greater separation between the red and black projected points.

=
1
ni

∑
y∈Yi

wtx = wtmi. (74)

and is simply the projection of mi.
It follows that the distance between the projected means is

|m̃1 − m̃2| = |wt(m1 −m2)|, (75)

and that we can make this difference as large as we wish merely by scaling w. Of
course, to obtain good separation of the projected data we really want the difference
between the means to be large relative to some measure of the standard deviations for
each class. Rather than forming sample variances, we define the scatter for projected scatter
samples labelled ωi by

s̃2
i =

∑
y∈Yi

(y − m̃i)2. (76)

Thus, (1/n)(s̃2
1 + s̃2

2) is an estimate of the variance of the pooled data, and s̃2
1 + s̃2

2

is called the total within-class scatter of the projected samples. The Fisher linear within-
class
scatter

discriminant employs that linear function wtx for which the criterion function

J(w) =
|m̃1 − m̃2|2

s̃2
1 + s̃2

2

(77)

is maximum (and independent of ‖w‖). While the w maximizing J(·) leads to the
best separation between the two projected sets (in the sense just described), we will
also need a threshold criterion before we have a true classifier. We first consider how
to find the optimal w, and later turn to the issue of thresholds.

To obtain J(·) as an explicit function of w, we define the scatter matrices Si and scatter
matricesSW by

Si =
∑

x∈Di
(x−mi)(x−mi)t (78)

and
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SW = S1 + S2. (79)

Then we can write

s̃2
i =

∑
x∈Di

(wtx−wtmi)2

=
∑

x∈Di
wt(x−mi)(x−mi)tw

= wtSiw; (80)

therefore the sum of these scatters can be written

s̃2
1 + s̃2

2 = wtSWw. (81)

Similarly, the separations of the projected means obeys

(m̃1 − m̃2)2 = (wtm1 −wtm2)2

= wt(m1 −m2)(m1 −m2)tw
= wtSBw, (82)

where

SB = (m1 −m2)(m1 −m2)t. (83)

We call SW the within-class scatter matrix. It is proportional to the sample co-within-
class
scatter

variance matrix for the pooled d-dimensional data. It is symmetric and positive
semidefinite, and is usually nonsingular if n > d. Likewise, SB is called the between-
class scatter matrix. It is also symmetric and positive semidefinite, but because it is

between-
class
scatter

the outer product of two vectors, its rank is at most one. In particular, for any w,
SBw is in the direction of m1 −m2, and SB is quite singular.

In terms of SB and SW , the criterion function J(·) can be written as

J(w) =
wtSBw
wtSWw

. (84)

This expression is well known in mathematical physics as the generalized Rayleigh
quotient. It is easy to show that a vector w that maximizes J(·) must satisfy

SBw = λSWw, (85)

for some constant λ, which is a generalized eigenvalue problem (Problem 36). This
can also be seen informally by noting that at an extremum of J(w) a small change in
w in Eq. 84 should leave unchanged the ratio of the numerator to the denominator.
If SW is nonsingular we can obtain a conventional eigenvalue problem by writing

S−1
W SBw = λw. (86)

In our particular case, it is unnecessary to solve for the eigenvalues and eigenvectors
of S−1

W SB due to the fact that SBw is always in the direction of m1 −m2. Since the
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scale factor for w is immaterial, we can immediately write the solution for the w that
optimizes J(·):

w = S−1
W (m1 −m2). (87)

Thus, we have obtained w for Fisher’s linear discriminant — the linear function
yielding the maximum ratio of between-class scatter to within-class scatter. (The
solution w given by Eq. 87 is sometimes called the canonical variate.) Thus the
classification has been converted from a d-dimensional problem to a hopefully more
manageable one-dimensional one. This mapping is many-to-one, and in theory can not
possibly reduce the minimum achievable error rate if we have a very large training set.
In general, one is willing to sacrifice some of the theoretically attainable performance
for the advantages of working in one dimension. All that remains is to find the
threshold, i.e., the point along the one-dimensional subspace separating the projected
points.

When the conditional densities p(x|ωi) are multivariate normal with equal co-
variance matrices Σ, we can calculate the threshold directly. In that case we recall
(Chap. ??, Sect. ??) that the optimal decision boundary has the equation

wtx + w0 = 0 (88)

where

w = Σ−1(µ1 − µ2), (89)

and where w0 is a constant involving w and the prior probabilities. If we use sample
means and the sample covariance matrix to estimate µi and Σ, we obtain a vector
in the same direction as the w of Eq. 89 that maximized J(·). Thus, for the normal,
equal-covariance case, the optimal decision rule is merely to decide ω1 if Fisher’s linear
discriminant exceed some threshold, and to decide ω2 otherwise. More generally, if
we smooth the projected data, or fit it with a univariate Gaussian, we then should
choose w0 where the posteriors in the one dimensional distributions are equal.

The computational complexity of finding the optimal w for the Fisher linear dis-
criminant (Eq. 87) is dominated by the calculation of the within-category total scatter
and its inverse, an O(d2n) calculation.

4.11 Multiple Discriminant Analysis

For the c-class problem, the natural generalization of Fisher’s linear discriminant
involves c − 1 discriminant functions. Thus, the projection is from a d-dimensional
space to a (c − 1)-dimensional space, and it is tacitly assumed that d ≥ c. The
generalization for the within-class scatter matrix is obvious:

SW =
c∑
i=1

Si (90)

where, as before,

Si =
∑

x∈Di
(x−mi)(x−mi)t (91)

and
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mi =
1
ni

∑
x∈Di

x. (92)

The proper generalization for SB is not quite so obvious. Suppose that we define
a total mean vector m and a total scatter matrix ST bytotal

mean
vector

total
scatter
matrix

m =
1
n

∑
x

x =
1
n

c∑
i=1

nimi (93)

and

ST =
∑
x

(x−m)(x−m)t. (94)

Then it follows that

ST =
c∑
i=1

∑
x∈Di

(x−mi + mi −m)(x−mi + mi −m)t

=
c∑
i=1

∑
x∈Di

(x−mi)(x−mi)t +
c∑
i=1

∑
x∈Di

(mi −m)(mi −m)t

= SW +
c∑
i=1

ni(mi −m)(mi −m)t. (95)

It is natural to define this second term as a general between-class scatter matrix,
so that the total scatter is the sum of the within-class scatter and the between-class
scatter:

SB =
c∑
i=1

ni(mi −m)(mi −m)t (96)

and

ST = SW + SB . (97)

If we check the two-class case, we find that the resulting between-class scatter matrix
is n1n2/n times our previous definition.∗

The projection from a d-dimensional space to a (c − 1)-dimensional space is ac-
complished by c− 1 discriminant functions

yi = wt
ix i = 1, ..., c− 1. (98)

If the yi are viewed as components of a vector y and the weight vectors wi are viewed
as the columns of a d-by-(c − 1) matrix W, then the projection can be written as a
single matrix equation

y = Wtx. (99)

∗ We could redefine SB for the two-class case to obtain complete consistency, but there should be
no misunderstanding of our usage.
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The samples x1, ...,xn project to a corresponding set of samples y1, ...,yn, which
can be described by their own mean vectors and scatter matrices. Thus, if we define

m̃i =
1
ni

∑
y∈Yi

y (100)

m̃ =
1
n

c∑
i=1

nim̃i (101)

S̃W =
c∑
i=1

∑
y∈Yi

(y − m̃i)(y − m̃i)t (102)

and

S̃B =
c∑
i=1

ni(m̃i − m̃)(m̃i − m̃)t, (103)

it is a straightforward matter to show that

S̃W = WtSWW (104)

and

S̃B = WtSBW. (105)

These equations show how the within-class and between-class scatter matrices are
transformed by the projection to the lower dimensional space (Fig. 4.28). What we
seek is a transformation matrix W that in some sense maximizes the ratio of the
between-class scatter to the within-class scatter. A simple scalar measure of scatter
is the determinant of the scatter matrix. The determinant is the product of the
eigenvalues, and hence is the product of the “variances” in the principal directions,
thereby measuring the square of the hyperellipsoidal scattering volume. Using this
measure, we obtain the criterion function

J(W) =
|S̃B |
|S̃W |

=
|WtSBW|
|WtSWW| . (106)

The problem of finding a rectangular matrix W that maximizes J(·) is tricky,
though fortunately it turns out that the solution is relatively simple. The columns of
an optimal W are the generalized eigenvectors that correspond to the largest eigen-
values in

SBwi = λiSWwi. (107)

A few observations about this solution are in order. First, if SW is non-singular,
this can be converted to a conventional eigenvalue problem as before. However, this
is actually undesirable, since it requires an unnecessary computation of the inverse of
SW . Instead, one can find the eigenvalues as the roots of the characteristic polynomial

|SB − λiSW | = 0 (108)

and then solve
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W1

W2

Figure 4.28: Three three-dimensional distributions are projected onto two-dimensional
subspaces, described by a normal vectors w1 and w2. Informally, multiple discrimi-
nant methods seek the optimum such subspace, i.e., the one with the greatest sepa-
ration of the projected distributions for a given total within-scatter matrix, here as
associated with w1.

(SB − λiSW )wi = 0 (109)

directly for the eigenvectors wi. Because SB is the sum of c matrices of rank one or
less, and because only c−1 of these are independent, SB is of rank c−1 or less. Thus,
no more than c − 1 of the eigenvalues are nonzero, and the desired weight vectors
correspond to these nonzero eigenvalues. If the within-class scatter is isotropic, the
eigenvectors are merely the eigenvectors of SB , and the eigenvectors with nonzero
eigenvalues span the space spanned by the vectors mi −m. In this special case the
columns of W can be found simply by applying the Gram-Schmidt orthonormalization
procedure to the c − 1 vectors mi −m, i = 1, ..., c − 1. Finally, we observe that in
general the solution for W is not unique. The allowable transformations include
rotating and scaling the axes in various ways. These are all linear transformations
from a (c− 1)-dimensional space to a (c− 1)-dimensional space, however, and do not
change things in any significant way; in particular, they leave the criterion function
J(W) invariant and the classifier unchanged.

If we have very little data, we would tend to project to a subspace of low dimen-
sion, while if there is more data, we can use a higher dimension, as we shall explore
in Chap. ??. Once we have projected the distributions onto the optimal subspace
(defined as above), we can use the methods of Chapt. ?? to create our full classifier.

As in the two-class case, multiple discriminant analysis primarily provides a reason-
able way of reducing the dimensionality of the problem. Parametric or nonparametric
techniques that might not have been feasible in the original space may work well in
the lower-dimensional space. In particular, it may be possible to estimate separate
covariance matrices for each class and use the general multivariate normal assump-
tion after the transformation where this could not be done with the original data. In
general, if the transformation causes some unnecessary overlapping of the data and
increases the theoretically achievable error rate, then the problem of classifying the
data still remains. However, there are other ways to reduce the dimensionality of



4.11. SUMMARY 51

data, and we shall encounter this subject again in Chap. ??. We note that there are
also alternate methods of discriminant analysis — such as the selection of features
based on statistical sigificance — some of which are given in the references for this
chapter. Of these, Fisher’s method remains a fundamental and widely used technique.

Summary

There are two overarching approaches to non-parametric estimation for pattern clas-
sification: in one the densities are estimated (and then used for classification), in the
other the category is chosen directly. The former approach is exemplified by Parzen
windows and their hardware implementation, Probabilistic neural networks. The lat-
ter is exemplified by k-nearest-neighbor and several forms of relaxation networks. In
the limit of infinite training data, the nearest-neighbor error rate is bounded from
above by twice the Bayes error rate. The extemely high space complexity of the
nominal nearest-neighbor method can be reduced by editing (e.g., removing those
prototypes that are surrounded by prototypes of the same category), prestructuring
the data set for efficient search, or partial distance calculations. Novel distance mea-
sures, such as the tangent distance, can be used in the nearest-neighbor algorithm for
incorporating known tranformation invariances.

Fuzzy classification methods employ heuristic choices of “category membership”
and heuristic conjunction rules to obtain discriminant functions. Any benefit of such
techniques is limited to cases where there is very little (or no) training data, small
numbers of features, and when the knowledge can be gleaned from the designer’s prior
knowledge.

Relaxation methods such as potential functions create “basins of attraction” sur-
rounding training prototypes; when a test pattern lies in such a basin, the corre-
sponding prototype can be easily identified along with its category label. Reduced
coloumb energy networks are one in the class of such relaxation networks, the basins
are adjusted to be as large as possible yet not include prototypes from other categories.

The Fisher linear discriminant finds a good subspace in which categories are best
separated; other techniques can then be applied in the subspace. Fisher’s method
can be extended to cases with multiple categories projected onto subspaces of higher
dimension than a line.

Bibliographical and Historical Remarks

Parzen introduced his window method for estimating density functions [32], and its
use in regression was pioneered by Ndaraya and Watson [?, ?]. Its natural application
to classification problems stems from the work of Specht [39], including its PNN
hardware implementation [40].

Nearest-neighbor methods were first introduced by [16, 17], but it was over fifteen
years later that computer power had increased, thereby making it practical and re-
newing interest in its theoretical foundations. Cover and Hart’s foundational work
on asymptotic bounds [10] were expanded somewhat through the analysis of Devroye
[14]. The first pruning or editing work in [23] was followed by a number of related al-
gorithms, such as that described in [5, 3]. The k-nearest neighbor was explored in [33].
The computational complexity of nearest neighbor (Voronoi) is described in [35]; work
on search, as described in [27], has proven to be of greater use, in general. Much of
the work on reducing the computational complexity of nearest-neighbor search comes
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from the vector quantization and compression community; for instance partial dis-
tance calculation are described in [21]. Friedman has an excellent analysis of some of
the unintuitive properties of high dimensional spaces, and indirectly nearest neighbor
classifiers, an inspiration for several problems here [19]. The definitive collection of
seminal papers in nearest-neighbor classification is [12].

The notion of tangent distance was introduced by Simard and colleagues [38], and
explored by a number of others [24]. Sperduti and Stork introduced a prestructuring
and novel search criterion which speeds search in tangent based classifiers [41]. The
greatest successes of tangent methods have been in optical character recognition, but
the method can be applied in other domains, so long as the invariances are known.
The study of general invariance has been most profitable when limited to a particular
domain, and readers seeking further background should consult [31] for computer
vision and [34] for speech. Background on image transformations is covered in [18].

The philosophical debate concerning frequency, probability, graded category mem-
bership, and so on, has a long history [29]. Keynes espoused a theory of probability as
the logic of probable inference, and did not need to rely on the notion of repeatability,
frequency, etc. We subscribe to the traditional view that probability is a conceptual
and formal relation between hypotheses and conclusions — here, specifically between
data and category. The limiting cases of such rational belief are certainty (on the
one hand), and impossibility (on the other). Classical theory of probability cannot be
based solely on classical logic, which has no formal notions for the probability of an
event. While the rules in Keynes’ probability [26] were taken as axiomatic, Cox [11]
and later Jayne[?] sought to place a formal underpinning.

Many years after these debates, “fuzzy” methods were proposed from the com-
puter science [43]. A formal equivalence of fuzzy category membership functions and
probability is given in [22], which in turn is based on Cox [11]. Cheeseman has made
some remarkably clear and forceful rebuttals to the assertions that fuzzy methods
represent something beyond the notion of subjective probability [7, 8]; representative
expositions to the contrary include [28, 4]. Readers unconcerned with foundational
issues, and whether fuzzy methods provide any representational power or other ben-
efits above standard probability (including subjective probability) can consult [25],
which is loaded with over 3000 references. , many connectives for fuzzy logic [2]

Early reference on the use of potential functions for pattern classification is [1, 6].
This is closely allied with later work such as the RCE network described in [37, 36].

Fisher’s early work on linear discriminants [15], is well described in [30] and a
number of standard textbooks [9, 13, 20, 30, 42].

Problems

⊕
Section 4.3

1. Show that Eqs. 19–22 are sufficient to assure convergence in Eqs. 17 & 18.
2. Consider a normal p(x) ∼ N(µ, σ2) and Parzen-window function ϕ(x) ∼ N(0, 1).

Show that the Parzen-window estimate

pn(x) =
1

nhn

n∑
i=1

ϕ

(
x− xi

hn

)
,

has the following properties:
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(a) p̄n(x) ∼ N(µ, σ2 + h2
n)

(b) Var[pn(x)] ' 1
2nhn

√
π
p(x)

(c) p(x)− p̄n(x) ' 1
2

(
hn
σ

)2[
1−

(
x−µ
σ

)2]
p(x)

for small hn. (Note: if hn = h1/
√

n, this shows that the error due to bias goes to zero
as 1/n, whereas the standard deviation of the noise only goes to zero as 4

√
n.)

3. Let p(x) ∼ U(0, a) be uniform from 0 to a, and let a Parzen window be defined
as ϕ(x) = e−x for x > 0 and 0 for x ≤ 0.

(a) Show that the mean of such a Parzen-window estimate is given by

p̄n(x) =


0 x < 0
1
a (1− e−x/hn) 0 ≤ x ≤ a
1
a (ea/hn − 1)e−x/hn a ≤ x.

(b) Plot p̄n(x) versus x for a = 1 and hn = 1, 1/4, and 1/16.

(c) How small does hn have to be to have less than one percent bias over 99 percent
of the range 0 < x < a?

(d) Find hn for this condition if a = 1, and plot p̄n(x) in the range 0 ≤ x ≤ 0.05.

4. Suppose in a c-category supervised learning environment we sample the full
distribution p(x), and train a PNN classifier according to Algorithm ??.

(a) Show that even if there are unequal category priors and hence unequal numbers
of points in each category, the recognition method gives the right solution.

(b) Suppose we have trained a PNN with the assumption of equal category priors,
but later wish to use it for a problem having the cost matrix λij , representing
the cost of choosing category ωi when in fact the pattern came from ωj . How
should we do this?

(c) Suppose instead we know a cost matrix λij before training. How shall we train
a PNN for minimum risk?⊕

Section 4.4

5. Show that Eq. 31 converges in probability to p(x) given the conditions lim
n→∞

kn →
∞ and lim

n→∞
kn/n→ 0.

6. Let D = {x1, ...,xn} be a set of n independent labelled samples and let Dk(x) =
{x′1, ...,x′k} be the k nearest neighbors of x. Recall that the k-nearest-neighbor rule
for classifying x is to give x the label most frequently represented in Dk(x). Consider
a two-category problem with P (ω1) = P (ω2) = 1/2. Assume further that the condi-
tional densities p(x|ωi) are uniform within unit hyperspheres a distance of ten units
apart.

(a) Show that if k is odd the average probability of error is given by

Pn(e) =
1
2n

(k−1)/2∑
j=0

(
n

j

)
.
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(b) Show that for this case the single-nearest neighbor rule has a lower error rate
than the k-nearest-neighbor error rate for k > 1.

(c) If k is allowed to increases with n but is restricted by k < a
√

n, show that
Pn(e)→ 0 as n→∞.

⊕
Section 4.5

7. Prove that the Voronoi cells induced by the single-nearest neighbor algorithm
must always be convex. That is, for any two points x1 and x2 in a cell, all points on
the line linking x1 and x2 must also lie in the cell.
8. It is easy to see that the nearest-neighbor error rate P can equal the Bayes rate

P ∗ if P ∗ = 0 (the best possibility) or if P ∗ = (c − 1)/c (the worst possibility). One
might ask whether or not there are problems for which P = P ∗ when P ∗ is between
these extremes.

(a) Show that the Bayes rate for the one-dimensional case where P (ωi) = 1/c and

P (x|ωi) =


1 0 ≤ x ≤ cr

c−1

1 i ≤ x ≤ i + 1− cr
c−1

0 elsewhere

is P ∗ = r.

(b) Show that for this case that the nearest-neighbor rate is P = P ∗.

9. Consider the following set of two-dimensional vectors:

ω1 ω2 ω3

x1 x2 x1 x2 x1 x2

10 0 5 10 2 8
0 -10 0 5 -5 2
5 -2 5 5 10 -4

(a) Plot the decision boundary resulting from the nearest-neighbor rule just for
categorizing ω1 and ω2. Find the sample means m1 and m2 and on the same
figure sketch the decision boundary corresponding to classifying x by assigning
it to the category of the nearest sample mean.

(b) Repeat part (a) for categorizing only ω1 and ω3.

(c) Repeat part (a) for categorizing only ω2 and ω3.

(d) Repeat part (a) for a three-category classifier, classifying ω1, ω2 and ω3.

10. Prove that the computational complexity of the basic nearest-neighbor editing
algorith (Algorithm ??) for n points in d dimension is O(d3nbd/2clnn).
11. To understand the “curse of dimensionality” in greater depth, consider the

effects of high dimensions on the simple nearest-neighbor algorithm. Suppose we
need to estimate a density function f(x) in the unit hypercube in Rd based on n
samples. If f(x) is complicated, we need dense samples to learn it well.
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(a) Let n1 denote the number of samples in a “dense” sample in R1. What is the
sample size for the “same density” in Rd? If n1 = 100, what sample size is
needed in a 20-dimensional space?

(b) Show that the interpoint distances are all large and roughly equal in Rd, and
that neighborhoods that have even just a few points must have large radii.

(c) Find ld(p), the length of a hypercube edge in d dimensions that contains the
fraction p of points (0 ≤ p ≤ 1). To better appreciate the implications of your
result, calculate: l5(0.01), l5(0.1), l20(0.01), and l20(0.1).

(d) Show that nearly all points are close to an edge of the full space (e.g., the unit
hypercube in d dimensions). Do this by calculating the L∞ distance from one
point to the closest other point. This shows that nearly all points are closer to
an edge than to another training point. (Argue that L∞ is more favorable than
L2 distance, even though it is easier to calculate here.) The result shows that
most points are on or near the convex hull of training samples and that nearly
every point is an “outlier” with respects to all the others.

12. Show how the “curse of dimensionality” (Problem 11) can be “overcome” by
choosing or assuming that your model is of a particular sort. Suppose that we are
estimating a function of the form y = f(x) + N(0, σ2).

(a) Suppose the true function is linear, f(x) =
n∑
j=1

ajxj , and that the approximation

is f̂(x) =
n∑
j=1

âjxj . Of course, the fit coefficients are:

âj = arg min
aj

n∑
i=1

yi −
d∑
j=1

ajxij

2

,

for j = 1, . . . , d. Prove that E [f(x) − f̂(x)]2 = dσ2/n, i.e., that it increases
linearly with d, and not exponentially as the curse of dimensionality might
otherwise suggest.

(b) Generalize your result from part (a) to the case where a function is expressed

in a different basis set, i.e., f(x) =
n∑
i=1

aiBi(x) for some well-behaved basis set

Bi(x), and hence that the result does not depend on the fact that we have used
a linear basis.

13. Consider classifiers based on samples from the distributions

p(x|ω1) =
{

2x for 0 ≤ x ≤ 1
0 otherwise,

and

p(x|ω2) =
{

2− 2x for 0 ≤ x ≤ 1
0 otherwise.

(a) What is the Bayes decision rule and the Bayes classification error?
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(b) Suppose we randomly select a single point from ω1 and a single point from ω2,
and create a nearest-neighbor classifier. Suppose too we select a test point from
one of the categories (ω1 for definiteness). Integrate to find the expected error
rate P1(e).

(c) Repeat with two training samples from each category and a single test point in
order to find P2(e).

(d) Generalize to find the arbitrary Pn(e).

(e) Compare lim
n→∞

Pn(e) with the Bayes error.

14. Repeat Problem 13 but with

p(x|ω1) =
{

3/2 for 0 ≤ x ≤ 2/3
0 otherwise,

and

p(x|ω2) =
{

3/2 for 1/3 ≤ x ≤ 1
0 otherwise.

15. Expand in greater detail Algorithm 3 and add a conditional branch that will
speed it. Assuming the data points come from c categories and there are, on average,
k Voronoi neighbors of any point x, on average how much faster will your improved
algorithm be?
16. Consider the simple nearest-neighbor editing algorithm (Algorithm 3).

(a) Show by counterexample that this algorithm does not yield the minimum set of
points. (Hint: consider a problem where the points from each of two-categories
are constrained to be on the intersections of a two-dimensional Cartesian grid.)

(b) Create a sequential editing algorithm, in which each point is considered in turn,
and retained or rejected before the next point is considered. Prove that your
algorithm does or does not depend upon the sequence the points are considered.

17. Consider classification problem where each of the c categories possesses the same
distribution as well as prior P (ωi) = 1/c. Prove that the upper bound in Eq. 53, i.e.,

P ≤ P ∗
(

2− c

c− 1
P ∗
)

,

is achieved in this “zero-information” case.
18. Derive Eq. 55.⊕

Section 4.6

19. Consider the Euclidean metric in d dimensions:

D(a,b) =

√√√√ d∑
k=1

(ak − bk)2.
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Suppose we rescale each axis by a fixed factor, i.e., let x′k = αkxk for real, non-zero
constants αk, k = 1, 2, ..., d. Prove that the resulting space is a metric space. Discuss
the import of this fact for standard nearest-neighbor classification methods.
20. Prove that the Minkowski metric indeed possesses the four properties required

of all metrics.
21. Consider a non-iterative method for finding the tangent distance between x′ and
x, given the matrix T consisting of the r (column) tangent vectors TVi at x′.

(a) As given in the text, take the gradient of the squared Euclidean distance in the
a parameter space to find an equation that must be solved for the optimal a.

(b) Solve your first derivative equation to find the optimizing a.

(c) Compute the second derivative of D2(·, ·) to prove that your solution must be
a minimum squared distance, and not a maximum or inflection point.

(d) If there are r tangent vectors (invariances) in a d-dimensional space, what is the
computational complexity of your method?

(e) In practice, the iterative method described in the text requires only a few
(roughly 5) iterations for problems in handwritten OCR. Compare the com-
plexities of your analytic solution to that of the iterative scheme.

22. Consider a tangent-distance based classifier based on n prototypes, each rep-
resenting a k × k pixel pattern of a handwritten character. Suppose there are r
invariances we believe characterize the problem. What is the storage requirements
(space complexity) of such a tangent-based classifier?
23. The two-sided tangent distance allows both the stored prototype x′ and the test
point x to be transformed. Thus if T is the matrix of the r tangent vectors for x′ and
S likewise at x, the two-sided tangent distance is

D2tan(x′,x) = min
a,b

[‖(x′ + Ta)− (x + Sb)‖].

(a) Follow the logic in Problem 21 and calculate the gradient with respect to the a
parameter vector and to the b parameter vector.

(b) What are the two update rules for an iterative scheme analogous to Eq. 64?

(c) Prove that there is a unique minium as a function of a and b. Describe this
geometrically.

(d) In an iterative scheme, we would alternatively take steps in the a parameter
space, then the b parameter space. What is the computational complexity to
this approach to the two-sided tangent distance classifier?

(e) Why is the actual complexity for classification in a 2-sided tangent distance
classifier even more sever than your result in (d) would suggest?

24. Consider the two-sided tangent distance described in Problem 23. Suppose we
restrict ourselves to n prototypes x′ in d dimensions, each with an associated matrix
T of r tangent vectors, which we assume are linearly independent. Determine whether
the two-sided tangent distance does or does not satisfy each of the requirements of a
metric: non-negativity, reflexivity, symmetry and the triangle inequality.
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25. Consider the computational complexity of nearest neighbor classifier for k ×
k pixel grayscale images of handwritten digits. Instead of using tangent distance,
we will search for the parameters of full nonlinear transforms before computing a
Euclidean distance. Suppose the number of operations needed to perform each of our
r transformations (e.g., rotation, line thinning, shear, and so forth) is aik

2, where
for the sake of simplicity we assume ai ' 10. Suppose too that for the test of each
prototype we must search though A ' 5 such values, and judge it by the Euclidean
distance.

(a) Given a transformed image, how many operations are required to calculate the
Euclidean distance to a stored prototype?

(b) Find the number of operations required per search.

(c) Suppose there are n prototypes. How many operations are required to find the
nearest neighbor, given such transforms?

(d) Assume for simplicity that no complexity reduction methods have been used
(such as editing, partial distance, graph creation). If the number of prototypes
is n = 106 points, and there are r = 6 transformations, and basic operations on
our computer require 10−9 seconds, how long does it take to classify a single
point?

26. Explore the effect of r on the accuracy of nearest-neighbor search based on
partial distance. Assume we have a large number n of points randomly placed in a
d-dimensional hypercube. Suppose we have a test point x, also selected randomly
in the hypercume, and find its nearest neighbor. By definition, if we use the full
d-dimensional Euclidean distance, we are guaranteed to find its nearest neighbor.
Suppose though we use the partial distance

Dr(x,x′) =

(
r∑
i=1

(xi − x′i)
2

)1/2

.

(a) Plot the probability that a partial distance search finds the true closest neighbor
of an arbitrary point x as a function of r for fixed n (1 ≤ r ≤ d) for d = 10.

(b) Consider the effect of r on the accuracy of a nearest-neighbor classifier. Assume
we have have n/2 prototypes from each two categories in a hypercube of length 1
on a side. The density for each category is separable into the product of (linear)
ramp functions, highest at one side, and zero at the other side of the range.
Thus the density for category ω1 is highest at (0, 0, ...0)t and zero at (1, 1, ..., 1)t,
while the density for ω2 is highest at (1, 1, ..., 1)t and zero at (0, 0, ...0)t. State
by inspection the Bayesian decision boundary.

(c) Calculate the Bayes error rate.

(d) Calculate the probability of correct classification of a point x, randomly selected
from one of the category densities, as a function of r in a partial distance metric.

(e) If n = 10, what must r be for the partial distance nearest neighbor classifier to
be within 1% of the Bayes rate?
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27. Consider the Tanimoto metric applied to sets having discrete elements.

(a) Determine whether the four properties of a metric are obeyed by DTanimoto(·, ·)
as given in Eq. 59.

(b) Consider the following six words as mere sets of unordered letters: pattern,
pat, pots, stop, taxonomy and elementary. Use the Tanimoto metric to rank
order all

(
6
2

)
= 30 possible pairings of these sets.

(c) Is the triangle inequality obeyed for these six patterns?

⊕
Section 4.7

28. Suppose someone asks you whether a cup of water is hot or cold, and you respond
that it is warm. Explain why this exchange in no way indicates that the membership
of the cup in some “hot” class is a graded value less than 1.0.
29. Consider the design a fuzzy classifier for three types of fish based on two features:
length and lightness. The designer feels that there are five ranges of length: short,
medium-short, medium, medium-large and large. Similarly, lightness falls into three
ranges: dark, medium and light. The designer uses the traingle function

T̂ (x; µi, δi) =
{

1− |x−µi|δi
x ≤ |µi − δi|

0 otherwise.

for the intermediate values, and an open triangle function for the extremes, i.e.,

Ĉ(x, µi, δi) =


1 x > µi
1− x−µi

δi
µi − δi ≤ x ≤ µi

0 otherwise,

and its symmetric version.
Suppose we have for the length δi = 5 and µ1 = 5, µ2 = 7, µ3 = 9, µ4 = 11

and µ5 = 13, and for lightness δj = 30, µ1 = 30, µ2 = 50, and µ3 = 70. Suppose
the designer feels that ω1 = medium-light and long, ω2 = dark and short and ω3 =
medium dark and long, where the conjunction rule “and” is defined in Eq. 65.

(a) Write the algebraic form of the discriminant functions.

(b) If every “category membership function” were rescaled by a constant, would
classification change?

(c) Classify the pattern x = 7.5, 60.

(d) Suppose that instead we knew that pattern is ωx. Would we have any principled
way to know whether the error was due to the number of category membership
functions? their functional form? the conjunction rule?

⊕
Section 4.8
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30. Suppose that through standard training of an RCE network (Algorithm 4), all
the radii have been reduced to values less than λm. Prove that there is no subset of
the training data that will yield the same category decision boundary.⊕

Section 4.9

31. Consider a window function ϕ(x) ∼ N(0, 1) and a density estimate

pn(x) =
1

nhn

n∑
i=1

ϕ
(x− xi

hn

)
.

Approximate this estimate by factoring the window function and expanding the factor
ex−xi/h

2
n in a Taylor series about the origin as follows:

(a) Show that in terms of the normalized variable u = x/hn the m-term approxi-
mation is given by

pnm(x) =
1√

2πhn
e−u

2/2
m−1∑
j=0

bju
j

where

bj =
1
n

n∑
i=1

1
j!

ujie
−u2

i /2.

(b) Suppose that the n samples happen to be extremely tightly clustered about
u = u0. Show that the two-term approximation peaks at the two points where
u2 + u/u0 − 1 = 0.

(c) Show that one peak occurs approximately at u = u0, as desired, if u0 ¿ 1, but
that it moves only to u = 1 for u0 À 1.

(d) Confirm your answer to part (c) by plotting pn2(u) versus u for u0 = 0.01, 1,
and 10. (Note: you may need to rescale the graphs vertically.)⊕

Section 4.10

32. Let px(x|ωi) be arbitrary densities with means µi and covariance matrices Σi

— not necessarily normal — for i = 1, 2. Let y = wtx be a projection, and let the
induced one-dimensional densities p(y|ωi) have means µi and variances σ2

i .

(a) Show that the criterion function

J1(w) =
(µ1 − µ2)2

σ2
1 + σ2

2

is maximized by

w = (Σ1 + Σ2)−1(µ1 − µ2).
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(b) If P (ωi) is the prior probability for ωi, show that

J2(w) =
(µ1 − µ2)2

P (ω1)σ2
1 + P (ω2)σ2

2

and

w = [P (ω1)Σ1 + P (ω2)Σ2]−1(µ1 − µ2).

(c) To which of these criterion functions is the J(w) of Eq. ?? more closely related?
Explain.

33. The expression

J1 =
1

n1n2

∑
yi∈Y1

∑
yj∈Y2

(yi − yj)2

clearly measures the total within-group scatter.

(a) Show that this within-group scatter can be written as

J1 = (m1 −m2)2 +
1
n1

s2
1 +

1
n2

s2
2.

(b) Show that the total scatter is

J2 =
1
n1

s2
1 +

1
n2

s2
2.

(c) If y = wtx, show that the w optimizing J1 subject to the constraint that J2 = 1
is given by

w = λ
( 1

n1
S1 +

1
n2

S2

)−1

(m1 −m2),

where

λ =
[
(m1 −m2)t

( 1
n1

S1 +
1
n2

S2

)
(m1 −m2)

]1/2

,

mi =
1
ni

∑
x∈Di

x,

and

Si =
∑

x∈Di
ni(mi −m)(mi −m)t.

34. If SB and SW are two real, symmetric, d-by-d matrices, it is well known that there
exists a set of n eigenvalues λ1, ..., λn satisfying |SB−λSW | = 0, and a corresponding
set of n eigenvectors e1, ..., en satisfying SBei = λiSWei. Furthermore, if SW is
positive definite, the eigenvectors can always be normalized so that etiSWej = δij and
etiSBej = λiδij . Let S̃W = WtSWW and S̃B = WtSBW, where W is a d-by-n
matrix whose columns correspond to n distinct eigenvectors.
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(a) Show that S̃W is the n-by-n identity matrix I, and that S̃B is a diagonal ma-
trix whose elements are the corresponding eigenvalues. (This shows that the
discriminant functions in multiple discriminant analysis are uncorrelated.)

(b) What is the value of J = |S̃B |/|S̃W | ?

(c) Let y = Wtx be transformed by scaling the axes with a nonsingular n-by-n
diagonal matrix D and by rotating this result with an orthogonal matrix Q
where y′ = QDy. Show that J is invariant to this transformation.

35. Consider two normal distributions with arbitrary but equal covariances. Prove
that the Fisher linear discriminant, for suitable threshold, can be derived from the
negative of the log-likelihood ratio.
36. Consider the criterion function J(w) required for the Fisher linear discriminant.

(a) Fill in the steps leading from Eqs. 77, 79 & 83 to Eq. 84.

(b) Use matrix methods to show that the solution to Eq. 84 is indeed given by
Eq. 85.

(c) At the extreme of J(w), a small change in w must leave J(w) unchanged.
Consider a small perturbation away from the optimal, w + ∆w, and derive the
solution condition of Eq. 85.

⊕
Section 4.11

37. Consider multidiscriminant versions of Fisher’s method for the case of c Gaussian
distributions in d dimensions, each having the same covariance Σ (otherwise arbitrary)
but different means. Solve for the optimal subspace in terms of Σ and the d mean
vectors.

Computer exercises

Several exercises will make use of the following three-dimensional data sampled from
three categories, denoted ωi.

ω1 ω2 ω3

sample x1 x2 x3 x1 x2 x3 x1 x2 x3

1 0.28 1.31 -6.2 0.011 1.03 -0.21 1.36 2.17 0.14
2 0.07 0.58 -0.78 1.27 1.28 0.08 1.41 1.45 -0.38
3 1.54 2.01 -1.63 0.13 3.12 0.16 1.22 0.99 0.69
4 -0.44 1.18 -4.32 -0.21 1.23 -0.11 2.46 2.19 1.31
5 -0.81 0.21 5.73 -2.18 1.39 -0.19 0.68 0.79 0.87
6 1.52 3.16 2.77 0.34 1.96 -0.16 2.51 3.22 1.35
7 2.20 2.42 -0.19 -1.38 0.94 0.45 0.60 2.44 0.92
8 0.91 1.94 6.21 -0.12 0.82 0.17 0.64 0.13 0.97
9 0.65 1.93 4.38 -1.44 2.31 0.14 0.85 0.58 0.99
10 -0.26 0.82 -0.96 0.26 1.94 0.08 0.66 0.51 0.88⊕

Section 4.2

1. Explore some of the properties of density estimation in the following way.



4.11. COMPUTER EXERCISES 63

(a) Write a program to generate points according to a uniform distribution in a unit
cube, −1/2 ≤ xi ≤ 1/2 for i = 1, 2, 3. Generate 104 such points.

(b) Write a program to estimate the density at the origin based on your 104 points as
a function of the size of a cubical window function of size h. Plot your estimate
as a function of h, for 0 < h ≤ 1.

(c) Evaluate the density at the origin using n of your points and the volume of a
cube window which just encloses n points. Plot your estimate as a function of
n = 1, ..., 104.

(d) Write a program to generate 104 points from a spherical Gaussian density (with
Σ = I) centered on the origin. Repeat (b) & (c) with your Gaussian data.

(e) Discuss any qualitative differences between the functional dependencies of your
estimation results for the uniform and Gaussian densities.⊕

Section 4.3

2. Consider Parzen-window estimates and classifiers for points in the table above.
Let your window function be a spherical Gaussian, i.e.,

ϕ((x− xi)/h) ∝ Exp[−(x− xi)t(x− xi)/(2h2)].

(a) Write a program to classify an arbitrary test point x based on the Parzen window
estimates. Train your classifier using the three-dimensional data from your three
categories in the table above. Set h = 1 and classify the following three points:
(0.50, 1.0, 0.0)t, (0.31, 1.51,−0.50)t and (−0.3, 0.44,−0.1)t.

(b) Repeat with h = 0.1.

⊕
Section 4.4

3. Consider k-nearest-neighbor density estimations in different numbers of dimen-
sions

(a) Write a program to find the k-nearest-neighbor density for n (unordered) points
in one dimension. Use your program to plot such a density estimate for the x1

values in category ω3 in the table above for k = 1, 3 and 5.

(b) Write a program to find the k-nearest-neighbor density estimate for n points
in two dimensions. Use your program to plot such a density estimate for the
x1 − x2 values in ω2 for k = 1, 3 and 5.

(c) Write a program to form a k-nearest-neighbor classifier for the three-dimensional
data from the three categories in the table above. Use your program with k =
1, 3 and 5 to estimate the relative densities at the following points: (−0.41, 0.82, 0.88)t,
(0.14, 0.72, 4.1)t and (−0.81, 0.61,−0.38)t.

⊕
Section 4.5

4. Write a program to create a Voronoi tesselation in two dimensions as follows.
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(a) First derive analytically the equation of a line separating two arbitrary points.

(b) Given the full data set D of prototypes and a particular point x ∈ D, write a
program to create a list of line segments comprising the Voronoi cell of x.

(c) Use your program to form the Voronoi tesselation of the x1 − x2 features from
the data of ω1 and ω3 in the table above. Plot your Voronoi diagram.

(d) Write a program to find the category decision boundary based on this full set
D.

(e) Implement a version of the pruning method described in Algorithm 3. Prune
your data set from (c) to form a condensed set.

(f) Apply your programs from (c) & (d) to form the Voronoi tesselation and bound-
ary for your condensed data set. Compare the decision boundaries you found
for the full and the condensed sets.

5. Explore the tradeoff between computational complexity (as it relates to par-
tial distance calculations) and search accuracy in nearest-neighbor classifiers in the
following exercise.

(a) Write a program to generate n prototypes from a uniform distributions in a
6-dimensional hypercube centered on the origin. Use your program to generate
106 points for category ω1, 106 different points for category ω2, and likewise for
ω3 and ω4. Denote this full set D.

(b) Use your program to generate a test set Dt of n = 100 points, also uniformly
distributed in the 6-dimensional hypercube.

(c) Write a program to implement the nearest-neighbor neighbor algorithm. Use
this program to label each of your points in Dt by the category of its nearest
neighbor in D. From now on we will assume that the labels you find are in fact
the true ones, and thus the “test error” is zero.

(d) Write a program to perform nearest-neighbor classification using partial dis-
tance, based on just the first r features of each vector. Suppose we define the
search accuracy as the percentage of points in Dt that are associated with their
particular closest prototype in D. (Thus for r = 6, this accuracy is 100%, by
construction.) For 1 ≤ r ≤ 6 in your partial distance classifier, estimate the
search accuracy. Plot a curve of this search accuracy versus r. What value of r
would give a 90% search accuracy? (Round r to the nearest integer.)

(e) Estimate the “wall clock time” — the overall time required by your computer
to perform the search — as a function of r. If T is the time for a full search
in six dimensions, what value of r requires roughly T/2? What is the search
accuracy in that case?

(f) Suppose instead we define search accuracy as the classification accuracy. Esti-
mate this classification accuracy for a partial distance nearest-neighbor classifier
using your points of Dt. Plot this accuracy for 1 ≤ r ≤ 6. Explain your result.

(g) Repeat (e) for this classification accuracy. If T is the time for full search in d
dimensions, what value of r requires roughly T/2? What is the classification
search accuracy in this case?
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⊕
Section 4.6

6. Consider nearest-neighbor classifiers employing different values of k in the Lk
norm or Minkowski metric.

(a) Write a program to implement a nearest-neighbor classifier for c categories, using
the Minkowski metric or Lk norm, where k can be selected at classification time.

(b) Use the three dimensional data in the table above to classify the following points
using the Lk norm for k = 1, 2, 4 and ∞: (2.21, 1.9, 0.43)t, (−0.15, 1.17, 6.19)t

and (0.01, 1.34, 2.60)t.

7. Create a 10 × 10 pixel grayscale pattern x′ of a handwritten 4.

(a) Plot the Euclidean distance between the 100-dimensional vectors corresponding
to x′ and a horizontally shifted version of it as a function of the horizontal offset.

(b) Shift x′ by two pixels to the right to form the tangent vector TV1. Write a
program to calculate the tangent distance for shifted patterns using your TV1.
Plot the tangent distance as a function of the displacement of the test pattern.
Compare your graphs and explain the implications.

8. Repeat Computer exercise 7 but for a handwritten 7, and vertical translations.⊕
Section 4.7

9. Assume that size, color and shape are appropriate descriptions of fruit, and
use fuzzy methods to classify fruit. In particular, assume all “category membership”
functions are either triangular (with center µ and full half-width δ) or, at the extremes,
are left- or right-open triangular functions.

Suppose the size features (measured in cm) are: small (µ = 2), medium (µ =
4), large (µ = 6), and extra-large (µ = 8). In all cases we assume the category
membership tions have δ = 3. Suppose shape is described by the excentricity, here
the ratio of the major axis to minor axis lengths: thin (µ = 2, δ = .6), oblong
(µ = 1.6, δ = .3), oval (µ = 1.4, δ = .2) and spherical (µ = 1.1, δ = .2). Suppose
color here is represented by some measure of the mixture of red to yellow: yellow
(µ = .1, δ = .1), yellow-orange (µ = 0.3, δ = 0.3), orange (µ = 0.5, δ = 0.3), orange-
red (µ = 0.7, δ = 0.3) and red (µ = 0.9, δ = 0.3). The fuzzy practitioner believes the
following are good descriptions of some common fruit:

• ω1 = cherry = {small and spherical and red}

• ω2 = orange = {medium and spherical and orange}

• ω3 = banana = {large and thin and yellow}

• ω4 = peach = {medium and spherical and orange-red}

• ω5 = plum = {medium and spherical and red}

• ω6 = lemon = {medium and oblong and yellow}

• ω7 = grapefruit = {medium and spherical and yellow}

(a) Write a program to take any objective pattern and classify it.
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(b) Classify each of these {size, shape, color}: {2.5, 1.0, 0.95}, {7.5, 1.9, 0.2} and
{5.0, 0.5, 0.4}.

(c) Suppose there is a cost associated with classification, as described by a cost
matrix λij — the cost of selecting ωi given that the true category is ωj . Suppose
the cost matrix is

λij =



0 1 1 0 2 2 1
1 0 2 2 0 0 1
1 2 0 1 0 0 2
0 2 1 0 2 2 2
2 0 0 2 0 1 1
2 0 0 2 1 0 2
1 1 2 2 1 2 0


.

Reclassify the patterns in (b) for minimum cost.

⊕
Section 4.8

10. Explore relaxation networks in the following way.

(a) Write a program to implement an RCE classifier in three dimensions. Let the
starting radius be λm = 0.5. Train your classifier with the data from the three
categories in the table above. For this data, how many times was any sphere
reduced in size? (If the same sphere is reduced two times, count that as twice.)

(b) Use your classifier to classify the following: (0.53,−0.44, 1.1)t, (−0.49, 0.44, 1.11)t

and (0.51,−0.21, 2.15)t. If the classification of any point is ambiguous, state
which are the candidate categories.

⊕
Section 4.9

11. Consider a classifier based on a Taylor series expansion of a Gaussian window
function. Let k be the highest power of xi in a Taylor series expansion of each of the
independent features of a two-dimensional Gaussian. Below, consider just the x1−x2

features of categories ω2 and ω3 in the table above.

(a) For each value k = 2, 4, and 6, classify the following three points: (0.56, 2.3, 0.10)t,
(0.60, 5.1, 0.86)t and (−0.95, 1.3, 0.16)t.

⊕
Section 4.10

12. Consider the Fisher linear discriminant method.

(a) Write a general program to calculate the optimal direction w for a Fisher linear
discriminant based on three-dimensional data.

(b) Find the optimal w for categories ω2 and ω3 in the table above.

(c) Plot a line representing your optimal direction w and mark on it the positions
of the projected points.
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(d) In this subspace, fit each distribution with a (univariate) Gaussian, and find the
resulting decision boundary.

(e) What is the training error (the error on the training points themselves) in the
optimal subspace you found in (b)?

(f) For comparison, repeat (d) & (c) using instead the non-optimal direction w =
(1.0, 2.0,−1.5)t. What is the training error in this non-optimal subspace?

⊕
Section 4.11

13. Consider the multicategory generalization of the Fisher linear discriminant,
applied to the data in the table above.

(a) Write a general program to calculate the optimal w for multiple discriminant.
Use your program to find the optimal two-dimensional plane (described by nor-
mal vector w) for the three-dimensional data in the table.

(b) In the subspace, fit a circularly symmetric Gaussian to the data, and use a
simple linear classifier in each to find the decision boundaries in the subspace.

(c) What is the error on the training set?

(d) Classify following points : (1.40,−0.36,−0.41)t, (0.62, 1.30, 1.11)t and (−0.11, 1.60, 1.51)t.

(e) For comparison, repeat (b) & (c) for the non-optimal direction w = (−0.5,−0.5, 1.0)t.
Explain the difference between your training errors in the two cases.
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within-class, 46, 47
scatter matrix, see matrix, scatter
search

tree, 30
subjective probability, see probability,

subjective

tangent vector, 34
training data

limited, 7
triangle inequality, see metric, triangle

inequality

variance
Parzen estimate

convergence, 11
vector

mean
total, see mean vector, total

Voronoi
cell, 23
tesselation, 23

window function
Gaussian, 43

within-class scatter, see scatter, within-
class

zero-information distribution, 27


