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Chapter 2

Bayesian decision theory

2.1 Introduction

B ayesian decision theory is a fundamental statistical approach to the problem of
pattern classification. This approach is based on quantifying the tradeoffs be-

tween various classification decisions using probability and the costs that accompany
such decisions. It makes the assumption that the decision problem is posed in proba-
bilistic terms, and that all of the relevant probability values are known. In this chapter
we develop the fundamentals of this theory, and show how it can be viewed as being
simply a formalization of common-sense procedures; in subsequent chapters we will
consider the problems that arise when the probabilistic structure is not completely
known.

While we will give a quite general, abstract development of Bayesian decision
theory in Sect. ??, we begin our discussion with a specific example. Let us reconsider
the hypothetical problem posed in Chap. ?? of designing a classifier to separate two
kinds of fish: sea bass and salmon. Suppose that an observer watching fish arrive
along the conveyor belt finds it hard to predict what type will emerge next and that
the sequence of types of fish appears to be random. In decision-theoretic terminology
we would say that as each fish emerges nature is in one or the other of the two possible
states: either the fish is a sea bass or the fish is a salmon. We let ω denote the state state of

natureof nature, with ω = ω1 for sea bass and ω = ω2 for salmon. Because the state of
nature is so unpredictable, we consider ω to be a variable that must be described
probabilistically.

If the catch produced as much sea bass as salmon, we would say that the next fish
is equally likely to be sea bass or salmon. More generally, we assume that there is
some a priori probability (or simply prior) P (ω1) that the next fish is sea bass, and prior
some prior probability P (ω2) that it is salmon. If we assume there are no other types
of fish relevant here, then P (ω1) and P (ω2) sum to one. These prior probabilities
reflect our prior knowledge of how likely we are to get a sea bass or salmon before
the fish actually appears. It might, for instance, depend upon the time of year or the
choice of fishing area.

Suppose for a moment that we were forced to make a decision about the type of
fish that will appear next without being allowed to see it. For the moment, we shall
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4 CHAPTER 2. BAYESIAN DECISION THEORY

assume that any incorrect classification entails the same cost or consequence, and that
the only information we are allowed to use is the value of the prior probabilities. If a
decision must be made with so little information, it seems logical to use the following
decision rule: Decide ω1 if P (ω1) > P (ω2); otherwise decide ω2.decision

rule This rule makes sense if we are to judge just one fish, but if we are to judge many
fish, using this rule repeatedly may seem a bit strange. After all, we would always
make the same decision even though we know that both types of fish will appear.
How well it works depends upon the values of the prior probabilities. If P (ω1) is very
much greater than P (ω2), our decision in favor of ω1 will be right most of the time.
If P (ω1) = P (ω2), we have only a fifty-fifty chance of being right. In general, the
probability of error is the smaller of P (ω1) and P (ω2), and we shall see later that
under these conditions no other decision rule can yield a larger probability of being
right.

In most circumstances we are not asked to make decisions with so little informa-
tion. In our example, we might for instance use a lightness measurement x to improve
our classifier. Different fish will yield different lightness readings and we express this
variability in probabilistic terms; we consider x to be a continuous random variable
whose distribution depends on the state of nature, and is expressed as p(x|ω1).∗ This
is the class-conditional probability density function. Strictly speaking, the probabil-
ity density function p(x|ω1) should be written as pX(x|ω1) to indicate that we are
speaking about a particular density function for the random variable X. This more
elaborate subscripted notation makes it clear that pX(·) and pY (·) denote two differ-
ent functions, a fact that is obscured when writing p(x) and p(y). Since this potential
confusion rarely arises in practice, we have elected to adopt the simpler notation.
Readers who are unsure of our notation or who would like to review probability the-
ory should see Appendix ??). This is the probability density function for x given that
the state of nature is ω1. (It is also sometimes called state-conditional probability
density.) Then the difference between p(x|ω1) and p(x|ω2) describes the difference in
lightness between populations of sea bass and salmon (Fig. 2.1).

Suppose that we know both the prior probabilities P (ωj) and the conditional
densities p(x|ωj). Suppose further that we measure the lightness of a fish and discover
that its value is x. How does this measurement influence our attitude concerning the
true state of nature — that is, the category of the fish? We note first that the (joint)
probability density of finding a pattern that is in category ωj and has feature value x
can be written two ways: p(ωj , x) = P (ωj |x)p(x) = p(x|ωj)P (ωj). Rearranging these
leads us to the answer to our question, which is called Bayes’ formula:

P (ωj |x) =
p(x|ωj)P (ωj)

p(x)
, (1)

where in this case of two categories

p(x) =
2∑
j=1

p(x|ωj)P (ωj). (2)

Bayes’ formula can be expressed informally in English by saying that

posterior =
likelihood× prior

evidence
. (3)

∗ We generally use an upper-case P (·) to denote a probability mass function and a lower-case p(·)
to denote a probability density function.
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Bayes’ formula shows that by observing the value of x we can convert the prior
probability P (ωj) to the a posteriori probability (or posterior) probability P (ωj |x) posterior
— the probability of the state of nature being ωj given that feature value x has
been measured. We call p(x|ωj) the likelihood of ωj with respect to x (a term likelihood
chosen to indicate that, other things being equal, the category ωj for which p(x|ωj)
is large is more “likely” to be the true category). Notice that it is the product of the
likelihood and the prior probability that is most important in determining the psterior
probability; the evidence factor, p(x), can be viewed as merely a scale factor that
guarantees that the posterior probabilities sum to one, as all good probabilities must.
The variation of P (ωj |x) with x is illustrated in Fig. 2.2 for the case P (ω1) = 2/3 and
P (ω2) = 1/3.
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Figure 2.1: Hypothetical class-conditional probability density functions show the
probability density of measuring a particular feature value x given the pattern is
in category ωi. If x represents the length of a fish, the two curves might describe
the difference in length of populations of two types of fish. Density functions are
normalized, and thus the area under each curve is 1.0.

If we have an observation x for which P (ω1|x) is greater than P (ω2|x), we would
naturally be inclined to decide that the true state of nature is ω1. Similarly, if P (ω2|x)
is greater than P (ω1|x), we would be inclined to choose ω2. To justify this decision
procedure, let us calculate the probability of error whenever we make a decision.
Whenever we observe a particular x,

P (error|x) =
{
P (ω1|x) if we decide ω2

P (ω2|x) if we decide ω1.
(4)

Clearly, for a given x we can minimize the probability of error by deciding ω1 if
P (ω1|x) > P (ω2|x) and ω2 otherwise. Of course, we may never observe exactly the
same value of x twice. Will this rule minimize the average probability of error? Yes,
because the average probability of error is given by
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Figure 2.2: Posterior probabilities for the particular priors P(ω1) = 2/3 and P(ω2) =
1/3 for the class-conditional probability densities shown in Fig. 2.1. Thus in this case,
given that a pattern is measured to have feature value x = 14, the probability it is
in category ω2 is roughly 0.08, and that it is in ω1 is 0.92. At every x, the posteriors
sum to 1.0.

P (error) =

∞∫
−∞

P (error, x) dx =

∞∫
−∞

P (error|x)p(x) dx (5)

and if for every x we insure that P (error|x) is as small as possible, then the integral
must be as small as possible. Thus we have justified the following Bayes’ decision
rule for minimizing the probability of error:Bayes’

decision
rule Decide ω1 if P (ω1|x) > P (ω2|x); otherwise decide ω2, (6)

and under this rule Eq. 4 becomes

P (error|x) = min [P (ω1|x), P (ω2|x)]. (7)

This form of the decision rule emphasizes the role of the posterior probabilities.
By using Eq. 1, we can instead express the rule in terms of the conditional and prior
probabilities. First note that the evidence, p(x), in Eq. 1 is unimportant as far asevidence
making a decision is concerned. It is basically just a scale factor that states how
frequently we will actually measure a pattern with feature value x; its presence in
Eq. 1 assures us that P (ω1|x) + P (ω2|x) = 1. By eliminating this scale factor, we
obtain the following completely equivalent decision rule:

Decide ω1 if p(x|ω1)P (ω1) > p(x|ω2)P (ω2); otherwise decide ω2. (8)

Some additional insight can be obtained by considering a few special cases. If
for some x we have p(x|ω1) = p(x|ω2), then that particular observation gives us no
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information about the state of nature; in this case, the decision hinges entirely on the
prior probabilities. On the other hand, if P (ω1) = P (ω2), then the states of nature are
equally probable; in this case the decision is based entirely on the likelihoods p(x|ωj).
In general, both of these factors are important in making a decision, and the Bayes
decision rule combines them to achieve the minimum probability of error.

2.2 Bayesian Decision Theory – Continuous Fea-
tures

We shall now formalize the ideas just considered, and generalize them in four ways:

• by allowing the use of more than one feature

• by allowing more than two states of nature

• by allowing actions other than merely deciding the state of nature

• by introducing a loss function more general than the probability of error.

These generalizations and their attendant notational complexities should not ob-
scure the central points illustrated in our simple example. Allowing the use of more
than one feature merely requires replacing the scalar x by the feature vector x, where
x is in a d-dimensional Euclidean space Rd, called the feature space. Allowing more feature

spacethan two states of nature provides us with a useful generalization for a small notational
expense. Allowing actions other than classification primarily allows the possibility of
rejection, i.e., of refusing to make a decision in close cases; this is a useful option if
being indecisive is not too costly. Formally, the loss function states exactly how costly loss

functioneach action is, and is used to convert a probability determination into a decision. Cost
functions let us treat situations in which some kinds of classification mistakes are more
costly than others, although we often discuss the simplest case, where all errors are
equally costly. With this as a preamble, let us begin the more formal treatment.

Let ω1, ..., ωc be the finite set of c states of nature (“categories”) and α1, ..., αa
be the finite set of a possible actions. The loss function λ(αi|ωj) describes the loss
incurred for taking action αi when the state of nature is ωj . Let the feature vector
x be a d-component vector-valued random variable, and let p(x|ωj) be the state-
conditional probability density function for x — the probability density function for
x conditioned on ωj being the true state of nature. As before, P (ωj) describes the
prior probability that nature is in state ωj . Then the posterior probability P (ωj |x)
can be computed from p(x|ωj) by Bayes’ formula:

P (ωj |x) =
p(x|ωj)P (ωj)

p(x)
, (9)

where the evidence is now

p(x) =
c∑
j=1

p(x|ωj)P (ωj). (10)

Suppose that we observe a particular x and that we contemplate taking action
αi. If the true state of nature is ωj , by definition we will incur the loss λ(αi|ωj).
Since P (ωj |x) is the probability that the true state of nature is ωj , the expected loss
associated with taking action αi is merely
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R(αi|x) =
c∑
j=1

λ(αi|ωj)P (ωj |x). (11)

In decision-theoretic terminology, an expected loss is called a risk, and R(αi|x) isrisk
called the conditional risk. Whenever we encounter a particular observation x, we can
minimize our expected loss by selecting the action that minimizes the conditional risk.
We shall now show that this Bayes decision procedure actually provides the optimal
performance on an overall risk.

Stated formally, our problem is to find a decision rule against P (ωj) that mini-
mizes the overall risk. A general decision rule is a function α(x) that tells us whichdecision

rule action to take for every possible observation. To be more specific, for every x the
decision function α(x) assumes one of the a values α1, ..., αa. The overall risk R is the
expected loss associated with a given decision rule. Since R(αi|x) is the conditional
risk associated with action αi, and since the decision rule specifies the action, the
overall risk is given by

R =
∫
R(α(x)|x)p(x) dx, (12)

where dx is our notation for a d-space volume element, and where the integral extends
over the entire feature space. Clearly, if α(x) is chosen so that R(αi(x)) is as small
as possible for every x, then the overall risk will be minimized. This justifies the
following statement of the Bayes decision rule: To minimize the overall risk, compute
the conditional risk

R(αi|x) =
c∑
j=1

λ(αi|ωj)P (ωj |x) (13)

for i = 1,...,a and select the action αi for which R(αi|x) is minimum.∗ The resulting
minimum overall risk is called the Bayes risk, denoted R∗, and is the best performanceBayes risk
that can be achieved.

2.2.1 Two-Category Classification

Let us consider these results when applied to the special case of two-category classifi-
cation problems. Here action α1 corresponds to deciding that the true state of nature
is ω1, and action α2 corresponds to deciding that it is ω2. For notational simplicity,
let λij = λ(αi|ωj) be the loss incurred for deciding ωi when the true state of nature
is ωj . If we write out the conditional risk given by Eq. 13, we obtain

R(α1|x) = λ11P (ω1|x) + λ12P (ω2|x) and
R(α2|x) = λ21P (ω1|x) + λ22P (ω2|x). (14)

There are a variety of ways of expressing the minimum-risk decision rule, each
having its own minor advantages. The fundamental rule is to decide ω1 if R(α1|x) <
R(α2|x). In terms of the posterior probabilities, we decide ω1 if

(λ21 − λ11)P (ω1|x) > (λ12 − λ22)P (ω2|x). (15)
∗ Note that if more than one action minimizes R(α|x), it does not matter which of these actions is

taken, and any convenient tie-breaking rule can be used.



2.3. MINIMUM-ERROR-RATE CLASSIFICATION 9

Ordinarily, the loss incurred for making an error is greater than the loss incurred for
being correct, and both of the factors λ21 − λ11 and λ12 − λ22 are positive. Thus in
practice, our decision is generally determined by the more likely state of nature, al-
though we must scale the posterior probabilities by the loss differences. By employing
Bayes’ formula, we can replace the posterior probabilities by the prior probabilities
and the conditional densities. This results in the equivalent rule, to decide ω1 if

(λ21 − λ11)p(x|ω1)P (ω1) > (λ12 − λ22)p(x|ω2)P (ω2), (16)

and ω2 otherwise.
Another alternative, which follows at once under the reasonable assumption that

λ21 > λ11, is to decide ω1 if

p(x|ω1)
p(x|ω2)

>
λ12 − λ22

λ21 − λ11

P (ω2)
P (ω1)

. (17)

This form of the decision rule focuses on the x-dependence of the probability densities.
We can consider p(x|ωj) a function of ωj (i.e., the likelihood function), and then form likelihood

ratiothe likelihood ratio p(x|ω1)/p(x|ω2). Thus the Bayes decision rule can be interpreted
as calling for deciding ω1 if the likelihood ratio exceeds a threshold value that is
independent of the observation x.

2.3 Minimum-Error-Rate Classification

In classification problems, each state of nature is usually associated with a different
one of the c classes, and the action αi is usually interpreted as the decision that the
true state of nature is ωi. If action αi is taken and the true state of nature is ωj , then
the decision is correct if i = j, and in error if i 6= j. If errors are to be avoided, it is
natural to seek a decision rule that minimizes the probability of error, i.e., the error
rate.

The loss function of interest for this case is hence the so-called symmetrical or
zero-one loss function, zero-one

loss

λ(αi|ωj) =
{

0 i = j
1 i 6= j

i, j = 1, ..., c. (18)

This loss function assigns no loss to a correct decision, and assigns a unit loss to any
error; thus, all errors are equally costly.∗ The risk corresponding to this loss function
is precisely the average probability of error, since the conditional risk is

R(αi|x) =
c∑
j=1

λ(αi|ωj)P (ωj |x)

=
∑
j 6=i

P (ωj |x)

= 1− P (ωi|x) (19)

∗ We note that other loss functions, such as quadratic and linear-difference, find greater use in
regression tasks, where there is a natural ordering on the predictions and we can meaningfully
penalize predictions that are “more wrong” than others.
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and P (ωi|x) is the conditional probability that action αi is correct. The Bayes decision
rule to minimize risk calls for selecting the action that minimizes the conditional
risk. Thus, to minimize the average probability of error, we should select the i that
maximizes the posterior probability P (ωi|x). In other words, for minimum error rate:

Decide ωi if P (ωi|x) > P (ωj |x) for all j 6= i. (20)

This is the same rule as in Eq. 6.
We saw in Fig. 2.2 some class-conditional probability densities and the posterior

probabilities; Fig. 2.3 shows the likelihood ratio p(x|ω1)/p(x|ω2) for the same case. In
general, this ratio can range between zero and infinity. The threshold value θa marked
is from the same prior probabilities but with zero-one loss function. Notice that this
leads to the same decision boundaries as in Fig. 2.2, as it must. If we penalize mistakes
in classifying ω1 patterns as ω2 more than the converse (i.e., λ21 > λ12), then Eq. 17
leads to the threshold θb marked. Note that the range of x values for which we classify
a pattern as ω1 gets smaller, as it should.

x

θa

p(x|ω1)

p(x|ω2)

R1 R1R2R2

θb

Figure 2.3: The likelihood ratio p(x|ω1)/p(x|ω2) for the distributions shown in Fig. 2.1.
If we employ a zero-one or classification loss, our decision boundaries are determined
by the threshold θa. If our loss function penalizes miscategorizing ω2 as ω1 patterns
more than the converse, (i.e., λ12 > λ21), we get the larger threshold θb, and hence
R1 becomes smaller.

2.3.1 *Minimax Criterion

Sometimes we must design our classifier to perform well over a range of prior proba-
bilities. For instance, in our fish categorization problem we can imagine that whereas
the physical properties of lightness and width of each type of fish remain constant, the
prior probabilities might vary widely and in an unpredictable way, or alternatively
we want to use the classifier in a different plant where we do not know the prior
probabilities. A reasonable approach is then to design our classifier so that the worst
overall risk for any value of the priors is as small as possible — that is, minimize the
maximum possible overall risk.
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In order to understand this, we let R1 denote that (as yet unknown) region in
feature space where the classifier decides ω1 and likewise for R2 and ω2, and then
write our overall risk Eq. 12 in terms of conditional risks:

R =
∫
R1

[λ11P (ω1) p(x|ω1) + λ12P (ω2) p(x|ω2)] dx

+
∫
R2

[λ21P (ω1) p(x|ω1) + λ22P (ω2) p(x|ω2)] dx. (21)

We use the fact that P (ω2) = 1− P (ω1) and that
∫
R1

p(x|ω1) dx = 1−
∫
R2

p(x|ω1) dx

to rewrite the risk as:

R(P (ω1)) =

= Rmm, minimax risk︷ ︸︸ ︷
λ22 + (λ12 − λ22)

∫
R1

p(x|ω2) dx (22)

+ P (ω1)

(λ11 − λ22)− (λ21 − λ11)
∫
R2

p(x|ω1) dx− (λ12 − λ22)
∫
R1

p(x|ω2) dx


︸ ︷︷ ︸

= 0 for minimax solution

.

This equation shows that once the decision boundary is set (i.e., R1 and R2

determined), the overall risk is linear in P (ω1). If we can find a boundary such that
the constant of proportionality is 0, then the risk is independent of priors. This is the
minimax solution, and the minimax risk, Rmm, can be read from Eq. 22: minimax

risk

Rmm = λ22 + (λ12 − λ22)
∫
R1

p(x|ω2) dx

= λ11 + (λ21 − λ11)
∫
R2

p(x|ω1) dx. (23)

Figure 2.4 illustrates the approach. Briefly stated, we search for the prior for which
the Bayes risk is maximum, the corresponding decision boundary gives the minimax
solution. The value of the minimax risk, Rmm, is hence equal to the worst Bayes risk.
In practice, finding the decision boundary for minimax risk may be difficult, partic-
ularly when distributions are complicated. Nevertheless, in some cases the boundary
can be determined analytically (Problem 3).

The minimax criterion finds greater use in game theory then it does in traditional
pattern recognition. In game theory, you have a hostile opponent who can be expected
to take an action maximally detrimental to you. Thus it makes great sense for you to
take an action (e.g., make a classification) where your costs — due to your opponent’s
subsequent actions — are minimized.
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Figure 2.4: The curve at the bottom shows the minimum (Bayes) error as a function of
prior probability P (ω1) in a two-category classification problem of fixed distributions.
For each value of the priors (e.g., P (ω1) = 0.25) there is a corresponding optimal
decision boundary and associated Bayes error rate. For any (fixed) such boundary, if
the priors are then changed, the probability of error will change as a linear function of
P (ω1) (shown by the dashed line). The maximum such error will occur at an extreme
value of the prior, here at P (ω1) = 1. To minimize the maximum of such error, we
should design our decision boundary for the maximum Bayes error (here P (ω1) = 0.6),
and thus the error will not change as a function of prior, as shown by the solid red
horizontal line.

2.3.2 *Neyman-Pearson Criterion

In some problems, we may wish to minimize the overall risk subject to a constraint;
for instance, we might wish to minimize the total risk subject to the constraint∫
R(αi|x) dx < constant for some particular i. Such a constraint might arise when

there is a fixed resource that accompanies one particular action αi, or when we must
not misclassify pattern from a particular state of nature ωi at more than some limited
frequency. For instance, in our fish example, there might be some government regu-
lation that we must not misclassify more than 1% of salmon as sea bass. We might
then seek a decision that minimizes the chance of classifying a sea bass as a salmon
subject to this condition.

We generally satisfy such a Neyman-Pearson criterion by adjusting decision bound-
aries numerically. However, for Gaussian and some other distributions, Neyman-
Pearson solutions can be found analytically (Problems 5 & 6). We shall have cause
to mention Neyman-Pearson criteria again in Sect. 2.8.3 on operating characteristics.
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2.4 Classifiers, Discriminant Functions and Deci-
sion Surfaces

2.4.1 The Multi-Category Case

There are many different ways to represent pattern classifiers. One of the most useful
is in terms of a set of discriminant functions gi(x), i = 1, ..., c. The classifier is said
to assign a feature vector x to class ωi if

gi(x) > gj(x) for all j 6= i. (24)

Thus, the classifier is viewed as a network or machine that computes c discriminant
functions and selects the category corresponding to the largest discriminant. A net-
work representation of a classifier is illustrated in Fig. 2.5.

Discriminant
functions

Input

g1(x) g2(x) gc(x). . .

x1
x2 xd. . .x3

Costs

Action
(e.g., classification)

Figure 2.5: The functional structure of a general statistical pattern classifier which
includes d inputs and c discriminant functions gi(x). A subsequent step determines
which of the discriminant values is the maximum, and categorizes the input pat-
tern accordingly. The arrows show the direction of the flow of information, though
frequently the arrows are omitted when the direction of flow is self-evident.

A Bayes classifier is easily and naturally represented in this way. For the gen-
eral case with risks, we can let gi(x) = −R(αi|x), since the maximum discriminant
function will then correspond to the minimum conditional risk. For the minimum-
error-rate case, we can simplify things further by taking gi(x) = P (ωi|x), so that the
maximum discriminant function corresponds to the maximum posterior probability.

Clearly, the choice of discriminant functions is not unique. We can always multiply
all the discriminant functions by the same positive constant or shift them by the same
additive constant without influencing the decision. More generally, if we replace every
gi(x) by f(gi(x)), where f(·) is a monotonically increasing function, the resulting
classification is unchanged. This observation can lead to significant analytical and
computational simplifications. In particular, for minimum-error-rate classification,
any of the following choices gives identical classification results, but some can be
much simpler to understand or to compute than others:
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gi(x) = P (ωi|x) =
p(x|ωi)P (ωi)
c∑
j=1

p(x|ωj)P (ωj)
(25)

gi(x) = p(x|ωi)P (ωi) (26)

gi(x) = ln p(x|ωi) + ln P (ωi), (27)

where ln denotes natural logarithm.
Even though the discriminant functions can be written in a variety of forms, the

decision rules are equivalent. The effect of any decision rule is to divide the feature
space into c decision regions, R1,...,Rc. If gi(x) > gj(x) for all j 6= i, then x is indecision

region Ri, and the decision rule calls for us to assign x to ωi. The regions are separated
by decision boundaries, surfaces in feature space where ties occur among the largest
discriminant functions (Fig. 2.6).
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0.1

0.2

0.3

0

5

0

0.1

0.2

0.3

R2

Decision
Boundary

R1

R2

p(x|ω1)P(ω1)
p(x|ω2)P(ω2)

Figure 2.6: In this two-dimensional two-category classifier, the probability densities
are Gaussian (with 1/e ellipses shown), the decision boundary consists of two hyper-
bolas, and thus the decision region R2 is not simply connected.

2.4.2 The Two-Category Case

While the two-category case is just a special instance of the multicategory case, it has
traditionally received separate treatment. Indeed, a classifier that places a pattern in
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one of only two categories has a special name — a dichotomizer.∗ Instead of using two dichotomizer
discriminant functions g1 and g2 and assigning x to ω1 if g1 > g2, it is more common
to define a single discriminant function

g(x) ≡ g1(x)− g2(x), (28)

and to use the following decision rule: Decide ω1 if g(x) > 0; otherwise decide ω2.
Thus, a dichotomizer can be viewed as a machine that computes a single discriminant
function g(x), and classifies x according to the algebraic sign of the result. Of the
various forms in which the minimum-error-rate discriminant function can be written,
the following two (derived from Eqs. 25 & 27) are particularly convenient:

g(x) = P (ω1|x)− P (ω2|x) (29)

g(x) = ln
p(x|ω1)
p(x|ω2)

+ ln
P (ω1)
P (ω2)

. (30)

2.5 The Normal Density

The structure of a Bayes classifier is determined by the conditional densities p(x|ωi)
as well as by the prior probabilities. Of the various density functions that have
been investigated, none has received more attention than the multivariate normal or
Gaussian density. To a large extent this attention is due to its analytical tractability.
However the multivariate normal density is also an appropriate model for an important
situation, viz., the case where the feature vectors x for a given class ωi are continuous
valued, randomly corrupted versions of a single typical or prototype vector µi. In this
section we provide a brief exposition of the multivariate normal density, focusing on
the properties of greatest interest for classification problems.

First, recall the definition of the expected value of a scalar function f(x), defined expectation
for some density p(x):

E [f(x)] ≡
∞∫
−∞

f(x)p(x)dx. (31)

If we have samples in a set D from a discrete distribution, we must sum over all
samples as

E [f(x)] =
∑
x∈D

f(x)P (x), (32)

where P (x) is the probability mass at x. We shall often have call to calculate expected
values — by these and analogous equations defined in higher dimensions (see Appendix
Secs. ??, ?? & ??).∗

∗ A classifier for more than two categories is called a polychotomizer.
∗ We will often use somewhat loose engineering terminology and refer to a single point as a “sample.”

Statisticians, though, always refer to a sample as a collection of points, and discuss “a sample of
size n.” When taken in context, there are rarely ambiguities in such usage.
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2.5.1 Univariate Density

We begin with the continuous univariate normal or Gaussian density,

p(x) =
1√
2πσ

exp

[
−1

2

(
x− µ
σ

)2
]
, (33)

for which the expected value of x (an average, here taken over the feature space) is

µ ≡ E [x] =

∞∫
−∞

xp(x) dx, (34)

and where the expected squared deviation or variance isvariance

σ2 ≡ E [(x− µ)2] =

∞∫
−∞

(x− µ)2p(x) dx. (35)

The univariate normal density is completely specified by two parameters: its mean
µ and variance σ2. For simplicity, we often abbreviate Eq. 33 by writing p(x) ∼mean
N(µ, σ2) to say that x is distributed normally with mean µ and variance σ2. Samples
from normal distributions tend to cluster about the mean, with a spread related to
the standard deviation σ (Fig. 2.7).

x

2.5% 2.5%

σ

p(x)

µ + σ µ + 2σµ − σµ − 2σ µ

Figure 2.7: A univariate normal distribution has roughly 95% of its area in the range
|x− µ| ≤ 2σ, as shown. The peak of the distribution has value p(µ) = 1/

√
2πσ.

There is a deep relationship between the normal distribution and entropy. Weentropy
shall consider entropy in greater detail in Chap. ??, but for now we merely state that
the entropy of a distribution is given by

H(p(x)) = −
∫
p(x) ln p(x) dx, (36)

and measured in nats. If a log2 is used instead, the unit is the bit. The entropy is a non-nat

bit
negative quantity that describes the fundamental uncertainty in the values of points
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selected randomly from a distribution. It can be shown that the normal distribution
has the maximum entropy of all distributions having a given mean and variance
(Problem 20). Moreover, as stated by the Central Limit Theorem, the aggregate Central

Limit
Theorem

effect of a large number of small, independent random disturbances will lead to a
Gaussian distribution (Computer exercise ??). Because many patterns — from fish
to handwritten characters to some speech sounds — can be viewed as some ideal or
prototype pattern corrupted by a large number of random processes, the Gaussian is
often a good model for the actual probability distribution.

2.5.2 Multivariate Density

The general multivariate normal density in d dimensions is written as

p(x) =
1

(2π)d/2|Σ|1/2 exp
[
−1

2
(x− µ)tΣ−1(x− µ)

]
, (37)

where x is a d-component column vector, µ is the d-component mean vector, Σ is the
d-by-d covariance matrix, |Σ| and Σ−1 are its determinant and inverse, respectively, covariance

matrixand (x− µ)t is the transpose of x− µ.∗ Our notation for the inner product is

inner
productatb =

d∑
i=1

aibi, (38)

and often called a dot product.
For simplicity, we often abbreviate Eq. 37 as p(x) ∼ N(µ,Σ). Formally, we have

µ ≡ E [x] =
∫

xp(x) dx (39)

and

Σ ≡ E [(x− µ)(x− µ)t] =
∫

(x− µ)(x− µ)tp(x) dx, (40)

where the expected value of a vector or a matrix is found by taking the expected
values of its components. In other words, if xi is the ith component of x, µi the ith
component of µ, and σij the ijth component of Σ, then

µi = E [xi] (41)

and

σij = E [(xi − µi)(xj − µj)]. (42)

The covariance matrix Σ is always symmetric and positive semidefinite. We shall
restrict our attention to the case in which Σ is positive definite, so that the deter-
minant of Σ is strictly positive.† The diagonal elements σii are the variances of the
respective xi (i.e., σ2

i ), and the off-diagonal elements σij are the covariances of xi and covariance
xj . We would expect a positive covariance for the length and weight features of a
population of fish, for instance. If xi and xj are statistically independent, σij = 0. If statistical

indepen-
dence

∗ The mathematical expressions for the multivariate normal density are greatly simplified by em-
ploying the concepts and notation of linear algebra. Readers who are unsure of our notation or
who would like to review linear algebra should see Appendix ??.

† If sample vectors are drawn from a linear subspace, |Σ| = 0 and p(x) is degenerate. This occurs,
for example, when one component of x has zero variance, or when two components are identical
or multiples of one another.
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all the off-diagonal elements are zero, p(x) reduces to the product of the univariate
normal densities for the components of x.

Linear combinations of jointly normally distributed random variables, independent
or not, are normally distributed. In particular, if A is a d-by-k matrix and y = Atx
is a k-component vector, then p(y) ∼ N(Atµ,AtΣA), as illustrated in Fig. 2.8. In
the special case where k = 1 and A is a unit-length vector a, y = atx is a scalar that
represents the projection of x onto a line in the direction of a; in that case atΣa is the
variance of the projection of x onto a. In general then, knowledge of the covariance
matrix allows us to calculate the dispersion of the data in any direction, or in any
subspace.

It is sometimes convenient to perform a coordinate transformation that converts
an arbitrary multivariate normal distribution into a spherical one, i.e., one having a
covariance matrix proportional to the identity matrix I. If we define Φ to be the ma-
trix whose columns are the orthonormal eigenvectors of Σ, and Λ the diagonal matrix
of the corresponding eigenvalues, then the transformation Aw = ΦΛ−1/2 applied to
the coordinates insures that the transformed distribution has covariance matrix equal
to the identity matrix. In signal processing, the transform Aw is called a whiten-
ing transformation, since it makes the spectrum of eigenvectors of the transformedwhitening

transform distribution uniform.
The multivariate normal density is completely specified by d + d(d + 1)/2 pa-

rameters — the elements of the mean vector µ and the independent elements of the
covariance matrix Σ. Samples drawn from a normal population tend to fall in a single
cloud or cluster (Fig. 2.9); the center of the cluster is determined by the mean vector,
and the shape of the cluster is determined by the covariance matrix. If follows from
Eq. 37 that the loci of points of constant density are hyperellipsoids for which the
quadratic form (x−µ)tΣ−1(x−µ) is constant. The principal axes of these hyperellip-
soids are given by the eigenvectors of Σ (described by Φ); the eigenvalues (described
by Λ) determine the lengths of these axes. The quantity

r2 = (x− µ)tΣ−1(x− µ) (43)

is sometimes called the squared Mahalanobis distance from x to µ. Thus, the contoursMahalanobis
distance of constant density are hyperellipsoids of constant Mahalanobis distance to µ and the

volume of these hyperellipsoids measures the scatter of the samples about the mean. It
can be shown (Problems 15 & 16) that the volume of the hyperellipsoid corresponding
to a Mahalanobis distance r is given by

V = Vd|Σ|1/2rd, (44)

where Vd is the volume of a d-dimensional unit hypersphere:

Vd =

 πd/2/(d/2)! d even

2dπ(d−1)/2(d−1
2 )!/(d)! d odd.

(45)

Thus, for a given dimensionality, the scatter of the samples varies directly with |Σ|1/2
(Problem 17).
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Figure 2.8: The action of a linear transformation on the feature space will convert an
arbitrary normal distribution into another normal distribution. One transformation,
A, takes the source distribution into distribution N(Atµ,AtΣA). Another linear
transformation — a projection P onto line a — leads to N(µ, σ2) measured along a.
While the transforms yield distributions in a different space, we show them super-
imposed on the original x1 − x2 space. A whitening transform leads to a circularly
symmetric Gaussian, here shown displaced.

2.6 Discriminant Functions for the Normal Density

In Sect. 2.4.1 we saw that the minimum-error-rate classification can be achieved by
use of the discriminant functions

gi(x) = ln p(x|ωi) + ln P (ωi). (46)

This expression can be readily evaluated if the densities p(x|ωi) are multivariate nor-
mal, i.e., if p(x|ωi) ∼ N(µi,Σi). In this case, then, from Eq. 37 we have

gi(x) = −1
2

(x− µi)tΣ−1
i (x− µi)−

d

2
ln 2π − 1

2
ln |Σi|+ ln P (ωi). (47)

Let us examine the discriminant function and resulting classification for a number of
special cases.

2.6.1 Case 1: Σi = σ2I

The simplest case occurs when the features are statistically independent, and when
each feature has the same variance, σ2. In this case the covariance matrix is diagonal,
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x2

x1

µ

Figure 2.9: Samples drawn from a two-dimensional Gaussian lie in a cloud centered on
the mean µ. The red ellipses show lines of equal probability density of the Gaussian.

being merely σ2 times the identity matrix I. Geometrically, this corresponds to the
situation in which the samples fall in equal-size hyperspherical clusters, the cluster
for the ith class being centered about the mean vector µi. The computation of the
determinant and the inverse of Σi is particularly easy: |Σi| = σ2d and Σ−1

i = (1/σ2)I.
Since both |Σi| and the (d/2) ln 2π term in Eq. 47 are independent of i, they are
unimportant additive constants that can be ignored. Thus we obtain the simple
discriminant functions

gi(x) = −‖x− µi‖
2

2σ2
+ ln P (ωi), (48)

where ‖ · ‖ is the Euclidean norm, that is,Euclidean
norm

‖x− µi‖2 = (x− µi)t(x− µi). (49)

If the prior probabilities are not equal, then Eq. 48 shows that the squared distance
‖x−µ‖2 must be normalized by the variance σ2 and offset by adding ln P (ωi); thus,
if x is equally near two different mean vectors, the optimal decision will favor the a
priori more likely category.

Regardless of whether the prior probabilities are equal or not, it is not actually
necessary to compute distances. Expansion of the quadratic form (x − µi)t(x − µi)
yields

gi(x) = − 1
2σ2

[xtx− 2µtix + µtiµi] + ln P (ωi), (50)

which appears to be a quadratic function of x. However, the quadratic term xtx is
the same for all i, making it an ignorable additive constant. Thus, we obtain the
equivalent linear discriminant functionslinear

discriminant

gi(x) = wt
ix + wi0, (51)

where
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Figure 2.10: If the covariances of two distributions are equal and proportional to the
identity matrix, then the distributions are spherical in d dimensions, and the boundary
is a generalized hyperplane of d− 1 dimensions, perpendicular to the line separating
the means. In these 1-, 2-, and 3-dimensional examples, we indicate p(x|ωi) and the
boundaries for the case P (ω1) = P (ω2). In the 3-dimensional case, the grid plane
separates R1 from R2.

wi =
1
σ2
µi (52)

and

wi0 =
−1
2σ2

µtiµi + ln P (ωi). (53)

We call wi0 the threshold or bias in the ith direction. threshold

bias
A classifier that uses linear discriminant functions is called a linear machine. This

linear
machine

kind of classifier has many interesting theoretical properties, some of which will be
discussed in detail in Chap. ??. At this point we merely note that the decision
surfaces for a linear machine are pieces of hyperplanes defined by the linear equations
gi(x) = gj(x) for the two categories with the highest posterior probabilities. For our
particular case, this equation can be written as

wt(x− x0) = 0, (54)

where

w = µi − µj (55)

and

x0 =
1
2

(µi + µj)−
σ2

‖µi − µj‖2
ln
P (ωi)
P (ωj)

(µi − µj). (56)

This equation defines a hyperplane through the point x0 and orthogonal to the
vector w. Since w = µi − µj , the hyperplane separating Ri and Rj is orthogonal to
the line linking the means. If P (ωi) = P (ωj), the second term on the right of Eq. 56
vanishes, and thus the point x0 is halfway between the means, and the hyperplane is
the perpendicular bisector of the line between the means (Fig. 2.11). If P (ωi) 6= P (ωj),
the point x0 shifts away from the more likely mean. Note, however, that if the variance
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Figure 2.11: As the priors are changed, the decision boundary shifts; for sufficiently
disparate priors the boundary will not lie between the means of these 1-, 2- and
3-dimensional spherical Gaussian distributions.

σ2 is small relative to the squared distance ‖µi − µj‖, then the position of the decision
boundary is relatively insensitive to the exact values of the prior probabilities.

If the prior probabilities P (ωi) are the same for all c classes, then the ln P (ωi)
term becomes another unimportant additive constant that can be ignored. When this
happens, the optimum decision rule can be stated very simply: to classify a feature
vector x, measure the Euclidean distance ‖x − µi‖ from each x to each of the c
mean vectors, and assign x to the category of the nearest mean. Such a classifier is
called a minimum distance classifier. If each mean vector is thought of as being anminimum

distance
classifier

ideal prototype or template for patterns in its class, then this is essentially a template-
matching procedure (Fig. 2.10), a technique we will consider again in Chap. ?? Sect. ??

template-
matching

on the nearest-neighbor algorithm.
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2.6.2 Case 2: Σi = Σ

Another simple case arises when the covariance matrices for all of the classes are
identical but otherwise arbitrary. Geometrically, this corresponds to the situation in
which the samples fall in hyperellipsoidal clusters of equal size and shape, the cluster
for the ith class being centered about the mean vector µi. Since both |Σi| and the
(d/2) ln 2π term in Eq. 47 are independent of i, they can be ignored as superfluous
additive constants. This simplification leads to the discriminant functions

gi(x) = −1
2

(x− µi)tΣ−1(x− µi) + ln P (ωi). (57)

If the prior probabilities P (ωi) are the same for all c classes, then the ln P (ωi)
term can be ignored. In this case, the optimal decision rule can once again be stated
very simply: to classify a feature vector x, measure the squared Mahalanobis distance
(x − µi)tΣ−1(x − µi) from x to each of the c mean vectors, and assign x to the
category of the nearest mean. As before, unequal prior probabilities bias the decision
in favor of the a priori more likely category.

Expansion of the quadratic form (x−µi)tΣ−1(x−µi) results in a sum involving
a quadratic term xtΣ−1x which here is independent of i. After this term is dropped
from Eq. 57, the resulting discriminant functions are again linear:

gi(x) = wt
ix + wi0, (58)

where

wi = Σ−1µi (59)

and

wi0 = −1
2
µtiΣ

−1µi + ln P (ωi). (60)

Since the discriminants are linear, the resulting decision boundaries are again
hyperplanes (Fig. 2.10). If Ri and Rj are contiguous, the boundary between them
has the equation

wt(x− x0) = 0, (61)

where

w = Σ−1(µi − µj) (62)

and

x0 =
1
2

(µi + µj)−
ln [P (ωi)/P (ωj)]

(µi − µj)tΣ−1(µi − µj)
(µi − µj). (63)

Since w = Σ−1(µi−µj) is generally not in the direction of µi−µj , the hyperplane
separating Ri and Rj is generally not orthogonal to the line between the means.
However, it does intersect that line at the point x0 which is halfway between the
means if the prior probabilities are equal. If the prior probabilities are not equal, the
optimal boundary hyperplane is shifted away from the more likely mean (Fig. 2.12).
As before, with sufficient bias the decision plane need not lie between the two mean
vectors.
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Figure 2.12: Probability densities (indicated by the surfaces in two dimensions and
ellipsoidal surfaces in three dimensions) and decision regions for equal but asymmetric
Gaussian distributions. The decision hyperplanes need not be perpendicular to the
line connecting the means.
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2.6.3 Case 3: Σi = arbitrary

In the general multivariate normal case, the covariance matrices are different for each
category. The only term that can be dropped from Eq. 47 is the (d/2) ln 2π term,
and the resulting discriminant functions are inherently quadratic:

gi(x) = xtWix + wt
ix + wi0, (64)

where

Wi = −1
2
Σ−1
i , (65)

wi = Σ−1
i µi (66)

and

wi0 = −1
2
µtiΣ

−1
i µi −

1
2

ln |Σi|+ ln P (ωi). (67)

The decision surfaces are hyperquadrics, and can assume any of the general forms hyper-
quadric— hyperplanes, pairs of hyperplanes, hyperspheres, hyperellipsoids, hyperparaboloids,

and hyperhyperboloids of various types (Problem 29). Even in one dimension, for
arbitrary covariance the decision regions need not be simply connected (Fig. 2.13).
The two- and three-dimensional examples in Fig. 2.14 & 2.15 indicate how these
different forms can arise. These variances are indicated by the contours of constant
probability density.

The extension of these results to more than two categories is straightforward
though we need to keep clear which two of the total c categories are responsible for
any boundary segment. Figure 2.16 shows the decision surfaces for a four-category
case made up of Gaussian distributions. Of course, if the distributions are more com-
plicated, the decision regions can be even more complex, though the same underlying
theory holds there too.

-5 -2.5 2.5 5 7.5

0.1

0.2

0.3

0.4

x

p(x|ωi)

R2 R1R1

ω2

ω1

Figure 2.13: Non-simply connected decision regions can arise in one dimensions for
Gaussians having unequal variance.
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Figure 2.14: Arbitrary Gaussian distributions lead to Bayes decision boundaries that
are general hyperquadrics. Conversely, given any hyperquadratic, one can find two
Gaussian distributions whose Bayes decision boundary is that hyperquadric.
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in which the decision boundary is a line.
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ω1

ω2 ω4

ω3ω4

Figure 2.16: The decision regions for four normal distributions. Even with such a low
number of categories, the shapes of the boundary regions can be rather complex.
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Example 1: Decision regions for two-dimensional Gaussian data

To clarify these ideas, we explicitly calculate the decision boundary for the two-
category two-dimensional data in the Example figure. Let ω1 be the set of the four
black points, and ω2 the red points. Although we will spend much of the next chapter
understanding how to estimate the parameters of our distributions, for now we simply
assume that we need merely calculate the means and covariances by the discrete
versions of Eqs. 39 & 40; they are found to be:

µ1 =
[

3
6

]
; Σ1 =

(
1/2 0
0 2

)
and µ2 =

[
3
−2

]
; Σ2 =

(
2 0
0 2

)
.

The inverse matrices are then,

Σ−1
1 =

(
2 0
0 1/2

)
and Σ−1

2 =
(

1/2 0
0 1/2

)
.

We assume equal prior probabilities, P (ω1) = P (ω2) = 0.5, and substitute these into
the general form for a discriminant, Eqs. 64 – 67, setting g1(x) = g2(x) to obtain the
decision boundary:

x2 = 3.514− 1.125x1 + 0.1875x2
1.

This equation describes a parabola with vertex at
(

3
1.83

)
. Note that despite the

fact that the variance in the data along the x2 direction for both distributions is the
same, the decision boundary does not pass through the point

(
3
2

)
, midway between

the means, as we might have naively guessed. This is because for the ω1 distribution,
the probability distribution is “squeezed” in the x1-direction more so than for the ω2

distribution. Because the overall prior probabilities are the same (i.e., the integral over
space of the probability density), the distribution is increased along the x2 direction
(relative to that for the ω2 distribution). Thus the decision boundary lies slightly
lower than the point midway between the two means, as can be seen in the decision
boundary.

x1

x2

µ2

µ1

-2 2 4 6 8 10

-2.5

2.5

5

7.5

10

The computed Bayes decision boundary for two Gaussian distributions, each based
on four data points.
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2.7 Error Probabilities and Integrals

We can obtain additional insight into the operation of a general classifier — Bayes or
otherwise — if we consider the sources of its error. Consider first the two-category
case, and suppose the dichotomizer has divided the space into two regions R1 and R2

in a possibly non-optimal way. There are two ways in which a classification error can
occur; either an observation x falls in R2 and the true state of nature is ω1, or x falls
in R1 and the true state of nature is ω2. Since these events are mutually exclusive
and exhaustive, the probability of error is

P (error) = P (x ∈ R2, ω1) + P (x ∈ R1, ω2)
= P (x ∈ R2|ω1)P (ω1) + P (x ∈ R1|ω2)P (ω2)

=
∫
R2

p(x|ω1)P (ω1) dx +
∫
R1

p(x|ω2)P (ω2) dx. (68)

This result is illustrated in the one-dimensional case in Fig. 2.17. The two in-
tegrals in Eq. 68 represent the pink and the gray areas in the tails of the functions
p(x|ωi)P (ωi). Because the decision point x∗ (and hence the regions R1 and R2) were
chosen arbitrarily for that figure, the probability of error is not as small as it might
be. In particular, the triangular area marked “reducible error” can be eliminated if
the decision boundary is moved to xB . This is the Bayes optimal decision boundary
and gives the lowest probability of error. In general, if p(x|ω1)P (ω1) > p(x|ω2)P (ω2),
it is advantageous to classify x as in R1 so that the smaller quantity will contribute
to the error integral; this is exactly what the Bayes decision rule achieves.

ω2ω1

x
x* R2R1

p(x|ωi)P(ωi)

reducible
error

∫p(x|ω1)P(ω1)dx

R2

∫p(x|ω2)P(ω2)dx

R1

xB

Figure 2.17: Components of the probability of error for equal priors and (non-optimal)
decision point x∗. The pink area corresponds to the probability of errors for deciding
ω1 when the state of nature is in fact ω2; the gray area represents the converse, as
given in Eq. 68. If the decision boundary is instead at the point of equal posterior
probabilities, xB , then this reducible error is eliminated and the total shaded area is
the minimum possible — this is the Bayes decision and gives the Bayes error rate.

In the multicategory case, there are more ways to be wrong than to be right, and
it is simpler to compute the probability of being correct. Clearly

P (correct) =
c∑
i=1

P (x ∈ Ri, ωi)
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=
c∑
i=1

P (x ∈ Ri|ωi)P (ωi)

=
c∑
i=1

∫
Ri

p(x|ωi)P (ωi) dx. (69)

The general result of Eq. 69 depends neither on how the feature space is partitioned
into decision regions nor on the form of the underlying distributions. The Bayes
classifier maximizes this probability by choosing the regions so that the integrand is
maximal for all x; no other partitioning can yield a smaller probability of error.

2.8 Error Bounds for Normal Densities

The Bayes decision rule guarantees the lowest average error rate, and we have seen
how to calculate the decision boundaries for normal densities. However, these results
do not tell us what the probability of error actually is. The full calculation of the error
for the Gaussian case would be quite difficult, especially in high dimensions, because
of the discontinuous nature of the decision regions in the integral in Eq. 69. However,
in the two-category case the general error integral of Eq. 5 can be approximated
analytically to give us an upper bound on the error.

2.8.1 Chernoff Bound

To derive a bound for the error, we need the following inequality:

min[a, b] ≤ aβb1−β for a, b ≥ 0 and 0 ≤ β ≤ 1. (70)

To understand this inequality we can, without loss of generality, assume a ≥ b. Thus
we need only show that b ≤ aβb1−β = (ab )βb. But this inequality is manifestly valid,
since (ab )β ≥ 1. Using Eqs. 7 & 1, we apply this inequality to Eq. 5 and get the bound:

P (error) ≤ P β(ω1)P 1−β(ω2)
∫
pβ(x|ω1)p1−β(x|ω2) dx for 0 ≤ β ≤ 1. (71)

Note especially that this integral is over all feature space — we do not need to impose
integration limits corresponding to decision boundaries.

If the conditional probabilities are normal, the integral in Eq. 71 can be evaluated
analytically (Problem 35), yielding:∫

pβ(x|ω1)p1−β(x|ω2) dx = e−k(β) (72)

where

k(β) =
β(1− β)

2
(µ2 − µ1)t[βΣ1 + (1− β)Σ2]−1(µ2 − µ1) +

1
2

ln
|βΣ1 + (1− β)Σ2|
|Σ1|β |Σ2|1−β

. (73)

The graph in Fig. 2.18 shows a typical example of how e−k(β) varies with β. The
Chernoff bound, on P (error) is found by analytically or numerically finding the value
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of β that minimizes e−k(β), and substituting the results in Eq. 71. The key benefit
here is that this optimization is in the one-dimensional β space, despite the fact that
the distributions themselves might be in a space of arbitrarily high dimension.

0 0.25 0.75 1
0

0.2

0.4

0.6

0.8

1

Chernoff bound

Bhattacharyya bound

e-k(β)

β
0.5

β∗

Figure 2.18: The Chernoff error bound is never looser than the Bhattacharyya bound.
For this example, the Chernoff bound happens to be at β∗ = 0.66, and is slightly
tighter than the Bhattacharyya bound (β = 0.5).

2.8.2 Bhattacharyya Bound

The general dependence of the Chernoff bound upon β shown in Fig. 2.18 is typical
of a wide range of problems — the bound is loose for extreme values (i.e., β → 1 and
β → 0), and tighter for intermediate ones. While the precise value of the optimal
β depends upon the parameters of the distributions and the prior probabilities, a
computationally simpler, but slightly less tight bound can be derived by merely asing
the results for β = 1/2. This result is the so-called Bhattacharyya bound on the error,
where Eq. 71 then has the form

P (error) ≤
√
P (ω1)P (ω2)

∫ √
p(x|ω1)p(x|ω2) dx

=
√
P (ω1)P (ω2)e−k(1/2), (74)

where by Eq. 73 we have for the Gaussian case:

k(1/2) = 1/8(µ2 − µ1)t
[Σ1 + Σ2

2

]−1

(µ2 − µ1) +

1
2

ln

∣∣∣Σ1+Σ2
2

∣∣∣√
|Σ1||Σ2|

. (75)

The Chernoff and Bhatacharyya bounds may still be used even if the underlying
distributions are not Gaussian. However, for distributions that deviate markedly from
a Gaussian, the bounds will not be informative (Problem 32).



2.8. *ERROR BOUNDS FOR NORMAL DENSITIES 33

Example 2: Error bounds for Gaussian distributions.

It is a straightforward matter to calculate the Bhattacharyya bound for the two-
dimensional data sets of Example 1. Substituting the means and covariances of Exam-
ple 1 into Eq. 75 we find k(1/2) = 4.11 and thus by Eqs. 74 & 75 the Bhattacharyya
bound on the error is P (error) ≤ 0.016382.

A tighter bound on the error can be approximated by searching numerically for the
Chernoff bound of Eq. 73, which for this problem gives 0.016380. One can get the best
estimate by numerically integrating the error rate directly Eq. 5, which gives 0.0021,
and thus the bounds here are not particularly tight. Such numerical integration is
often impractical for Gaussians in higher than two or three dimensions.

2.8.3 Signal Detection Theory and Operating Characteristics

Another measure of distance between two Gaussian distributions has found great
use in experimental psychology, radar detection and other fields. Suppose we are
interested in detecting a single weak pulse, such as a dim flash of light or a weak
radar reflection. Our model is, then, that at some point in the detector there is an
internal signal (such as a voltage) x, whose value has mean µ2 when the external signal
(pulse) is present, and mean µ1 when it is not present. Because of random noise —
within and outside the detector itself — the actual value is a random variable. We
assume the distributions are normal with different means but the same variance, i.e.,
p(x|ωi) ∼ N(µi, σ2), as shown in Fig. 2.19.

σσ

µ1 x* µ2

x

p(x|ωi) ω2ω1

Figure 2.19: During any instant when no external pulse is present, the probability
density for an internal signal is normal, i.e., p(x|ω1) ∼ N(µ1, σ

2); when the external
signal is present, the density is p(x|ω2) ∼ N(µ2, σ

2). Any decision threshold x∗ will
determine the probability of a hit (the red area under the ω2 curve, above x∗) and of
a false alarm (the black area under the ω1 curve, above x∗).

The detector (classifier) employs a threshold value x∗ for determining whether the
external pulse is present, but suppose we, as experimenters, do not have access to this
value (nor to the means and standard deviations of the distributions). We seek to
find some measure of the ease of discriminating whether the pulse is present or not, in
a form independent of the choice of x∗. Such a measure is the discriminability, which discrimin-

abilitydescribes the inherent and unchangeable properties due to noise and the strength of
the external signal, but not on the decision strategy (i.e., the actual choice of x∗).
This discriminability is defined as



34 CHAPTER 2. BAYESIAN DECISION THEORY

d′ =
|µ2 − µ1|

σ
. (76)

A high d′ is of course desirable.
While we do not know µ1, µ2, σ nor x∗, we assume here that we know the state

of nature and the decision of the system. Such information allows us to find d′. To
this end, we consider the following four probabilities:

• P (x > x∗|x ∈ ω2): a hit — the probability that the internal signal is above x∗

given that the external signal is present

• P (x > x∗|x ∈ ω1): a false alarm — the probability that the internal signal is
above x∗ despite there being no external signal is present

• P (x < x∗|x ∈ ω2): a miss — the probability that the internal signal is below x∗

given that the external signal is present

• P (x < x∗|x ∈ ω1): a correct rejection — the probability that the internal signal
is below x∗ given that the external signal is not present.

If we have a large number of trials (and we can assume x∗ is fixed, albeit at an
unknown value), we can determine these probabilities experimentally, in particular
the hit and false alarm rates. We plot a point representing these rates on a two-
dimensional graph. If the densities are fixed but the threshold x∗ is changed, then our
hit and false alarm rates will also change. Thus we see that for a given discriminability
d′, our point will move along a smooth curve — a receiver operating characteristic orreceiver

operating
character-
istic

ROC curve (Fig. 2.20).

P(x < x*|x ∈ ω2)

P(
x 

>
 x

*|
x 

∈
 ω

2)

d'=0

d'=1

d'=2

d'=3

1

1

false alarm

hit

Figure 2.20: In a receiver operating characteristic (ROC) curve, the abscissa is the
probability of false alarm, P (x > x∗|x ∈ ω1), and the ordinate the probability of hit,
P (x > x∗|x ∈ ω2). From the measured hit and false alarm rates (here corresponding
to x∗ in Fig. 2.19, and shown as the red dot), we can deduce that d′ = 3.

The great benefit of this signal detection framework is that we can distinguish
operationally between discriminability and decision bias — while the former is an
inherent property of the detector system, the latter is due to the receiver’s implied
but changeable loss matrix. Through any pair of hit and false alarm rates passes
one and only one ROC curve; thus, so long as neither rate is exactly 0 or 1, we
can determine the discriminability from these rates (Problem 38). Moreover, if the
Gaussian assumption holds, a determination of the discriminability (from an arbitrary
x∗) allows us to calculate the Bayes error rate — the most important property of any
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classifier. If the actual error rate differs from the Bayes rate inferred in this way, we
should alter the threshold x∗ accordingly.

It is a simple matter to generalize the above discussion and apply it to two cate-
gories having arbitrary multidimensional distributions, Gaussian or not. Suppose we
have two distributions p(x|ω1) and p(x|ω2) which overlap, and thus have non-zero
Bayes classification error. Just as we saw above, any pattern actually from ω2 could
be properly classified as ω2 (a “hit”) or misclassified as ω1 (a “false alarm”). Unlike
the one-dimensional case above, however, there may be many decision boundaries
that give a particular hit rate, each with a different false alarm rate. Clearly here we
cannot determine a fundamental measure of discriminability without knowing more
about the underlying decision rule than just the hit and false alarm rates.

In a rarely attainable ideal, we can imagine that our measured hit and false alarm
rates are optimal, for example that of all the decision rules giving the measured hit
rate, the rule that is actually used is the one having the minimum false alarm rate.
If we constructed a multidimensional classifier — regardless of the distributions used
— we might try to characterize the problem in this way, though it would probably
require great computational resources to search for such optimal hit and false alarm
rates.

In practice, instead we eschew optimality, and simply vary a single parameter
controlling the decision rule and plot the resulting hit and false alarm rates — a
curve called merely an operating characteristic. Such a control parameter might be operating

character-
istic

the bias or nonlinearity in a discriminant function. It is traditional to choose a
control parameter that can yield, at extreme values, either a vanishing false alarm
or a vanishing hit rate, just as can be achieved with a very large or a very small x∗

in an ROC curve. We should note that since the distributions can be arbitrary, the
operating characteristic need not be symmetric (Fig. 2.21); in rare cases it need not
even be concave down at all points.

x

p(x|ωi) ω1

ω2

1

1

p(x < x* | x ω2)

p(
x 

<
 x

* 
| x

 
ω

1)

hit

false alarm

Figure 2.21: In a general operating characteristic curve, the abscissa is the probability
of false alarm, P (x ∈ R2|x ∈ ω1), and the ordinate the probability of hit, P (x ∈
R2|x ∈ ω2). As illustrated here, operating characteristic curves are generally not
symmetric, as shown at the right.

Classifier operating curves are of value for problems where the loss matrix λij
might be changed. If the operating characteristic has been determined as a function
of the control parameter ahead of time, it is a simple matter, when faced with a new
loss function, to deduce the control parameter setting that will minimize the expected
risk (Problem 38).
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2.9 Bayes Decision Theory — Discrete Features

Until now we have assumed that the feature vector x could be any point in a d-
dimensional Euclidean space, Rd. However, in many practical applications the com-
ponents of x are binary-, ternary-, or higher integer valued, so that x can assume only
one of m discrete values v1, ...,vm. In such cases, the probability density function
p(x|ωj) becomes singular; integrals of the form∫

p(x|ωj) dx (77)

must then be replaced by corresponding sums, such as∑
x

P (x|ωj), (78)

where we understand that the summation is over all values of x in the discrete
distribution.∗ Bayes’ formula then involves probabilities, rather than probability den-
sities:

P (ωj |x) =
P (x|ωj)P (ωj)

P (x)
, (79)

where

P (x) =
c∑
j=1

P (x|ωj)P (ωj). (80)

The definition of the conditional risk R(α|x) is unchanged, and the fundamental
Bayes decision rule remains the same: To minimize the overall risk, select the action
αi for which R(αi|x) is minimum, or stated formally,

α∗ = arg max
i
R(αi|x). (81)

The basic rule to minimize the error-rate by maximizing the posterior probability is
also unchanged as are the discriminant functions of Eqs. 25 – 27, given the obvious
replacement of densities p(·) by probabilities P (·).

2.9.1 Independent Binary Features

As an example of a classification involving discrete features, consider the two-category
problem in which the components of the feature vector are binary-valued and condi-
tionally independent. To be more specific we let x = (x1, ..., xd)t, where the compo-
nents xi are either 0 or 1, with

pi = Prob (xi = 1|ω1) (82)

and

qi = Prob (xi = 1|ω2). (83)

∗ Technically speaking, Eq. 78 should be written as
∑

k
P (vk|ωj) where P (vk|ωj) is the conditional

probability that x = vk given that the state of nature is ωj .
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This is a model of a classification problem in which each feature gives us a yes/no
answer about the pattern. If pi > qi, we expect the ith feature to give a “yes” answer
more frequently when the state of nature is ω1 than when when it is ω2. (As an
example, consider two factories each making the same automobile, each of whose d
components could be functional or defective. If it was known how the factories differed
in their reliabilities for making each component, then this model could be used to judge
which factory manufactured a given automobile based on the knowledge of which
features are functional and which defective.) By assuming conditional independence
we can write P (x|ωi) as the product of the probabilities for the components of x.
Given this assumption, a particularly convenient way of writing the class-conditional
probabilities is as follows:

P (x|ω1) =
d∏
i=1

pxii (1− pi)1−xi (84)

and

P (x|ω2) =
d∏
i=1

qxii (1− qi)1−xi . (85)

Then the likelihood ratio is given by

P (x|ω1)
P (x|ω2)

=
d∏
i=1

(pi
qi

)xi(1− pi
1− qi

)1−xi
(86)

and consequently Eq. 30 yields the discriminant function

g(x) =
d∑
i=1

[
xi ln

pi
qi

+ (1− xi) ln
1− pi
1− qi

]
+ ln

P (ω1)
P (ω2)

. (87)

We note especially that this discriminant function is linear in the xi and thus we can
write

g(x) =
d∑
i=1

wixi + w0, (88)

where

wi = ln
pi(1− qi)
qi(1− pi)

i = 1, ..., d (89)

and

w0 =
d∑
i=1

ln
1− pi
1− qi

+ ln
P (ω1)
P (ω2)

. (90)

Let us examine these results to see what insight they can give. Recall first that
we decide ω1 if g(x) > 0 and ω2 if g(x) ≤ 0. We have seen that g(x) is a weighted
combination of the components of x. The magnitude of the weight wi indicates the
relevance of a “yes” answer for xi in determining the classification. If pi = qi, xi gives
us no information about the state of nature, and wi = 0, just as we might expect.
If pi > qi, then 1 − pi < 1 − qi and wi is positive. Thus in this case a “yes” answer
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for xi contributes wi votes for ω1. Furthermore, for any fixed qi < 1, wi gets larger
as pi gets larger. On the other hand, if pi < qi, wi is negative and a “yes” answer
contributes |wi| votes for ω2.

The condition of feature independence leads to a very simple (linear) classifier;
of course if the features were not independent, a more complicated classifier would
be needed. We shall come across this again for systems with continuous features in
Chap. ??, but note here that the more independent we can make the features, the
simpler the classifier can be.

The prior probabilities P (ωi) appear in the discriminant only through the thresh-
old weight w0. Increasing P (ω1) increases w0 and biases the decision in favor of ω1,
whereas decreasing P (ω1) has the opposite effect. Geometrically, the possible values
for x appear as the vertices of a d-dimensional hypercube; the decision surface defined
by g(x) = 0 is a hyperplane that separates ω1 vertices from ω2 vertices.

Example 3: Bayesian decisions for three-dimensional binary features

Suppose two categories consist of independent binary features in three dimensions
with known feature probabilities. Let us construct the Bayesian decision boundary if
P (ω1) = P (ω2) = 0.5 and the individual components obey:

{
pi = 0.8
qi = 0.5 i = 1, 2, 3.

By Eqs. 89 & 90 we have that the weights are

wi = ln
.8(1− .5)
.5(1− .8)

= 1.3863

and the bias value is

w0 =
3∑
i=1

ln
1− .8
1− .5 + ln

.5

.5
= 1.2.
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The decision boundary for the Example involving three-dimensional binary features.
On the left we show the case pi = .8 and qi = .5. On the right we use the same values
except p3 = q3, which leads to w3 = 0 and a decision surface parallel to the x3 axis.
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The surface g(x) = 0 from Eq. 88 is shown on the left of the figure. Indeed, as we
might have expected, the boundary places points with two or more “yes” answers into
category ω1, since that category has a higher probability of having any feature have
value 1.

Suppose instead that while the prior probabilities remained the same, our individ-
ual components obeyed:

{
p1 = p2 = 0.8, p3 = 0.5
q1 = q2 = q3 = 0.5

In this case feature x3 gives us no predictive information about the categories, and
hence the decision boundary is parallel to the x3 axis. Note that in this discrete case
there is a large range in positions of the decision boundary that leaves the categoriza-
tion unchanged, as is particularly clear in the figure on the right.

2.10 Missing and Noisy Features

If we know the full probability structure of a problem, we can construct the (optimal)
Bayes decision rule. Suppose we develop a Bayes classifier using uncorrupted data,
but our input (test) data are then corrupted in particular known ways. How can we
classify such corrupted inputs to obtain a minimum error now?

There are two analytically solvable cases of particular interest: when some of the
features are missing, and when they are corrupted by a noise source with known
properties. In each case our basic approach is to recover as much information about
the underlying distribution as possible and use the Bayes decision rule.

2.10.1 Missing Features

Suppose we have a Bayesian (or other) recognizer for a problem using two features,
but that for a particular pattern to be classified, one of the features is missing.∗ For
example, we can easily imagine that the lightness can be measured from a portion of
a fish, but the width cannot because of occlusion by another fish.

We can illustrate with four categories a somewhat more general case (Fig. 2.22).
Suppose for a particular test pattern the feature x1 is missing, and the measured value
of x2 is x̂2. Clearly if we assume the missing value is the mean of all the x1 values,
i.e., x̄1, we will classify the pattern as ω3. However, if the priors are equal, ω2 would
be a better decision, since the figure implies that p(x̂2|ω2) is the largest of the four
likelihoods.

To clarify our derivation we let x = [xg,xb], where xg represents the known or
“good” features and xb represents the “bad” ones, i.e., either unknown or missing. We
seek the Bayes rule given the good features, and for that the posterior probabilities
are needed. In terms of the good features the posteriors are

P (ωi|xg) =
p(ωi,xg)
p(xg)

=
∫
p(ωi,xg,xb) dxb

p(xg)
∗ In practice, just determining that the feature is in fact missing rather than having a value of zero

(or the mean value) can be difficult in itself.
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Figure 2.22: Four categories have equal priors and the class-conditional distributions
shown. If a test point is presented in which one feature is missing (here, x1) and the
other is measured to have value x̂2 (red dashed line), we want our classifier to classify
the pattern as category ω2, because p(x̂2|ω2) is the largest of the four likelihoods.

=
∫
P (ωi|xg,xb)p(xg,xb) dxb

p(xg)

=
∫
gi(x)p(x) dxb∫
p(x) dxb

, (91)

where gi(x) = gi(xg,xb) = P (ωi|xg,xb) is one form of our discriminant function.
We refer to

∫
p(ωi,xg,xb) dxb, as a marginal distribution; we say the full jointmarginal

distribution is marginalized over the variable xb. In short, Eq. 91 shows that we must
integrate (marginalize) the posterior probability over the bad features. Finally we
use the Bayes decision rule on the resulting posterior probabilities, i.e., choose ωi if
P (ωi|xg) > P (ωj |xg) for all i and j. We shall consider the Expectation-Maximization
(EM) algorithm in Chap. ??, which addresses a related problem involving missing
features.

2.10.2 Noisy Features

It is a simple matter to generalize the results of Eq. 91 to the case where a particular
feature has been corrupted by statistically independent noise.∗ For instance, in our
fish classification example, we might have a reliable measurement of the length, while
variability of the light source might degrade the measurement of the lightness. We
assume we have uncorrupted (good) features xg, as before, and a noise model, ex-
pressed as p(xb|xt). Here we let xt denote the true value of the observed xb features,
i.e., without the noise present; that is, the xb are observed instead of the true xt. We
assume that if xt were known, xb would be independent of ωi and xg. From such an
assumption we get:

P (ωi|xg,xb) =
∫
p(ωi,xg,xb,xt) dxt

p(xg,xb)
. (92)

∗ Of course, to tell the classifier that a feature value is missing, the feature extractor must be designed
to provide more than just a numerical value for each feature.



2.11. *COMPOUND BAYES DECISION THEORY AND CONTEXT 41

Now p(ωi,xg,xb,xt) = P (ωi|xg,xb,xt)p(xg,xb,xt), but by our independence assump-
tion, if we know xt, then xb does not provide any additional information about ωi.
Thus we have P (ωi|xg,xb,xt) = P (ωi|xg,xt). Similarly, we have p(xg,xb,xt) =
p(xb|xg,xt)p(xg,xt), and p(xb|xg,xt) = p(xb|xt). We put these together and thereby
obtain

P (ωi|xg,xb) =
∫
P (ωi|xg,xt)p(xg,xt)p(xb|xt) dxt∫

p(xg,xt)p(xb|xt) dxt

=
∫
gi(x)p(x)p(xb|xt) dxt∫
p(x)p(xb|xt) dxt

, (93)

which we use as discriminant functions for classification in the manner dictated by
Bayes.

Equation 93 differs from Eq. 91 solely by the fact that the integral is weighted
by the noise model. In the extreme case where p(xb|xt) is uniform over the entire
space (and hence provides no predictive information for categorization), the equation
reduces to the case of missing features — a satisfying result.

2.11 Compound Bayesian Decision Theory and Con-
text

Let us reconsider our introductory example of designing a classifier to sort two types
of fish. Our original assumption was that the sequence of types of fish was so unpre-
dictable that the state of nature looked like a random variable. Without abandoning
this attitude, let us consider the possibility that the consecutive states of nature might
not be statistically independent. We should be able to exploit such statistical depen-
dence to gain improved performance. This is one example of the use of context to aid
decision making.

The way in which we exploit such context information is somewhat different when
we can wait for n fish to emerge and then make all n decisions jointly than when
we must decide as each fish emerges. The first problem is a compound decision prob-
lem, and the second is a sequential compound decision problem. The former case is
conceptually simpler, and is the one we shall examine here.

To state the general problem, let ω = (ω(1), ..., ω(n))t be a vector denoting the n
states of nature, with ω(i) taking on one of the c values ω1, ..., ωc. Let P (ω) be the
prior probability for the n states of nature. Let X = (x1, ...,xn) be a matrix giving
the n observed feature vectors, with xi being the feature vector obtained when the
state of nature was ω(i). Finally, let p(X|ω) be the conditional probability density
function for X given the true set of states of nature ω. Using this notation we see
that the posterior probability of ω is given by

P (ω|X) =
p(X|ω)P (ω)

p(X)
=

p(X|ω)P (ω)∑
ω p(X|ω)P (ω)

. (94)

In general, one can define a loss matrix for the compound decision problem and
seek a decision rule that minimizes the compound risk. The development of this
theory parallels our discussion for the simple decision problem, and concludes that
the optimal procedure is to minimize the compound conditional risk. In particular, if
there is no loss for being correct, and if all errors are equally costly, then the procedure
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reduces to computing P (ω|X) for all ω and selecting the ω for which this posterior
probability is maximum.

While this provides the theoretical solution, in practice the computation of P (ω|X)
can easily prove to be an enormous task. If each component ω(i) can have one of
c values, there are cn possible values of ω to consider. Some simplification can be
obtained if the distribution of the feature vector xi depends only on the corresponding
state of nature ω(i), not on the values of the other feature vectors or the other states of
nature. In this case the joint density p(X|ω) is merely the product of the component
densities p(xi|ω(i)):

p(X|ω) =
n∏
i=1

p(xi|ω(i)). (95)

While this simplifies the problem of computing p(X|ω), there is still the problem
of computing the prior probabilities P (ω). This joint probability is central to the
compound Bayes decision problem, since it reflects the interdependence of the states
of nature. Thus it is unacceptable to simplify the problem of calculating P (ω) by
assuming that the states of nature are independent. In addition, practical applications
usually require some method of avoiding the computation of P (ω|X) for all cn possible
values of ω. We shall find some solutions to this problem in Chap. ??.

Summary

The basic ideas underlying Bayes decision theory are very simple. To minimize the
overall risk, one should always choose the action that minimizes the conditional risk
R(α|x). In particular, to minimize the probability of error in a classification problem,
one should always choose the state of nature that maximizes the posterior probability
P (ωj |x). Bayes’ formula allows us to calculate such probabilities from the prior prob-
abilities P (ωj) and the conditional densities p(x|ωj). If there are different penalties
for misclassifying patterns from ωi as if from ωj , the posteriors must be first weighted
according to such penalties before taking action.

If the underlying distributions are multivariate Gaussian, the decision boundaries
will be hyperquadrics, whose form and position depends upon the prior probabilities,
means and covariances of the distributions in question. The true expected error
can be bounded above by the Chernoff and computationally simpler Bhattacharyya
bounds. If an input (test) pattern has missing or corrupted features, we should form
the marginal distributions by integrating over such features, and then using Bayes
decision procedure on the resulting distributions. Receiver operating characteristic
curves describe the inherent and unchangeable properties of a classifier and can be
used, for example, to determine the Bayes rate.

For many pattern classification applications, the chief problem in applying these
results is that the conditional densities p(x|ωj) are not known. In some cases we may
know the form these densities assume, but may not know characterizing parameter
values. The classic case occurs when the densities are known to be, or can assumed
to be multivariate normal, but the values of the mean vectors and the covariance
matrices are not known. More commonly even less is known about the conditional
densities, and procedures that are less sensitive to specific assumptions about the
densities must be used. Most of the remainder of this book will be devoted to various
procedures that have been developed to attack such problems.
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Bibliographical and Historical Remarks

The power, coherence and elegance of Bayesian theory in pattern recognition make
it among the most beautiful formalisms in science. Its foundations go back to Bayes
himself, of course [3], but he stated his theorem (Eq. 1) for the case of uniform
priors. It was Laplace [25] who first stated it for the more general (but discrete) case.
There are several modern and clear descriptions of the ideas — in pattern recognition
and general decision theory — that can be recommended [7, 6, 26, 15, 13, 20, 27].
Since Bayesian theory rests on an axiomatic foundation, it is guaranteed to have
quantitative coherence; some other classification methods do not. Wald presents a
non-Bayesian perspective on these topics that can be highly recommended [36], and
the philosophical foundations of Bayesian and non-Bayesian methods are explored in
[16]. Neyman and Pearson provided some of the most important pioneering work
in hypothesis testing, and used the probability of error as the criterion [28]; Wald
extended this work by introducing the notions of loss and risk [35]. Certain conceptual
problems have always attended the use of loss functions and prior probabilities. In
fact, the Bayesian approach is avoided by many statisticians, partly because there are
problems for which a decision is made only once, and partly because there may be no
reasonable way to determine the prior probabilities. Neither of these difficulties seems
to present a serious drawback in typical pattern recognition applications: for nearly
all critical pattern recognition problems we will have training data; we will use our
recognizer more than once. For these reasons, the Bayesian approach will continue
to be of great use in pattern recognition. The single most important drawback of the
Bayesian approach is its assumption that the true probability distributions for the
problem can be represented by the classifier, for instance the true distributions are
Gaussian, and all that is unknown are parameters describing these Gaussians. This
is a strong assumption that is not always fulfilled and we shall later consider other
approaches that do not have this requirement.

Chow[10] was among the earliest to use Bayesian decision theory for pattern recog-
nition, and he later established fundamental relations between error and reject rate
[11]. Error rates for Gaussians have been explored by [18], and the Chernoff and
Bhattacharyya bounds were first presented in [9, 8], respectively and are explored in
a number of statistics texts, such as [17]. Computational approximations for bound-
ing integrals for Bayesian probability of error (the source for one of the homework
problems) appears in [2]. Neyman and Pearson also worked on classification given
constraints [28], and the analysis of minimax estimators for multivariate normals is
presented in [5, 4, 14]. Signal detection theory and receiver operating characteristics
are fully explored in [21]; a brief overview, targetting experimental psychologists, is
[34]. Our discussion of the missing feature problem follows closely the work of [1] while
the definitive book on missing features, including a great deal beyond our discussion
here, can be found in [30].

Entropy was the central concept in the foundation of information theory [31] and
the relation of Gaussians to entropy is explored in [33]. Readers requiring a review of
information theory [12], linear algebra [24, 23], calculus and continuous mathematics,
[38, 32] probability [29] calculus of variations and Lagrange multipliers [19] should
consult these texts and those listed in our Appendix.
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Problems

⊕
Section 2.1

1. In the two-category case, under the Bayes’ decision rule the conditional error
is given by Eq. 7. Even if the posterior densities are continuous, this form of the
conditional error virtually always leads to a discontinuous integrand when calculating
the full error by Eq. 5.

(a) Show that for arbitrary densities, we can replace Eq. 7 by P (error|x) = 2P (ω1|x)P (ω2|x)
in the integral and get an upper bound on the full error.

(b) Show that if we use P (error|x) = αP (ω1|x)P (ω2|x) for α < 2, then we are not
guaranteed that the integral gives an upper bound on the error.

(c) Analogously, show that we can use instead P (error|x) = P (ω1|x)P (ω2|x) and
get a lower bound on the full error.

(d) Show that if we use P (error|x) = βP (ω1|x)P (ω2|x) for β > 1, then we are not
guaranteed that the integral gives an lower bound on the error.⊕

Section 2.2

2. Consider minimax criterion for the zero-one loss function, i.e., λ11 = λ22 = 0 and
λ12 = λ21 = 1.

(a) Prove that in this case the decision regions will satisfy∫
R2

p(x|ω1)dx =
∫
R1

p(x|ω2)dx

(b) Is this solution always unique? If not, construct a simple counterexample.

3. Consider the minimax criterion for a two-category classification problem.

(a) Fill in the steps of the derivation of Eq. 22.

(b) Explain why the overall Bayes risk must be concave down as a function of the
prior P (ω1), as shown in Fig. 2.4.

(c) Assume we have one-dimensional Gaussian distributions p(x|ωi) ∼ N(µi, σ2
i ),

i = 1, 2 but completely unknown prior probabilities. Use the minimax criterion
to find the optimal decision point x∗ in terms of µi and σi under a zero-one risk.

(d) For the decision point x∗ you found in (??), what is the overall minimax risk?
Express this risk in terms of an error function erf(·).

(e) Assume p(x|ω1) ∼ N(0, 1) and p(x|ω2) ∼ N(1/2, 1/4), under a zero-one loss.
Find x∗ and the overall minimax loss.

(f) Assume p(x|ω1) ∼ N(5, 1) and p(x|ω2) ∼ N(6, 1). Without performing any
explicit calculations, determine x∗ for the minimax criterion. Explain your
reasoning.
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4. Generalize the minimax decision rule in order to classify patterns from three
categories having triangle densities as follows:

p(x|ωi) = T (µi, δi) ≡
{

(δi − |x− µi|)/δ2
i for |x− µi| < δi

0 otherwise,

where δi > 0 is the half-width of the distribution (i = 1, 2, 3). Assume for convenience
that µ1 < µ2 < µ3, and make some minor simplifying assumptions about the δi’s as
needed, to answer the following:

(a) In terms of the priors P (ωi), means and half-widths, find the optimal decision
points x∗1 and x∗2 under a zero-one (categorization) loss.

(b) Generalize the minimax decision rule to two decision points, x∗1 and x∗2 for such
triangular distributions.

(c) Let {µi, δi} = {0, 1}, {.5, .5}, and {1, 1}. Find the minimax decision rule (i.e.,
x∗1 and x∗2) for this case.

(d) What is the minimax risk?

5. Consider the Neyman-Pearson criterion for two univariate normal distributions:
p(x|ωi) ∼ N(µi, σ2

i ) and P (ωi) = 1/2 for i = 1, 2. Assume a zero-one error loss, and
for convenience µ2 > µ1.

(a) Suppose the maximum acceptable error rate for classifying a pattern that is
actually in ω1 as if it were in ω2 is E1. Determine the decision boundary in
terms of the variables given.

(b) For this boundary, what is the error rate for classifying ω2 as ω1?

(c) What is the overall error rate under zero-one loss?

(d) Apply your results to the specific case p(x|ω1) ∼ N(−1, 1) and p(x|ω2) ∼ N(1, 1)
and E1 = 0.05.

(e) Compare your result to the Bayes error rate (i.e., without the Neyman-Pearson
conditions).

6. Consider Neyman-Pearson criteria for two Cauchy distributions in one dimension

p(x|ωi) =
1
πb
· 1

1 +
(
x−ai
b

)2 , i = 1, 2.

Assume a zero-one error loss, and for simplicity a2 > a1, the same “width” b, and
equal priors.

(a) Suppose the maximum acceptable error rate for classifying a pattern that is
actually in ω1 as if it were in ω2 is E1. Determine the decision boundary in
terms of the variables given.

(b) For this boundary, what is the error rate for classifying ω2 as ω1?

(c) What is the overall error rate under zero-one loss?

(d) Apply your results to the specific case b = 1 and a1 = −1, a2 = 1 and E1 = 0.1.
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(e) Compare your result to the Bayes error rate (i.e., without the Neyman-Pearson
conditions).⊕

Section 2.4

7. Let the conditional densities for a two-category one-dimensional problem be given
by the Cauchy distribution described in Problem 6.

(a) By explicit integration, check that the distributions are indeed normalized.

(b) Assuming P (ω1) = P (ω2), show that P (ω1|x) = P (ω2|x) if x = (a1 +a2)/2, i.e.,
the minimum error decision boundary is a point midway between the peaks of
the two distributions, regardless of b.

(c) Plot P (ω1|x) for the case a1 = 3, a2 = 5 and b = 1.

(d) How do P (ω1|x) and P (ω2|x) behave as x→ −∞? x→ +∞? Explain.

8. Use the conditional densities given in Problem 6, and assume equal prior proba-
bilities for the categories.

(a) Show that the minimum probability of error is given by

P (error) =
1
2
− 1
π

tan−1
∣∣∣a2 − a1

2b

∣∣∣.
(b) Plot this as a function of |a2 − a1|/b.

(c) What is the maximum value of P (error) and under which conditions can this
occur? Explain.

9. Consider the following decision rule for a two-category one-dimensional problem:
Decide ω1 if x > θ; otherwise decide ω2.

(a) Show that the probability of error for this rule is given by

P (error) = P (ω1)

θ∫
−∞

p(x|ω1) dx+ P (ω2)

∞∫
θ

p(x|ω2) dx.

(b) By differentiating, show that a necessary condition to minimize P (error) is that
θ satisfy

p(θ|ω1)P (ω1) = p(θ|ω2)P (ω2).

(c) Does this equation define θ uniquely?

(d) Give an example where a value of θ satisfying the equation actually maximizes
the probability of error.

10. Consider

(a) True or false: In a two-category one-dimensional problem with continuous fea-
ture x, a monotonic transformation of x leave the Bayes error rate unchanged.
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(b) True of false: In a two-category two-dimensional problem with continuous fea-
ture x, monotonic transformations of both x1 and x2 leave the Bayes error rate
unchanged.

11. Suppose that we replace the deterministic decision function α(x) with a ran-
domized rule, viz., the probability P (αi|x) of taking action αi upon observing x.

(a) Show that the resulting risk is given by

R =
∫ [ a∑

i=1

R(αi|x)P (αi|x)
]
p(x) dx.

(b) In addition, show that R is minimized by choosing P (αi|x) = 1 for the action
αi associated with the minimum conditional risk R(αi|x), thereby showing that
no benefit can be gained from randomizing the best decision rule.

(c) Can we benefit from randomizing a suboptimal rule? Explain.

12. Let ωmax(x) be the state of nature for which P (ωmax|x) ≥ P (ωi|x) for all i,
i = 1, ..., c.

(a) Show that P (ωmax|x) ≥ 1/c.

(b) Show that for the minimum-error-rate decision rule the average probability of
error is given by

P (error) = 1−
∫
P (ωmax|x)p(x) dx.

(c) Use these two results to show that P (error) ≤ (c− 1)/c.

(d) Describe a situation for which P (error) = (c− 1)/c.

13. In many pattern classification problems one has the option either to assign the
pattern to one of c classes, or to reject it as being unrecognizable. If the cost for
rejects is not too high, rejection may be a desirable action. Let

λ(αi|ωj) =

 0 i = j i, j = 1, ..., c
λr i = c+ 1
λs otherwise,

where λr is the loss incurred for choosing the (c+ 1)th action, rejection, and λs is the
loss incurred for making a substitution error. Show that the minimum risk is obtained
if we decide ωi if P (ωi|x) ≥ P (ωj |x) for all j and if P (ωi|x) ≥ 1− λr/λs, and reject
otherwise. What happens if λr = 0? What happens if λr > λs?
14. Consider the classification problem with rejection option.

(a) Use the results of Problem 13 to show that the following discriminant functions
are optimal for such problems:

gi(x) =


p(x|ωi)P (ωi) i = 1, ..., c
λs−λr
λs

c∑
j=1

p(x|ωj)P (ωj) i = c+ 1.
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(b) Plot these discriminant functions and the decision regions for the two-category
one-dimensional case having

• p(x|ω1) ∼ N(1, 1),

• p(x|ω2) ∼ N(−1, 1),

• P (ω1) = P (ω2) = 1/2, and

• λr/λs = 1/4.

(c) Describe qualitatively what happens as λr/λs is increased from 0 to 1.

(d) Repeat for the case having

• p(x|ω1) ∼ N(1, 1),

• p(x|ω2) ∼ N(0, 1/4),

• P (ω1) = 1/3, P (ω2) = 2/3, and

• λr/λs = 1/2.⊕
Section 2.5

15. Confirm Eq. 45 for the volume of a d-dimensional hypersphere as follows:

(a) Verify that the equation is correct for a line (d = 1).

(b) Verify that the equation is correct for a disk (d = 2).

(c) Integrate the volume of a line over appropriate limits to obtain the volume of a
disk.

(d) Consider a general d-dimensional hypersphere. Integrate its volume to obtain
a formula (involving the ratio of gamma functions, Γ(·)) for the volume of a
(d+ 1)-dimensional hypersphere.

(e) Apply your formula to find the volume of a hypersphere in an odd-dimensional
space by integrating the volume of a hypersphere in the lower even-dimensional
space, and thereby confirm Eq. 45 for odd dimensions.

(f) Repeat the above but for finding the volume of a hypersphere in even dimensions.

16. Derive the formula for the volume of a d-dimensional hypersphere in Eq. 45 as
follows:

(a) State by inspection the formula for V1.

(b) Follow the general procedure outlined in Problem 15 and integrate twice to find
Vd+2 as a function of Vd.

(c) Assume that the functional form of Vd is the same for all odd dimensions (and
likewise for all even dimensions). Use your integration results to determine the
formula for Vd for d odd.

(d) Use your intermediate integration results to determine Vd for d even.

(e) Explain why we should expect the functional form of Vd to be different in even
and in odd dimensions.
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17. Derive the formula (Eq. 44) for the volume V of a hyperellipsoid of constant
Mahalanobis distance r (Eq. 43) for a Gaussian distribution having covariance Σ.
18. Consider two normal distributions in one dimension: N(µ1, σ

2
1) and N(µ2, σ

2
2).

Imagine that we choose two random samples x1 and x2, one from each of the normal
distributions and calculate their sum x3 = x1 + x2. Suppose we do this repeatedly.

(a) Consider the resulting distribution of the values of x3. Show from first principles
that this is also a normal distribution.

(b) What is the mean, µ3, of your new distribution?

(c) What is the variance, σ2
3?

(d) Repeat the above with two distributions in a multi-dimensional space, i.e.,
N(µ1,Σ1) and N(µ2,Σ2).

19. Starting from the definition of entropy (Eq. 36), derive the general equation for
the maximum-entropy distribution given constraints expressed in the general form

∫
bk(x)p(x) dx = ak, k = 1, 2, ..., q

as follows:

(a) Use Lagrange undetermined multipliers λ1, λ2, ..., λq and derive the synthetic
function:

Hs = −
∫
p(x)

[
ln p(x)−

q∑
k=0

λkbk(x)

]
dx−

q∑
k=0

λkak.

State why we know a0 = 1 and b0(x) = 1 for all x.

(b) Take the derivative of Hs with respect to p(x). Equate the integrand to zero,
and thereby prove that the minimum-entropy distribution obeys

p(x) = exp

[
q∑

k=0

λkbk(x)− 1

]
,

where the q + 1 parameters are determined by the constraint equation.

20. Use the final result from Problem 19 for the following.

(a) Suppose we know only that a distribution is non-zero in the range xl ≤ x ≤ xu.
Prove that the maximum entropy distribution is uniform in that range, i.e.,

p(x) ∼ U(xl, xu) =
{

1/|xu − xl| xl ≤ x ≤ xu
0 otherwise.
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(b) Suppose we know only that a distribution is non-zero for x ≥ 0 and that its
mean is µ. Prove that the maximum entropy distribution is

p(x) =
{

1
µe
−x/µ for x ≥ 0

0 otherwise.

(c) Now suppose we know solely that the distribution is normalized, has mean µ,
and standard deviation σ2, and thus from Problem 19 our maximum entropy
distribution must be of the form

p(x) = exp[λ0 − 1 + λ1x+ λ2x
2].

Write out the three constraints and solve for λ0, λ1, and λ2 and thereby prove
that the maximum entropy solution is a Gaussian, i.e.,

p(x) =
1√
2π

exp
[−(x− µ)2

2σ2

]
.

21. Three distributions — a Gaussian, a uniform distribution, and a triangle dis-
tribution (cf., Problem 4) — each have mean zero and standard deviation σ2. Use
Eq. 36 to calculate and compare their entropies.
22. Calculate the entropy of a multidimensional Gaussian p(x) ∼ N(µ,Σ).⊕

Section 2.6

23. Consider the three-dimensional normal distribution p(x|ω) ∼ N(µ,Σ) where
µ =

(
1
2
2

)
and Σ =

(
1 0 0
0 5 2
0 2 5

)
.

(a) Find the probability density at the point x0 = (.5, 0, 1)t.

(b) Construct the whitening transformation Aw. Show your Λ and Φ matrices.
Next, convert the distribution to one centered on the origin with covariance
matrix equal to the identity matrix, p(x|ω) ∼ N(0, I).

(c) Apply the same overall transformation to x0 to yield a transformed point xw.

(d) By explicit calculation, confirm that the Mahalanobis distance from x0 to the
mean µ in the original distribution is the same as for xw to 0 in the transformed
distribution.

(e) Does the probability density remain unchanged under a general linear transfor-
mation? In other words, is p(x0|N(µ,Σ)) = p(Ttx0|N(Ttµ,TtΣT)) for some
linear transform T? Explain.

(f) Prove that a general whitening transform Aw = ΦΛ−1/2 when applied to a
Gaussian distribution insures that the final distribution has covariance propor-
tional to the identity matrix I. Check whether normalization is preserved by the
transformation.
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24. Consider the multivariate normal density for which σij = 0 and σii = σ2
i , i.e.,

Σ = diag(σ2
1 , σ

2
2 , ..., σ

2
d).

(a) Show that the evidence is

p(x) =
1

d∏
i=1

√
2πσi

exp

[
−1

2

d∑
i=1

(
xi − µi
σi

)2
]
.

(b) Plot and describe the contours of constant density.

(c) Write an expression for the Mahalanobis distance from x to µ.

25. Fill in the steps in the derivation from Eq. 57 to Eqs. 58–63.
26. Let p(x|ωi) ∼ N(µi,Σ) for a two-category d-dimensional problem with the

same covariances but arbitrary means and prior probabilities. Consider the squared
Mahalanobis distance

r2
i = (x− µi)tΣ−1(x− µi).

(a) Show that the gradient of r2
i is given by

∇r2
i = 2Σ−1(x− µi).

(b) Show that at any position on a given line through µi the gradient ∇r2
i points

in the same direction. Must this direction be parallel to that line?

(c) Show that ∇r2
1 and ∇r2

2 point in opposite directions along the line from µ1 to
µ2.

(d) Show that the optimal separating hyperplane is tangent to the constant prob-
ability density hyperellipsoids at the point that the separating hyperplane cuts
the line from µ1 to µ2.

(e) True of False: For a two-category problem involving normal densities with ar-
bitrary means and covariances, and P (ω1) = P (ω2) = 1/2, the Bayes decision
boundary consists of the set of points of equal Mahalanobis distance from the
respective sample means. Explain.

27. Suppose we have two normal distributions with the same covariances but different
means: N(µ1,Σ) and N(µ2,Σ). In terms of their prior probabilities P (ω1) and
P (ω2), state the condition that the Bayes decision boundary not pass between the
two means.
28. Two random variables x and y are called “statistically independent” if p(x,y|ω) =
p(x|ω)p(y|ω).

(a) Prove that if xi − µi and xj − µj are statistically independent (for i 6= j) then
σij as defined in Eq. 42 is 0.

(b) Prove that the converse is true for the Gaussian case.

(c) Show by counterexample that this converse is not true in the general case.
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29. Consider the Bayes decision boundary for two-category classification in d dimen-
sions.

(a) Prove that for any arbitrary hyperquadratic in d dimensions, there exist normal
distributions p(x|ωi) ∼ N(µi,Σi) and priors P (ωi), i = 1, 2, that possess this
hyperquadratic as their Bayes decision boundary.

(b) Is the above also true if the priors are held fixed and non-zero, e.g., P (ω1) =
P (ω2) = 1/2?

⊕
Section 2.7

30. Let p(x|ωi) ∼ N(µi, σ2) for a two-category one-dimensional problem with
P (ω1) = P (ω2) = 1/2.

(a) Show that the minimum probability of error is given by

Pe =
1√
2π

∞∫
a

e−u
2/2 du,

where a = |µ2 − µ1|/(2σ).

(b) Use the inequality

Pe =
1√
2π

∞∫
a

e−t
2/2 dt ≤ 1√

2πa
e−a

2/2

to show that Pe goes to zero as |µ2 − µ1|/σ goes to infinity.

31. Let p(x|ωi) ∼ N(µi, σ2I) for a two-category d-dimensional problem with P (ω1) =
P (ω2) = 1/2.

(a) Show that the minimum probability of error is given by

Pe =
1√
2π

∞∫
a

e−u
2/2 du,

where a = ‖µ2 − µ1‖/(2σ).

(b) Let µ1 = 0 and µ = (µ1, ..., µd)t. Use the inequality from Problem 30 to show
that Pe approaches zero as the dimension d approaches infinity.

(c) Express the meaning of this result in words.

32. Show that if the densities in a two-category classification problem differ markedly
from Gaussian, the Chernoff and Bhattacharyya bounds are not likely to be informa-
tion by considering the following one-dimensional examples. Consider a number of
problems in which the mean and variance are the same (and thus the Chernoff bound
and the Bhattacharyya bound remain the same), but nevertheless have a wide range
in Bayes error. For definiteness, assume the distributions have means at µ1 = −µ and
µ2 = +µ, and σ2

1 = σ2
2 = µ2.
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(a) Use the equations in the text to calculate the Chernoff and the Bhattacharyya
bounds on the error.

(b) Suppose the distributions are both Gaussian. Calculate explicitly the Bayes
error. Express it in terms of an error function erf(·) and as a numerical value.

(c) Now consider a another case, in which half the density for ω1 is concentrated
at a point x = −2µ and half at x = 0; likewise (symmetrically) the density for
ω2 has half its mass at x = +2µ and half at x = 0. Show that the means and
variance remain as desired, but that now the Bayes error is 0.5.

(d) Now consider yet another case, in which half the density for ω1 is concentrated
near x = −2 and half at x = −ε, where ε is an infinitessimally small positive
distance; likewise (symmetrically) the density for ω2 has half its mass near
x = +2µ and half at +ε. Show that by making ε sufficiently small, the means
and variances can be made arbitrarily close to µ and µ2, respectively. Show,
too, that now the Bayes error is zero.

(e) Compare your errors in (b), (c) and (d) to your Chernoff and Bhattacharyya
bounds of (a) and explain in words why those bounds are unlikely to be of much
use if the distributions differ markedly from Gaussians.

33. Suppose we know exactly two arbitrary distributions p(x|ωi) and priors P (ωi)
in a d-dimensional feature space.

(a) Prove that the true error cannot decrease if we first project the distributions to
a lower dimensional space and then classify them.

(b) Despite this fact, suggest why in an actual pattern recognition application we
might not want to include an arbitrarily high number of feature dimensions.

⊕
Section 2.8

34. Show for non-pathological cases that if we include more feature dimensions
in a Bayesian classifier for multidimensional Gaussian distributions then the Bhat-
tacharyya bound decreases. Do this as follows: Let Pd(P (ω1),µ1,Σ1, P (ω2),µ2,Σ2),
or simply Pd, be the Bhattacharyya bound if we consider the distributions restricted
to d dimensions.

(a) Using general properties of a covariance matrix, prove that k(1/2) of Eq. 75
must increase as we increase from d to d + 1 dimensions, and hence the error
bound must decrease.

(b) Explain why this general result does or does not depend upon which dimension
is added.

(c) What is a “pathological” case in which the error bound does not decrease, i.e.,
for which Pd+1 = Pd?

(d) Is it ever possible that the true error could increase as we go to higher dimension?

(e) Prove that as d → ∞, Pd → 0 for non-pathological distributions. Describe
pathological distributions for which this infinite limit does not hold.
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(f) Given that the Bhattacharyya bound decreases for the inclusion of a particular
dimension, does this guarantee that the true error will decrease? Explain.

35. Derive Eqs. 72 & 73 from Eq. 71 by the following steps:

(a) Substitute the normal distributions into the integral and gather the terms de-
pendent upon x and those that are not dependent upon x.

(b) Factor the term independent of x from the integral.

(c) Integrate explicitly the term dependent upon x.

36. Consider a two-category classification problem in two dimensions with p(x|ω1) ∼
N(0, I), p(x|ω2) ∼ N

((
1
1

)
, I
)
, and P (ω1) = P (ω2) = 1/2.

(a) Calculate the Bayes decision boundary.

(b) Calculate the Bhattacharyya error bound.

(c) Repeat the above for the same prior probabilities, but p(x|ω1) ∼ N
(
0,
(

2 .5
.5 2

))
and p(x|ω2) ∼ N

((
1
1

)
,
(

5 4
4 5

))
.

37. Derive the Bhattacharyya error bound without the need for first examining the
Chernoff bound. Do this as follows:

(a) If a and b are nonnegative numbers, show directly that min[a,b] ≤
√
ab.

(b) Use this to show that the error rate for a two-category Bayes classifier must
satisfy

P (error) ≤
√
P (ω1)P (ω2) ρ ≤ ρ/2,

where ρ is the so-called Bhattacharyya coefficient

ρ =
∫ √

p(x|ω1) p(x|ω2) dx.

38. Use the signal detection theory, the notation and basic Gaussian assumptions
described in the text to address the following.

(a) Prove that P (x > x∗|x ∈ ω2) and P (x < x∗|x ∈ ω2), taken together, uniquely
determine the discriminability d′.

(b) Use error functions erf(·) to express d′ in terms of the hit and false alarm rates.
Estimate d′ if P (x > x∗|x ∈ ω2) = 0.8 and P (x < x∗|x ∈ ω2) = 0.3. Repeat for
P (x > x∗|x ∈ ω2) = 0.7 and P (x < x∗|x ∈ ω2) = 0.4.

(c) Given that the Gaussian assumption is valid, calculate the Bayes error for both
the cases in (b).

(d) Determine by a trivial one-line computation, which case has the higher d′:

case A: P (x > x∗|x ∈ ω2) = 0.8, P (x < x∗|x ∈ ω2) = 0.3 or

case B: P (x > x∗|x ∈ ω2) = 0.9, P (x < x∗|x ∈ ω2) = 0.7.
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Explain your logic.

39. Suppose in our signal detection framework we had two Gaussians, but with dif-
ferent variances (cf., Fig. 2.20), that is, p(x|ω1 ∼ N(µ1, σ

2
1) and p(x|ω2) ∼ N(µ2, σ

2
2)

for µ2 > µ1 and σ2
2 6= σ2

1 . In that case the resulting ROC curve would no longer be
symmetric.

(a) Suppose in this asymmetric case we modified the definition of the discriminabil-
ity to be d′a = |µ2−µ1|/

√
σ1σ2. Show by non-trivial counterexample or analysis

that one cannot determine d′a uniquely based on a single pair of hit and false
alarm rates.

(b) Assume we measure the hit and false alarm rates for two different, but unknown,
values of the threshold x∗. Derive a formula for d′a based on measurements.

(c) State and explain all pathological values for which your formula does not give
a meaningful value for d′a.

(d) Plot several ROC curves for the case p(x|ω1) ∼ N(0, 1) and p(x|ω2) ∼ N(1, 2).

40. Consider two one-dimensional triangle distributions having different means, but
the same width:

p(x|ωi) = T (µi, δ) =
{

(δ − |x− µi|)/δ2 for |x− µi| < δ
0 otherwise,

with µ2 > µ1. We define a new discriminability here as d′T = (µ2 − µ1)/δi.

(a) Write an analytic function, parameterized by d′T , for the operating characteristic
curves.

(b) Plot these novel operating characteristic curves for d′T = {.1, .2, ..., 1.0}. Inter-
pret your answer for the case d′T = 1.0.

(c) Suppose we measure P (x > x∗|x ∈ ω2) = .4 and P (x > x∗|x ∈ ω1) = .2. What
is d′T ? What is the Bayes error rate?

(d) Infer the decision rule. That is, express x∗ in terms of the variables given in the
problem.

(e) Suppose we measure P (x > x∗|x ∈ ω2) = .9 and (x > x∗|x ∈ ω1) = .3. What is
d′T ? What is the Bayes error rate?

(f) Infer the decision rule. That is, express x∗ in terms of the variables given in the
problem.

41. Equation 70 can be used to obtain an upper bound on the error. One can
also derive tighter analytic bounds in the two-category case — both upper and lower
bounds — analogous to Eq. 71 for general distributions. If we let p ≡ p(x|ω1), then
we seek tighter bounds on Min[p, 1− p] (which has discontinuous derivative).

(a) Prove that

bL(p) =
1
β

ln
[

1 + e−β

e−βp + e−β(1−p)

]
for any β > 0 is a lower bound on Min[p, 1− p].
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(b) Prove that one can choose β in (a) to give an arbitrarily tight lower bound.

(c) Repeat (a) and (b) for the upper bound given by

bU (p) = bL(p) + [1− 2gL(0.5)]bG(p)

where bG(p) is any upper bound that obeys

bG(p) ≥ Min[p, 1− p]
bG(p) = bG(1− p)
bG(0) = bG(1) = 0

bG(0.5) = 0.5.

(d) Confirm that bG(p) = 1/2 sin[πp] obeys the conditions in (c).

(e) Let bG(p) = 1/2 sin[πp], and plot your upper and lower bounds as a function of
p, for 0 ≤ p ≤ 1 and β = 1, 10, 50.

⊕
Section 2.9

42. Let the components of the vector x = (x1, ..., xd)t be binary valued (0 or 1) and
P (ωj) be the prior probability for the state of nature ωj and j = 1, ..., c. Now define

pij = Prob(xi = 1|ωj)
i = 1, ..., d
j = 1, ..., c,

with the components of xi being statistically independent for all x in ωj .

(a) Interpret in words the meaning of pij .

(b) Show that the minimum probability of error is achieved by the following decision
rule: Decide ωk if gk(x) ≥ gj(x) for all j and k, where

gj(x) =
d∑
i=1

xi ln
pij

1− pij
+

d∑
i=1

ln (1− pij) + ln P (ωj).

43. Let the components of the vector x = (x1, ..., xd)t be ternary valued (1, 0 or
−1), with

pij = Prob(xi = 1 |ωj)
qij = Prob(xi = 0 |ωj)
rij = Prob(xi = −1|ωj),

and with the components of xi being statistically independent for all x in ωj .

(a) Show that a minimum probability of error decision rule can be derived that
involves discriminant functions gj(x) that are quadratic function of the compo-
nents xi.

(b) Suggest a generalization to more categories of your answers to this and Prob-
lem 42.
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44. Let x be distributed as in Problem 42 with c = 2, d odd, and

pi1 = p > 1/2 i = 1, ...d
pi2 = 1− p i = 1, ...d

and P (ω1) = P (ω2) = 1/2.

(a) Show that the minimum-error-rate decision rule becomes:

Decide ω1 if
d∑
i=1

xi > d/2 and ω2 otherwise.

(b) Show that the minimum probability of error is given by

Pe(d, p) =
(d−1)/2∑
k=0

(
d

k

)
pk(1− p)d−k.

where
(
d
k

)
= d!/(k!(d− k)!) is the binomial coefficient.

(c) What is the limiting value of Pe(d, p) as p→ 1/2? Explain.

(d) Show that Pe(d, p) approaches zero as d→∞. Explain.

45. Under the natural assumption concerning losses, i.e., that λ21 > λ11 and λ12 >
λ22, show that the general minimum risk discriminant function for the independent
binary case described in Sect. 2.9.1 is given by g(x) = wtx+w0, where w is unchanged,
and

w0 =
d∑
i=1

ln
1− pi
1− qi

+ ln
P (ω1)
P (ω2)

+ ln
λ21 − λ11

λ12 − λ22
.

46. The Poisson distribution for a discrete variable x = 0, 1, 2, ... and real parameter
λ is

P (x|λ) = e−λ
λx

x!
.

(a) Prove that the mean of such a distribution is E [x] = λ.

(b) Prove that the variance of such a distribution is E [x− x̄] = λ.

(c) The mode of a distribution is the value of x that has the maximum probability.
Prove that the mode of a Poisson distribution is the greatest integer that does
not exceed λ, i.e., the mode is dλe. (If λ is an integer, then both λ and λ − 1
are modes.)

(d) Consider two equally probable categories having Poisson distributions but with
differing parameters; assume for definiteness λ1 > λ2. What is the Bayes clas-
sification decision?

(e) What is the Bayes error rate?
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⊕
Section 2.10

47. Suppose we have three categories in two dimensions with the following underlying
distributions:

• p(x|ω1) ∼ N(0, I)

• p(x|ω2) ∼ N
((

1
1

)
, I
)

• p(x|ω3) ∼ 1
2N

((
.5
.5

)
, I
)

+ 1
2N

((−.5
.5

)
, I
)

with P (ωi) = 1/3, i = 1, 2, 3.

(a) By explicit calculation of posterior probabilities, classify the point x =
(
.3
.3

)
for

minimum probability of error.

(b) Suppose that for a particular test point the first feature is missing. That is,
classify x =

(∗
.3

)
.

(c) Suppose that for a particular test point the second feature is missing. That is,
classify x =

(
.3
∗
)
.

(d) Repeat all of the above for x =
(
.2
.6

)
.

48. Show that Eq. 93 reduces to Bayes rule when the true feature is µi and
p(xb|xt) ∼ N(xt,Σ). Interpret this answer in words.⊕

Section 2.11

49. Suppose we have three categories with P (ω1) = 1/2, P (ω2) = P (ω3) = 1/4 and
the following distributions

• p(x|ω1) ∼ N(0, 1)

• p(x|ω2) ∼ N(.5, 1)

• p(x|ω3) ∼ N(1, 1) ,

and that we sample the following four points: x = 0.6, 0.1, 0.9, 1.1.

(a) Calculate explicitly the probability that the sequence actually came from ω1, ω3, ω3, ω2.
Be careful to consider normalization.

(b) Repeat for the sequence ω1, ω2, ω2, ω3.

(c) Find the sequence having the maximum probability.
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Computer exercises

Several of the computer exercises will rely on the following data.
ω1 ω2 ω3

sample x1 x2 x3 x1 x2 x3 x1 x2 x3

1 −5.01 −8.12 −3.68 −0.91 −0.18 −0.05 5.35 2.26 8.13
2 −5.43 −3.48 −3.54 1.30 −2.06 −3.53 5.12 3.22 −2.66
3 1.08 −5.52 1.66 −7.75 −4.54 −0.95 −1.34 −5.31 −9.87
4 0.86 −3.78 −4.11 −5.47 0.50 3.92 4.48 3.42 5.19
5 −2.67 0.63 7.39 6.14 5.72 −4.85 7.11 2.39 9.21
6 4.94 3.29 2.08 3.60 1.26 4.36 7.17 4.33 −0.98
7 −2.51 2.09 −2.59 5.37 −4.63 −3.65 5.75 3.97 6.65
8 −2.25 −2.13 −6.94 7.18 1.46 −6.66 0.77 0.27 2.41
9 5.56 2.86 −2.26 −7.39 1.17 6.30 0.90 −0.43 −8.71
10 1.03 −3.33 4.33 −7.50 −6.32 −0.31 3.52 −0.36 6.43⊕

Section 2.2

1. You may need the following procedures for several exercises below.

(a) Write a procedure to generate random samples according to a normal distribu-
tion N(µ,Σ) in d dimensions.

(b) Write a procedure to calculate the discriminant function (of the form given in
Eq. 47) for a given normal distribution and prior probability P (ωi).

(c) Write a procedure to calculate the Euclidean distance between two arbitrary
points.

(d) Write a procedure to calculate the Mahalanobis distance between the mean µ
and an arbitrary point x, given the covariance matrix Σ.⊕

Section 2.5

2. Use your classifier from Problem ?? to classify the following 10 samples from
the table above in the following way. Assume that the underlying distributions are
normal.

(a) Assume that the prior probabilities for the first two categories are equal (P (ω1) =
P (ω2) = 1/2 and P (ω3) = 0) and design a dichotomizer for those two categories
using only the x1 feature value.

(b) Determine the empirical training error on your samples, i.e., the percentage of
points misclassified.

(c) Use the Bhattacharyya bound to bound the error you will get on novel patterns
drawn from the distributions.

(d) Repeat all of the above, but now use two feature values, x1, and x2.

(e) Repeat, but use all three feature values.

(f) Discuss your results. In particular, is it ever possible for a finite set of data that
the empirical error might be larger for more data dimensions?
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3. Repeat Computer exercise 2 but for categories ω1 and ω3.
4. Repeat Computer exercise 2 but for categories ω2 and ω3.
5. Consider the three categories in Computer exercise 2, and assume P (ωi) = 1/3.

(a) What is the Mahalanobis distance between each of the following test points and
each of the category means in Computer exercise 2: (1, 2, 1)t, (5, 3, 2)t, (0, 0, 0)t,
(1, 0, 0)t.

(b) Classify those points.

(c) Assume instead that P (ω1) = 0.8, and P (ω2) = P (ω3) = 0.1 and classify the
test points again.

6. Illustrate the fact that the average of a large number of independent random
variables will approximate a Gaussian by the following:

(a) Write a program to generate n random integers from a uniform distribution
U(xl, xu). (Some computer systems include this as a single, compiled function
call.)

(b) Now write a routine to choose xl and xu randomly, in the range −100 ≤ xl <
xu ≤ +100, and n (the number of samples) randomly in the range 0 < n ≤ 1000.

(c) Generate and plot a histogram of the accumulation of 104 points sampled as
just described.

(d) Calculate the mean and standard deviation of your histogram, and plot it

(e) Repeat the above for 105 and for 106. Discuss your results.

⊕
Section 2.8

7. Explore how the empirical error does or does not approach the Bhattacharyya
bound as follows:

(a) Write a procedure to generate sample points in d dimensions with a normal
distribution having mean µ and covariance matrix Σ.

(b) Consider p(x|ω1) ∼ N
((

1
0

)
, I
)

and p(x|ω2) ∼ N
((−1

0

)
, I
)

with P (ω1) = P (ω2) =
1/2. By inspection, state the Bayes decision boundary.

(c) Generate n = 100 points (50 for ω1 and 50 for ω2) and calculate the empirical
error.

(d) Repeat for increasing values of n, 100 ≤ n ≤ 1000, in steps of 100 and plot your
empirical error.

(e) Discuss your results. In particular, is it ever possible that the empirical error is
greater than the Bhattacharyya or Chernoff bound?

8. Consider two one-dimensional normal distributions p(x|ω1) ∼ N(−.5, 1) and
p(x|ω2) ∼ N(+.5, 1) and P (ω1) = P (ω2) = 0.5.

(a) Calculate the Bhattacharyya bound for the error of a Bayesian classifier.

(b) Express the true error rate in terms of an error function, erf(·).
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(c) Evaluate this true error to four significant figures by numerical integration (or
other routine).

(d) Generate 10 points each for the two categories and determine the empirical error
using your Bayesian classifier. (You should recalculate the decision boundary
for each of your data sets.)

(e) Plot the empirical error as a function of the number of points from either dis-
tribution by repeating the previous part for 50, 100, 200, 500 and 1000 sample
points from each distribution. Compare your asymptotic empirical error to the
true error and the Bhattacharyya error bound.

9. Repeat Computer exercise 8 with the following conditions:

(a) p(x|ω1) ∼ N(−.5, 2) and p(x|ω2) ∼ N(.5, 2), P (ω1) = 2/3 and P (ω2) = 1/3.

(b) p(x|ω1) ∼ N(−.5, 2) and p(x|ω2) ∼ N(.5, 2) and P (ω1) = P (ω2) = 1/2.

(c) p(x|ω1) ∼ N(−.5, 3) and p(x|ω2) ∼ N(.5, 1) and P (ω1) = P (ω2) = 1/2.
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Index

λ(·, ·), see loss
ω, see state of nature, 3
d′, 34, see discriminability
Rd, see Euclidean space
Ri, see decision, region

action, 7
action (α), 7
average, see mean

Bayes
decision rule, 6

Bayes’ formula, 4, 7
Bayesian decision theory, see decision

theory, Bayesian
Bhattacharyya

bound, 32
coefficient (ρ), 54

bias, 21, 38
binary feature, see feature, binary
binomial coefficient, 57
bit, 16
bound

Bhattacharyya, see Bhattacharyya,
bound

boundary, see decision, boundary

category symbol (ω), 3
Central Limit Theorem, 17
Chernoff bound, 31
class-conditional probability, see prob-

ability, class-conditional
classification

fish example, 3
classifier

linear, 38
coefficient

Bhattacharyya, see Bhattacharyya,
coefficient

conditional independence, 36, 37
conditional probability, see probabil-

ity, conditional

conditional risk, see risk, conditional
constraint

risk, 12
context

statistical dependence, 41
correct rejection, see rejection, correct
covariance, 17
covariance matrix, see matrix, covari-

ance
criterion

Neyman-Pearson, see Neyman-Pearson
criterion

decision, 7
Bayes, 6, 8, 36

binary features, 36
bias, 34
boundary, 14

hyperquadratic, 25
compound, 41
missing feature, 39
noisy feature, 39
randomized, 47
region, 14
rule, see rule
sequential, 41

decision theory
Bayes, 7

discrete features, 36
Bayesian, 3

continuous features, 7
dichotomizer, 15
discriminability, 54
discriminability (d′), 33, see receiver

operating characteristic
discriminant function, 37

discrete, 36
distance

Euclidean, 20
Mahalanobis, 18

distribution
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and missing data, 39
marginal, 40
Poisson, 57
triangle, 55

dot product, see inner product

entropy, 16
error

Bayes, 5
probability, 4

discrete case, 38
minimal, 5

error function, 44
Euclidean norm, see distance, Euclidean
Euclidean space (Rd), 36
evidence, 6
Expectation-Maximization algorithm, 40
expected value, 15, see mean

feature, 16

false alarm, 34
feature

binary, 36
good (uncorrupted), 40
independence, 38
integer valued, 36
missing, 39
noisy, 39–42
space, 7
ternary, 36
vector

binary, 36
continuous, 7

fish
classification example, 41
occlusion, 39

game theory, 11
Gaussian

distribution, 42
multidimensional, 17
one-dimensional, 16
univariate, 16

hit, 34
hypercube, 38
hyperellipsoid, 25
hyperparaboloid, 25
hyperplane, 25, 38
hyperquadric, 25
hypersphere, 25

independence
conditional, see conditional inde-

pendence
statistical, 17, 41

inner product, 17

joint probability, see probability, joint

knowledge
prior, 3

likelihood, 5, 37
ratio, 37

loss
classification, 9
expected, 7
function, 7
matrix, 7, 34
minimal, 8
symmetric, 9
zero-one, 9

Mahalanobis distance, see distance, Ma-
halanobis

marginal distribution, see distribution,
marginal

marginalize, 40
matching

template, see template matching
matrix

covariance, 17
mean, 16, 39
minimax risk, see risk, minimax
miss, 34
mode, 57

nat, 16
Neyman-Pearson criterion, 12
noise

model, 40, 41
norm, see distance or metric

omega (ω), see state of nature or cat-
egory symbol

operating characteristic, 33–35

Poisson distribution, see distribution,
Poisson

polychotomizer, 15
posterior probability, see probability,

posterior
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prior, 3, 4, 7, 38
probability, 36

a posteriori, 5
a priori, 3
class-conditional, 37
conditional, 4, 6
density, 4, 36

singular, 36
state-conditional, 7

joint, 4
prior, 4

random variable, see variable, random
randomized decision rule, see decision

rule, randomized
receiver operating characteristic (ROC),

34
reject option, 7, 47
rejection

correct, 34
risk, 8

conditional, 8, 36
minimax, 11
overall, 36

ROC, see receiver operating character-
istic

rule
decision, 4

signal detection theory, 33
space

Euclidean (Rd), 7
state of nature (ω), 3
state-conditional probability density, see

probability density, see prob-
ability density, state conditional

statistical
dependence, 41
independence, 17

noise, 40

template matching, 22
ternary feature, see feature, ternary
threshold, 21, see bias
threshold weight, 38
transform

whitening, 18

variable
random, 41

variance, 16

whitening transform, see transform, whiten-
ing

zero-one loss, see loss, zero-one


