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Abstract—Superpixel segmentation has emerged as an im-
portant research problem in the areas of image processing
and computer vision. In this paper, we propose a framework,
namely Iterative Spanning Forest (ISF), in which improved sets
of connected superpixels (supervoxels in 3D) can be generated by
a sequence of Image Foresting Transforms. In this framework,
one can choose the most suitable combination of ISF components
for a given application — i.e., i) a seed sampling strategy,
ii) a connectivity function, iii) an adjacency relation, and iv)
a seed pixel recomputation procedure. The superpixels in ISF
structurally correspond to spanning trees rooted at those seeds.
We present five ISF-based methods to illustrate different choices
for those components. These methods are compared with a num-
ber of state-of-the-art approaches with respect to effectiveness
and efficiency. Experiments are carried out on several datasets
containing 2D and 3D objects with distinct texture and shape
properties, including a high-level application, named sky image
segmentation. The theoretical properties of ISF are demonstrated
in the supplementary material and the results show ISF-based
methods rank consistently among the best for all datasets.

Index Terms—Image Foresting transform, spanning forests,
mixed seed sampling, connectivity function, superpixel/supervoxel
segmentation.

I. INTRODUCTION

SUPERPIXEL generation has evolved as an important re-
search topic in image processing and computer vision with

a variety of target applications like medical image segmen-
tation [1], sky image segmentation [2], motion segmentation
[3], multi-class object segmentation [4], [5], object detection
[6], spatiotemporal saliency detection [7], target tracking [8],
and depth estimation [9]. A superpixel may be conceived as
a region of similar and connected pixels, which makes the
superpixel-based image representation computationally much
more efficient than its pixel-based counterpart. For the sake of
effectiveness and efficiency, it is also expected that objects
of interest for a given application can be defined by the
union of a reduced number of superpixels. This goal poses
the main challenge in superpixel segmentation because those
objects may exhibit different shape and texture properties
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(e.g., compact, 2D/3D, elongated, thin, color/gray-scale and
so on). Given such variability, a flexible framework where
one can design the most suitable superpixel segmentation
method for a given application is necessary. Indeed, most
of the successful methods [10], [11] start from (1) a seed
sampling strategy, followed by multiple executions of (2) a
superpixel delineation algorithm, and (3) a seed recomputation
procedure for superpixel segmentation. However, they cannot
usually be considered as a framework, in which the above
components can be changed to improve effectiveness for
distinct applications [12].

In view of the above observation, the main contribution
of this paper is a superpixel segmentation framework, named
Iterative Spanning Forest (ISF), in which one can choose
the most suitable combination of independent components for
a given application — i.e., (i) a seed sampling strategy, (ii)
a connectivity function, (iii) an adjacency relation, and (iv)
a seed recomputation procedure. For instance, a compromise
between boundary adherence and shape regularity (i.e., super-
pixels with compact shapes) can be achieved by choice of the
connectivity function. The ISF algorithm relies on a sequence
of Image Foresting Transforms (IFTs) [13] from distinct seed
sets, yielding to connected superpixel sets along the execution
paths until convergence is achieved (see the supplementary
material).

The ISF-based methods have the property of generating
connected superpixels — i.e., each superpixel is a spanning
tree rooted at a seed pixel. Popular clustering-based meth-
ods [14], [10], [15], [11] for superpixel segmentation do not
necessarily have this important property, which in turn can
negatively affect the object representation as a union of a
set of superpixels. Figure 1, for instance, presents simple
objects which are close to each other having similar colors
and elongated shapes. We compare three methods in Figure 1,
namely, an ISF-based method, SLIC (Simple Linear Iterative
Clustering) [10], and LSC (Linear Spectral Clustering) [11].
The results indicate that even this simple example can be quite
challenging for SLIC and LSC whereas the ISF-based method
achieves good segmentation.

In order to illustrate the ISF framework, we present (i) a
mixed seed sampling strategy based on normalized Shannon
entropy, the standard grid sampling, and a regional-minima-
based sampling; (ii) three connectivity functions; (iii) two ad-
jacency relations, 4-neighborhood in 2D and 6-neighborhood
in 3D; and (iv) two seed recomputation procedures. The mixed
sampling strategy aims at estimating a higher number of seeds
in more heterogeneous regions in order to improve boundary
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Fig. 1. (a) ISF can segment the objects with only 4 superpixels. LSC and SLIC have difficulties when objects with similar colors are close to each other
and/or present elongated parts. (b-c) It shows that LSC cannot segment the three objects correctly with 7 and even 29 superpixels. (d-e) It shows that SLIC
cannot segment the three objects correctly with 8 and even 30 superpixels.

adherence. Grid sampling tends to produce more regularly
distributed superpixels and the regional-minima-based strategy
aims at solving superpixel segmentation in a single IFT itera-
tion. Two connectivity functions allow to control the balance
between boundary adherence and superpixel regularity, and
the third one maximizes boundary adherence regardless of
superpixel regularity. Both adjacency relations guarantee the
connectivity between pixels and their corresponding seeds
(i.e., a result consistent with the superpixel definition). For
seed recomputation, we present procedures that exploit color
and spatial information, and color information only. At each
execution, the IFT algorithm propagates paths from each seed
to pixels that are more closely connected to that seed than
to any other, according to a given connectivity function. The
resulting superpixels are spanning trees rooted at those seeds.

The Berkeley dataset [16] has been widely used to evaluate
superpixel segmentation algorithms. However, it does not
contain a reasonable number of objects with distinct shape and
texture properties. A more suitable testing environment should
contain a reasonable number of compact objects, objects with
thin and elongated parts, 2D and 3D objects, and objects in
color and gray-scale images. In this paper, we extensively
compare ISF-based methods with five state-of-the-art super-
pixel segmentation methods [10], [11], [14], [15], [17] on six
image datasets of natural and medical images. We also evaluate
one ISF-based method in comparison with SLIC and LSC on
a high-level application, namely sky image segmentation (a
seventh dataset). Altogether these datasets contain 949 images,
comprising an environment that satisfies the aforementioned
distinct object properties. The results show ISF-based methods
consistently rank among the best for all datasets, which clearly
demonstrate the generalization power of the ISF framework.

The rest of the paper is organized as follows. In Section II,
we discuss related works and emphasize the importance of this
contribution by describing recently published extensions of the
ISF framework. Section III presents the ISF framework with
the general algorithm and five ISF-based methods, discusses
implementation issues, and provides a link to its code. The
experimental results are discussed in Section IV and the ISF
theoretical properties are demonstrated in the supplementary
material. Section V states conclusion and provides directions
for future work.

II. RELATED WORK

Most superpixel segmentation approaches adopt a clustering
algorithm and/or a graph-based algorithm to address the prob-
lem in one or multiple iterations of seed estimation. Several

of these methods cannot guarantee connected superpixels:
SLIC (Simple Linear Iterative Clustering) [10], LSC (Linear
Spectral Clustering) [11], Vcells (Edge-Weighted Centroidal
Voronoi Tessellations) [18], LRW (Lazy Random Walks) [15],
ERS (Entropy Rate Superpixels) [14], DBSCAN (Density-
based spatial clustering of applications with noise) [19] and
GMM (Superpixel Segmentation Using Gaussian Mixture
Model) [20]. Connected superpixels in these methods are
usually obtained by merging regions, as a post-processing step,
which can reduce the number of desired superpixels.

Some representative graph-based algorithms include Nor-
malized Cuts [21], an approach based on minimum spanning
tree [22], a method using optimal path via graph cuts [23],
an energy minimization framework, which can also yield
supervoxels [24], the watershed transform from seeds [25],
[26], [17], and approaches based on random walk [14], [15].
Normalized cuts can generate more compact and more regular
superpixels. However, as shown in [10], its performance in
boundary adherence is inferior with respect to other methods.
The problem with the algorithm in [22] is exactly the opposite.
The resulting superpixels can conform to object boundaries,
but they are very irregular in size and shape. Similar results
are observed in graph-based watershed algorithms [25], [26].
An exception is the waterpixel approach [17] that enforces
compactness by using a modified gradient image. However,
these algorithms try to solve the segmentation problem from
a single seed set (e.g., seeds are selected from the regional
minima of a gradient image). Due to the absence of seed
recomputation and/or quality of the image gradient, they
usually miss important object boundaries. The performance
of the methods described in [23] and [27] depends on the
pre-computed boundary maps, which is not guaranteed to
be the best in all cases. Authors in [24] actually suggest
two methods for generating compact and constant-intensity
superpixels. In [14], the authors use the entropy rate of a
random walk on a graph and a balancing term for superpixel
segmentation. The method yields good segmentation results,
but it involves a greedy strategy for optimization. In [15],
the authors show that the lazy random walk produces better
results, but the method has initialization and optimization
steps, both requiring the computation of the commute time,
which tends to adversely affect the total execution time.

ISF falls in the category of graph-based algorithms as a
particular case of a more general framework [13] — the
Image Foresting Transform (IFT). IFT is a framework for
the design of image operators based on connectivity, such as
distance and geodesic transforms, morphological reconstruc-
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tions, multiscale skeletonization, image description, region-
and boundary-based image segmentation methods [28], [25],
[29], [30], [31], [32], [33], [34], [35], with extensions to
clustering and classification [36], [37], [38], [39], [40]. As the
authors discuss in [41], by choice of its connectivity function,
the IFT algorithm can output a watershed transform from a set
of seeds that corresponds to a graph cut in which the minimum
gradient value in the cut is maximum. From [26], it is known
that the watershed transform from seeds is equivalent to a
cut in a minimum-spanning tree (MST). That is, the removal
of the arc with maximum weight from the single path in the
MST that connects each pair of seeds results in a minimum-
spanning forest (i.e., a watershed cut). Such a graph cut tends
to be better than the normalized cut in boundary adherence,
but worse in superpixel regularity.

In the evolution of superpixel segmentation methods, Mean-
Shift [42], Quick-Shift [43], turbopixels [44], SLIC [10],
geometric flow [45], LSC [11], and DBSCAN [19] are all
worth-mentioning. Mean-Shift method produces irregular and
loose superpixels whereas the Quick-Shift algorithm does not
allow an user to choose the number of superpixels. The
turbopixel-based approaches can produce good superpixels,
but are computationally complex. Çiǧla and Atalan [46] used
connected k-means algorithm with convexity constraints to
achieve superpixel segmentation via speeded-up turbopixels.
The method is still bit slow, and, as claimed by the authors,
fails to provide good boundary recall for complex images.
SLIC is by far the most commonly used superpixel method
[10]. It uses a regular grid for seed sampling. Once chosen, the
seeds are transferred to the lowest gradient position within a
small neighborhood. Finally, a modified k-means algorithm is
used to cluster the remaining pixels. This algorithm was shown
to perform better than many other methods (e.g., [44], [21],
[22], [24], [43]). However, the k-means algorithm searches for
pixels within a 2S × 2S window around each seed, where
S is the grid interval. For a non-regular seed distribution,
some pixels may not be reached by any seed. Indeed, this
might happen from the second iteration on and this labeling
inconsistency problem is only solved by post-processing. In
[45], Wang et al. proposed a geometric-flow-based method
of superpixel generation. The method has high computational
complexity as it involves computation of the geodesic distance
and several iterations. LSC [11] and DBSCAN [19] are among
the most recent approaches. LSC models the segmentation
problem using Normalized Cuts, but it applies an efficient
approximate solution using a weighted k-means algorithm to
generate superpixels. DBSCAN performs fast pixel grouping
based on color similarity with geometric restrictions and then
merges small clusters to ensure connected superpixels.

ISF allows the design of distinct methods for superpixel
segmentation and the first example was presented in [47],
before we conceive ISF as a framework. Since then new
applications and extensions of the ISF framework has been
proposed and published in conference papers. For instance,
the authors in [35] address the object segmentation problem
as follows. Whenever automatic object segmentation fails, the
only alternative is interactive correction. The differential IFT
algorithm [48] allows to correct 3D object segmentation in

sublinear time (i.e., it can provide real-time response to the
user’s actions), but it requires an optimum-path forest as input.
The contribution in [35] is then a new connectivity function for
ISF, which attracts the boundaries of the supervoxels towards
the boundary of a given 3D object segmentation mask, such
that an optimum-path forest for interactive segmentation cor-
rection can be derived from those supervoxels. More recently,
we propose in [49] new methods for seed sampling and seed
recomputation, using a variant of the connectivity function
presented in [35] to attract the superpixel boundaries to high-
intensity transitions in a given object saliency map (visual
attention map). The paper actually represents a new paradigm
for superpixel segmentation, in which superpixels can be cre-
ated based on image and object information rather than image
properties only. In [50], we propose a hierarchical superpixel
segmentation framework by applying ISF recursively on the
subsequent superpixel graphs (region adjacency graphs). It
allows the use of new seed sampling strategies and contextual
superpixel properties that can lead to an improvement in
effectiveness over the simplest ISF-based methods presented
in the current work. Therefore, our aim here is to introduce the
ISF framework and show that its simplest ISF-based methods
can already perform consistently well for diverse datasets.

III. THE ISF FRAMEWORK

An ISF-based method results from the choice of each com-
ponent: initial seed selection, connectivity function, adjacency
relation, and seed recomputation strategy. The ISF algorithm
is a sequence of Image Foresting Transforms (IFTs) from
improved seed pixel sets (Section III-A). For initial seed
selection, we propose either grid or mixed entropy-based seed
sampling (hereafter referred to as GRID and MIX, respec-
tively) as effective strategies (Section III-B). Additionally,
we evaluate a seed sampling strategy that moves the seeds
obtained by grid sampling to the closest minima of a gradient
image, attempting to solve the problem in a single iteration.
Examples of connectivity functions and adjacency relations for
2D and 3D segmentations are presented in Sections III-C and
III-D respectively. Two strategies for seed recomputation are
described in Section III-E. The ISF algorithm is presented in
Section III-G and its theoretical properties are demonstrated
in the supplementary material. Section III-H discusses imple-
mentation issues and provides a link to the code.

A. Image Foresting Transform

An image can be interpreted as a graph G = (I,A), whose
pixels in the image domain I ⊂ Zn are the nodes and pixel
pairs (s, t) that satisfy the adjacency relation A ⊂ I × I are
the arcs (e.g., 4-neighbors when n = 2). We use t ∈ A(s) and
(s, t) ∈ A to indicate that t is adjacent to s.

For a given image graph G = (I,A), a path πt =
〈t1, t2, . . . , tn = t〉 is a sequence of adjacent pixels with ter-
minus t. A path is trivial when πt = 〈t〉. A path πt = πs ·〈s, t〉
indicates the extension of a path πs by an arc (s, t). When we
want to explicitly indicate the origin of a path, the notation
πs t = 〈t1 = s, t2, . . . , tn = t〉 is used, where s stands for
the origin and t for the destination node. A predecessor map is
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a function P that assigns to each pixel t in I either some other
adjacent pixel in I, or a distinctive marker nil not in I — in
which case t is said to be a root of the map. A spanning forest
(image segmentation) is a predecessor map which contains no
cycles — i.e., one which takes every pixel to nil in a finite
number of iterations. For any pixel t ∈ I, a spanning forest
P defines a path πPt recursively as 〈t〉 if P (t) = nil, and
πPs · 〈s, t〉 if P (t) = s 6= nil.

A connectivity (path-cost) function computes a value f(πt)
for any path πt, including trivial paths πt = 〈t〉. A path πt
is optimum if f(πt) ≤ f(τt) for any other path τt in ΠG

(the set of paths in G). By assigning to each pixel t ∈ I one
optimum path with terminus t, we obtain an optimal mapping
C, which is uniquely defined by C(t) = min∀πt in ΠG

{f(πt)}.
Image Foresting Transform (IFT) [13] takes an image graph
G = (I,A), and a connectivity function f ; and assigns one
optimum path πt to every pixel t ∈ I such that an optimum-
path forest P is obtained — i.e., a spanning forest where all
paths are optimum. However, f must satisfy certain conditions,
as described in [51], otherwise, the paths may not be optimum.

In ISF, all seeds are forced to be the roots of the forest by
choice of f , in order to obtain a desired number of superpixels.
For any given seed set S, each superpixel will be represented
by its respective tree in the spanning forest P as computed by
the IFT algorithm.

B. Seed Sampling Strategies

Any natural image contains a lot of heterogeneity. There
are parts of the image that can have really small variations in
intensity whereas other parts in the image can show significant
variations. So, it is but natural to choose more seeds from
a more non-uniform region of an image. However, having a
grid structure for the seeds is also essential to conform to the
regularity of the superpixels. The proposed mixed sampling
strategy achieves both the goals. We use a two-level quad-
tree representation of an input 2D image. The heterogeneity
of each quadrant (Q) is captured using Normalized Shannon
Entropy (NSE(Q)). This is given by

NSE(Q) = −
∑n
i=1 pilog2(pi)

log2n
. (1)

Here n denotes the total number of intensity levels in the
quadrant Q and pi is the probability of occurrence of the
intensity i in the quadrant Q. For color images, we deem
the lightness component in the Lab color model as the in-
tensity of a pixel. Normalizing the entropy ensures that the
NSE(Q) ∈ [0, 1]. At the first level in the quad-tree, we
compute the normalized Shannon entropies for each quadrant
and also obtain the mean µ(NSE) and the standard deviation
σ(NSE) of the four values. If the value of entropy for any
quadrant exceeds the mean by one standard deviation, i.e., if
|NSE(Q)−µ(NSE)| > σ(NSE), then we further divide the
region in the next level into four quadrants. We then compute
the NSE values for the new quadrants at the second level.
Once, the two-level quad-tree representation is complete, we
assign the number of seeds to be selected from each region
as proportional to their NSE values. Finally, the seeds from

each region are picked based on the grid sampling strategy.
So, we essentially perform local grid sampling for each leaf
node in the two-level quad-tree. This procedure may improve
boundary recall with respect to grid sampling, depending on
the dataset. In addition to grid and mixed sampling strategies,
we have also evaluated seed selection based on the reduction
of the seed set generated by grid sampling to the set of the
closest regional minima in a gradient image.

C. Connectivity Functions

We consider the computation of the IFT with two path-
cost functions that only guarantee a spanning forest, f1 (Equa-
tion 3) and f2 (Equation 4), and a third one, f3 (Equation 5),
that guarantees an optimum-path forest. The spanning forest
in f1 and f2 might not be optimum, because the path costs
depend on path-root properties [51]. However, these functions
can efficiently deal with the problem of intensity heterogene-
ity [29].

The seed sampling approach (e.g. grid or mixed) defines
an initial seed set S, such that for each seed pixel sj ∈ S at
coordinate (xj , yj), its color representation in the Lab color
space is given I(sj) = [lj aj bj ]

T . A path-cost function
f is defined by a trivial-path cost initialization rule and an
extended-path cost assignment rule. We present three instances
of f , denoted as f1, f2 and f3, with trivial-path initialization
rule given by

f∗(πt = 〈t〉) =

{
0 if t ∈ S,
+∞ otherwise. (2)

They differ in the extended-path cost assignment rule, as
follows.

f1(πsj s ·〈s, t〉) = f1(πs)+(‖I(t)− I(sj)‖α)
β

+‖s, t‖, (3)

where α ≥ 0, β ≥ 1, and I(t) = [lt at bt]
T is the color vector

at pixel t.

f2(πsj s · 〈s, t〉) = f2(πs) + (‖I(t)−M(sj)‖α)
β

+ ‖s, t‖,
(4)

where M(sj) is the mean color, computed inside the super-
pixel of the previous iteration, which contains the new seed
sj (M(sj) = I(sj) at the first iteration).

f3(πr s · 〈s, t〉) = max{f3(πs), D(t)}, (5)

where D(t) is the value of the gradient image in the pixel t.
At the end of the IFT algorithm, each superpixel will be

represented by its respective tree in the spanning forest P .
After that, an update step adjusts the roots (new seeds) of the
spanning trees.

For paths πt1 tn = 〈t1, t2, . . . , tn〉, n > 1, and additive
path-cost function f(πt1 tn) =

∑
i=1,2,...,n−1{w(ti, ti+1)},

w(ti, ti+1) ≥ 0, the minimization of the cost map imposes
too much shape regularity on superpixels, by avoiding adher-
ence to image boundaries. On the other hand, f(πt1 tn) =
maxi=1,2,...,n−1{w(ti, ti+1)} (Equation 5, for w(ti, ti+1) =
D(ti+1)) provokes high adherence to image boundaries, but
also possible leakings when delineating poorly defined parts
of the boundaries. The path-cost function f(πt1 tn) =∑
i=1,2,...,n−1{w(ti, ti+1)β}, β > 1, represents a compromise
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Fig. 2. Segmentation results of an image from Birds [52] for five ISF methods (a) ISF-GRID-ROOT (BR = 0.93, UE = 0.01), (b) ISF-MIX-ROOT (BR =
0.89, UE = 0.02), (c) ISF-GRID-MEAN (BR = 0.90, UE = 0.02), (d) ISF-MIX-MEAN (BR = 0.86, UE = 0.02), and (e) ISF-REGMIN (BR = 0.82, UE =
0.02). Yellow arrows indicate leaking between object and background.

between the previous two. We fix β = 12 in all experiments to
approximate the effect of high adherence to image boundaries
with considerably reduced leaking in superpixel segmentation.
The arc weight w(ti, ti+1) = ‖I(ti+1)− I(sj)‖α (Equation 3
for sj = t1), or w(ti, ti+1) = ‖I(ti+1)−M(sj)‖α (Equation 4
for sj = t1), penalizes paths that cross image boundaries,
but the choice of α provides the compromise between the
shape regularity on superpixels, as imposed by the spatial
connectivity component ‖tn−1, tn‖ in Equations 3 and 4, and
the high boundary adherence of

∑
i=1,2,...,n−1{w(ti, ti+1)β}

for β = 12. The choice of α is then optimized as described
in the experimental section.

D. Adjacency Relation

The popular choices for adjacency relation are 4- or 8-
neighborhood in 2D and 6- or 26-neighborhood in 3D in
order to ensure connected superpixels (supervoxels). We prefer
simple symmetric adjacency of 4-neighborhood in 2D and 6-
neighborhood in 3D. This choice helps in the regularity of the
superpixels/supervoxels.

E. Seed Recomputation

We next discuss the automated seed recomputation strategy.
Let sti be the ith superpixel root (seed) at iteration t and its
feature vector defined as [lti a

t
i b

t
i x

t
i y

t
i ]
T . We select sti either

as the pixel of the superpixel whose color is the most similar
to the mean color of the superpixel or as the pixel of the
superpixel that is the closest to its geometric center. During
the subsequent IFT computations, we only recompute the seed
st+1
i if:

‖[lti ati bti]− [lt+1
i at+1

i bt+1
i ]‖ > √µc (6)

or

‖[xti yti ]− [xt+1
i yt+1

i ]‖ > √µs, (7)

where µc and µs are the average color and spatial distances
to seed sti.

F. Five Different ISF Methods
We present five ISF methods. The first two use func-

tion f1, ISF-GRID-ROOT is based on grid sampling and
ISF-MIX-ROOT is based on mixed sampling. They recompute
seeds as the pixel inside each superpixel whose color is the
closest to the mean color of the superpixel. The third and
fourth methods use function f2, ISF-GRID-MEAN is based
on grid sampling and ISF-MIX-MEAN is based on mixed
sampling. They recompute seeds as the pixel inside each
superpixel whose position is the closest to the geometric center
of the superpixel. The method presented in [47] is called here
ISF-GRID-MEAN.

We now discuss the fifth superpixel generation method,
called ISF-REGMIN, that uses path-cost function f3.
ISF-REGMIN is designed to be fast, as it uses only a single
iteration of the IFT algorithm with no seed recomputation.
This method initially performs grid sampling to set the seeds.
Then, the seeds are substituted by any pixel at the closest
regional minimum, computed in the gradient image.

It is important to note that the ISF methods do not require a
post-processing step as the connectivity is already guaranteed
by design.

Figure 2 presents the segmentation results of the five ISF
methods on an image of Birds [52]: ISF-GRID-ROOT, ISF-
MIX-ROOT, ISF-GRID-MEAN, ISF-MIX-MEAN and ISF-
REGMIN. For this dataset, with thin and elongated object
parts, ISF-GRID-ROOT obtains the best result.

G. The ISF Algorithm
Algorithm 1 presents the Iterative Spanning Forest proce-

dure.

Algorithm 1. – ITERATIVE SPANNING FOREST

INPUT: Image Î = (I, I), adjacency relation A, initial
seed set S ⊂ I, the parameters α ≥ 0 and
β ≥ 1, and the maximum number of iterations
MaxIters ≥ 1.

OUTPUT: Superpixel label map Ls.
AUXILIARY: State map S, priority queue Q, predecessor map

P , cost map C, root map R and superpixel mean
color array M .

1. iter ← 0
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2. While iter < MaxIter, do
3. For each t ∈ I, do
4. P (t)← nil, R(t)← t
5. S(t)←White, C(t)← +∞
6. label← 1
7. For each t ∈ S, do
8. C(t)← 0
9. Ls(t)← label, label← label + 1
10. Insert t in Q, S(t)← Gray
11. If iter = 0, then
12. M(t)← I(t)
13. While Q 6= ∅, do
14. Remove s from Q such that C(s) is minimum
15. S(s)← Black
16. For each t ∈ A(s), such that S(t) 6= Black , do
17. c← C(s) + (‖I(t)−M(R(s))‖α)β + ‖s, t‖
18. If c < C(t), then
19. Set P (t)← s, R(t)← R(s)
20. Set C(t)← c, Ls(t)← Ls(s)
21. If S(t) = Gray, then
22. Update position of t in Q
23. Else
24. Insert t in Q
25. S(t)← Gray

26. S,M ← RecomputeSeeds(S, Î, Ls)
27. iter ← iter + 1
28. Return Ls

Line 1 initializes the auxiliary variable iter (iteration num-
ber). The loop in Line 2 stops when the maximum number of
iterations is achieved. Lines 3-5 initialize the values for the
predecessor, root, state and cost maps for all image pixels.
The state map S indicates by S(t) = White that a pixel t
was never visited (never inserted in the priority queue Q), by
S(t) = Gray that t has been visited and is still in Q, and
by S(t) = Black that t has been processed (removed from
Q). Lines 7-12 initialize the cost and label maps and insert
the seeds in Q. The seeds are labeled with consecutive integer
numbers in the superpixel label map Ls. Lines 13-25 perform
the label propagation process. First, we remove the pixels s
that have minimum path cost in Q. Then the loop in Lines 16-
25 evaluates if a path with terminus s extended to its adjacent
t is cheaper than the current path with terminus t and cost
C(t). If that is the case, s is assigned as the predecessor of
t and the root of s is assigned to the root of t (Line 19).
The path cost and the label of t are updated. If t is in Q,
its position is updated, otherwise t is inserted into Q. After
the label propagation stage, the function RecomputeSeeds
returns the new seed set and the new mean color values M
for the superpixels. Note that in the first iteration the feature
vector of the superpixel root is the seed pixel color (Line 11-
12). The tasks of label propagation and seed recomputation
are performed until the condition of Line 2 is achieved. The
algorithm returns the label map Ls (superpixel segmentation).
Note that the algorithm describes the method ISF-MIX-MEAN
if we use mixed sampling as seed initialization strategy. It
uses the path-cost function f2 (see Equation 4) in Line 17.
By replacing Line 17 with the path-cost function f1 (see
Equation 3), we obtain the algorithm for the method ISF-MIX-
ROOT. Finally, by replacing mixed sampling by grid sampling
in ISF-MIX-ROOT, we obtain the method ISF-GRID-ROOT.

H. Implementation issues and available code

In general, using a priority queue as a binary heap, each
execution of the IFT algorithm takes time O(N logN) for
N = |I| pixels (linearithmic time). Given that the time to
recompute seeds is linear, the complexity of the ISF framework
using a binary heap is linearithmic, independently of the
number of superpixels. For integer path costs, such as in ISF-
REGMIN, it is possible to reduce the IFT execution time to
O(N) using a priority queue based on bucket sorting [28].

For efficient implementation, we use a new variant, as pro-
posed in [53], of the Differential Image Foresting Transform
(DIFT) algorithm [48]. This algorithm is able to update the
spanning forest by revisiting only pixels of the regions modi-
fied in a given iteration iter > 1. The efficient implementation
of ISF is available at www.ic.unicamp.br/∼afalcao/downloads.
html.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the methods based on their effec-
tiveness on 2D and 3D image datasets according to Boundary
Recall (BR), as implemented in [10], and Undersegmentation
Error (UE), as implemented in [54], for a varying number of
superpixels; effectiveness in terms of F-score (Dice) for 3D
brain and 2D sky image segmentation; and their efficiency.

A. Datasets

For evaluation of the ISF-based methods, we use seven
datasets with 2D and 3D objects in natural and medical
images. Berkeley [16], Birds [52], Grabcut [55], Insects [52],
Liver, and Sky are 2D datasets. Brain is a 3D dataset with
MR-T1 images of the brain and three objects of interest
— left and right brain hemispheres, and cerebellum, with-
out pons and medulla, which poses a great challenge to
superpixel segmentation due to the absence of boundary
information in some parts. These images contain about 10
millions of voxels each. Birds, Insects, and Sky can be down-
loaded with their annotations from http://www.vision.ime.usp.
br/∼pmiranda/downloads.html. They contain publicly available
images from Pixabay and Caltech. Liver and Brain are pri-
vate. Berkeley and Grabcut are available from https://www2.
eecs.berkeley.edu/Research/Projects/CS/vision/bsds/ and http:
//www.robots.ox.ac.uk/∼vgg/data/iseg/, respectively. Table I
describes their main characteristics.

B. Effectiveness on 2D datasets

The ISF-based methods are compared with five approaches
from the state-of-the-art on 2D datasets: SLIC (Simple Linear
Iterative Clustering) [10] 1, LSC (Linear Spectral Cluster-
ing) [11] 2, ERS (Entropy Rate Superpixel) [14], LRW (Lazy
Random Walk) [15] 3, and Waterpixels [17]. In order to avoid
busy and confusing plots, we present the effectiveness of the
two best ISF-based methods (10 iterations), ISF-GRID-ROOT
and ISF-MIX-MEAN, and the fastest one (ISF-REGMIN) for

1http://ivrl.epfl.ch/supplementary material/RK SLICSuperpixels/
2http://jschenthu.weebly.com/projects.html
3https://github.com/shenjianbing/lrw14/
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TABLE I
DATASETS USED FOR EVALUATION OF THE ISF-BASED METHODS.

Dataset Description Number of images

Berkeley [16] Color images with borders of 2D objects 500

Birds [52] Color images of birds, 2D objects with thin and elongated parts 150

Grabcut [55] Color images with mostly 2D compact objects 50

Insects [52] Color images of insects, 2D objects with thin and elongated parts 130

Liver CT gray-scale images of the liver, compact 2D objects in slice images of the abdomen 40

Brain MR-T1 gray-scale images of the brain, 3D compact objects with absence of boundary information 19

Sky Color images containing the sky, 2D objects with holes due to the presence of airplanes 60

each 2D dataset. Note that, ISF-GRID-MEAN [47] is not
among them, but it was the best ISF-based approach for 3D
brain image segmentation and we use it for the experiments
with these datasets. The parameter α of the ISF-based methods
has been adjusted based on 10 images from the Berkeley
dataset and then kept fixed for all 2D datasets.

We maintain ISF-REGMIN in the plots because it (a) uses
an integer path-cost function, which allows fast computation
in time proportional to the number of pixels and independent
of the number of seeds (superpixels), (b) does not require seed
recomputation, and even being the simplest among the ISF-
based methods, (c) it shows consistently better effectiveness
than its counterpart, Waterpixels [17]. We also include a
fast hybrid approach, namely SLIC-ISF, that combines 10
iterations of SLIC for faster seed estimation, followed by 2
iterations of ISF, to show that it is competitive to the others.
Figures 3–7 show the results of this first round of experiments,
using α = 0.5 and β = 12 for the ISF-based methods based
on f1 or f2.

Although LSC presents the best performance (the high-
est BR and the lowest UE) on Berkeley, the same is not
observed for the other datasets. On Insects, for instance,
ERS presents the best performance followed by ISF-GRID-
ROOT. ISF-based methods are the best for Birds and Liver,
being competitive for Grabcut and among the second best
for Berkeley and Insects. ISF-REGMIN is consistently better
than Waterpixels in both BR and UE for all datasets. ERS
performs well in Berkeley and Insects, but its performance is
not competitive in the other three datasets. Although SLIC is
the fastest and most used method, its performance is far from
being competitive in all datasets. Among the baselines, LSC is
the most competitive. However, its performance in UE can be
negatively affected for objects with thin and elongated parts,
such as Birds and Insects. Except for Berkeley and Insects,
SLIC-ISF presents better performance than ERS in BR and
UE.

In conclusion, one cannot say that there is a winner for all
datasets, because the objects may be very different from image
to image. However, the results clearly show that ISF can pro-
duce methods with consistently high effectiveness in different
datasets. This important aspect of robustness is not observed
in the others. This also shows the importance of obtaining
connected superpixels with no need for post-processing. The
performance of LSC in UE is usually inferior when compared

to its performance in BR. Birds and Insects are clearly a case
in the point. Indeed, LSC produces less regular superpixels
with high BR. For sky image segmentation, as we will see,
this property of LSC considerably impairs its effectiveness.
Between ISF-GRID-ROOT and ISF-MIX-MEAN, we can say
that ISF-MIX-MEAN provides better results in most datasets.
We believe this is related to the advantages in the effectiveness
of mix sampling over grid sampling.

Figure 8 then illustrates the quality of segmentation in
images from the five datasets using the best ISF-based method
and the most competitive baseline for each case. The examples
show that ISF can produce considerably better results in
images from all datasets.

C. Effectiveness on 3D images

Given that the 3D extension of ISF simply requires a
different choice of adjacency relation, we present a comparison
among the best ISF-based method for this application (ISF-
GRID-MEAN with α = 0.1), the only baseline with 3D im-
plementation (SLIC), and the hybrid approach (SLIC-ISF) on
the Brain dataset. The parameter α of ISF has been determined
based on its F-score (Dice) in a single 3D image, the rest
of the images being used for testing. Figure 9a shows the
three objects of interest: left and right brain hemispheres, and
cerebellum, without pons and medulla. Segmentation creates
supervoxels as shown in Figure 9b. Supervoxels with more
than 50% of their voxels inside a particular object are labeled
as belonging to that object, otherwise they are considered
as part of the background or other objects. Effectiveness is
measured by the F-score of this decision for three supervoxel
resolutions, given the usual image sizes: low (N = 1000),
medium (N = 5000), and high (N = 10000). Table II shows
the results of this experiment, using a 64 bit, Core(TM) i7-
3770K Intel(R) PC with CPU speed of 3.50GHz. It is not a
surprise that ISF outperforms SLIC in effectiveness. However,
SLIC is exploiting parallel computing 4 and given that SLIC-
ISF is twice faster than ISF, their equivalence in performance
above medium superpixel resolution is an excellent result.
Another interesting observation is that ISF performs better for
a value of α (α = 0.1) lower than 0.5 (i.e., more regular
supervoxels).

4Without parallel computing, SLIC would take from 19s-23s of processing
time for N = 1000 to N = 10000 supervoxels.
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Fig. 3. Variations of BR, UE with number of superpixels for ISF-MIX-MEAN, ISF-GRID-ROOT, ISF-REGMIN, SLIC, the combination of SLIC and ISF
(two iterarions), LRW, ERS, Waterpixels and LSC methods on Berkeley. We use the parameters α = 0.5 for ISF variants, m = 10 (compactness parameter)
for SLIC variants, α = 0.999999 for LRW, k = 8 for Waterpixels and ratio = 0.075 for LSC.
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Fig. 4. Variations of BR, UE with number of superpixels for ISF-MIX-MEAN, ISF-GRID-ROOT, ISF-REGMIN, SLIC, the combination of SLIC and ISF
(two iterarions), LRW, ERS, Waterpixels and LSC methods on Birds. We use the parameters α = 0.5 for ISF variants, m = 10 (compactness parameter) for
SLIC variants, α = 0.999999 for LRW, k = 8 for Waterpixels and ratio = 0.075 for LSC.
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Fig. 5. Variations of BR, UE with number of superpixels for ISF-MIX-MEAN, ISF-GRID-ROOT, ISF-REGMIN, SLIC, the combination of SLIC and ISF
(two iterarions), LRW, ERS, Waterpixels and LSC methods on Grabcut. We use the parameters α = 0.5 for ISF variants, m = 10 (compactness parameter)
for SLIC variants, α = 0.999999 for LRW, k = 8 for Waterpixels and ratio = 0.075 for LSC.

Figures 9c-d show another example using ISF-GRID- MEAN, where the specification of 10 supervoxels using α =
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Fig. 6. Variations of BR, UE with number of superpixels for ISF-MIX-MEAN, ISF-GRID-ROOT, ISF-REGMIN, SLIC, the combination of SLIC and ISF
(two iterarions), LRW, ERS, Waterpixels and LSC methods on Insects. We use the parameters α = 0.5 for ISF variants, m = 10 (compactness parameter)
for SLIC variants, α = 0.999999 for LRW, k = 8 for Waterpixels and ratio = 0.075 for LSC.
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Fig. 7. Variations of BR, UE with number of superpixels for ISF-MIX-MEAN, ISF-GRID-ROOT, ISF-REGMIN, SLIC, the combination of SLIC and ISF
(two iterarions), LRW, ERS, Waterpixels and LSC methods on Liver. We use the parameters α = 0.5 for ISF variants, m = 10 (compactness parameter) for
SLIC variants, α = 0.999999 for LRW, k = 8 for Waterpixels and ratio = 0.075 for LSC.

TABLE II
F-SCORE (MEAN +/- STD. DEVIATION) FOR CEREBELLUM, LEFT AND RIGHT BRAIN HEMISPHERES IN 3D MR-T1 IMAGES.

N = 1000 N = 5000 N = 10000

Method F-score Stdev Time(sec) F-score Stdev Time(sec) F-score Stdev Time(sec)

SLIC 0.8584 0.0110 6.1 0.9194 0.0075 7.0 0.9369 0.0039 7.2

ISF-GRID-MEAN 0.8815 0.0129 31.8 0.9321 0.0069 30.3 0.9459 0.0051 29.9

SLIC + ISF (two iterations) 0.8686 0.0138 17.3 0.9305 0.0072 18.0 0.9444 0.0044 18.0

0.5 segments the patella bone as one of the supervoxels.

D. Effectiveness on a high-level application

When considering a high-level application, such as object
segmentation based on superpixel labeling, the label assign-
ment follows some independent and automatic rule. In this
section, we evaluate the performance of the best ISF-based
method (ISF-MIX-MEAN) for this application, namely sky
image segmentation, in comparison with the fastest method
(SLIC) and the most competitive baseline (LSC). We use a

simple yet effective sky segmentation algorithm, as proposed
in [2]. This algorithm uses the mean color of the superpixels
and a threshold defined in the Lab color space to merge
superpixels. The region (set of superpixels) at the top of the
image that contains the larger number of pixels is selected
as the sky region. Figure 10 shows the results of F-score for
this experiment for a varying number of superpixels. Again,
ISF with α = 0.08 (more regular superpixels) performs better
than the others. The parameter α has been found based on
F-score and 5 training images, the 55 remaining images being
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(a) Original image (b) LSC (BR = 0.81, UE = 0.06) (c) ISF-MIX-MEAN (BR = 0.85, UE = 0.05)

(d) Original image (e) LSC (BR = 0.85, UE = 0.02) (f) ISF-GRID-ROOT (BR = 0.88, UE = 0.01)

(g) Original image (h) LSC (BR = 0.91, UE = 0.04) (i) ISF-MIX-MEAN (BR = 0.97, UE = 0.02)

(j) Original image (k) ERS (BR = 0.84, UE = 0.04) (l) ISF-GRID-ROOT (BR = 0.96, UE = 0.01)

(m) Original image (n) LSC (BR = 0.80, UE = 0.04) (o) ISF-MIX-MEAN (BR = 0.93, UE = 0.01)

Fig. 8. Examples of superpixel segmentation on Berkeley (first row), Birds (second row), Grabcut (third row), Insects (fourth row), and Liver (fifth row).
The first column shows the original images with a region of interest (in red rectangle). The second and third columns show the zoomed segmentation results
of the most competitive baseline and the best ISF-based method for the region of interest in the corresponding dataset respectively. The superpixel borders
are presented in cyan and the ground-truth borders in magenta (i.e., errors appear in magenta).
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Fig. 9. (a) Cerebellum, left and right brain hemispheres from an MR image
of the brain (top left). (b) Resulting supervoxels for one MR image of the
brain (top right). (c) CT image of a knee (bottom left). (d) For a segmentation
of 10 supervoxels, the patella bone is obtained as one of them (bottom right).
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Fig. 10. Performance in F-score (Dice) for sky image segmentation: ISF-
MIX-MEAN, SLIC, and LSC. Each method uses its best parameter values.

used for testing. Figure 11 presents one example of sky
image segmentation by using SLIC and ISF-MIX-MEAN. The
example illustrates the superiority of ISF-MIX-MEAN over
SLIC for this application.

The use of lower values of α in the segmentation of 3D MR
images of the brain and in this application strongly suggests
that superpixel regularity has some importance as well as
boundary adherence. It is also interesting to observe that SLIC
outperforms LSC in this application.

E. Efficiency

SLIC is acknowledged as one of the fastest superpixel
segmentation methods [54]. In this section, we compare the
processing times on one of the datasets (Berkeley) for the
ISF methods used in Section IV-B for different superpixel
resolutions and values of the parameter α, SLIC, LSC, and
ERS (the two most competitive methods in Berkeley). Table
III shows the average processing time in seconds of the
methods, without taking into account the I/O operations and
pre-processing (e.g. RGB to Lab conversion), and using the

(a) Original Image (b) Ground-Truth

(c) SLIC (d) ISF-MIX-MEAN

Fig. 11. One example of sky image segmentation. (a) Original image, (b)
ground-truth, and the segmentation results by using (c) SLIC and d) ISF-
MIX-MEAN.

same machine specification used for Table II. Note that the
optimized code of ISF can run faster with higher number of
superpixels and lower value of α (more regular superpixels).
This can be explained by the use of the new differential
image foresting transform [53], whose processing time is
O(N logN) where N is the number of pixels in the modified
regions of the image. As the number of superpixels increases
and their shapes become more compact, the sizes of the
modified regions per iteration reduce. Note that ISF can be
more efficient than LSC and ERS in general, and depending
on the choices of α and number of superpixels, ISF can achieve
processing time competitive with SLIC.

V. CONCLUSION

In this paper, we present an iterative spanning forest (ISF)
framework, based on sequences of image foresting transforms
(IFTs) for the generation of superpixels. The proposed frame-
work provides us a lot of flexibility in terms of different
choices of seed sampling strategies, connectivity functions,
adjacency relations, and seed recomputation strategies. We
also introduce a new seed sampling strategy, which can provide
better results than grid sampling for most datasets, and new
connectivity functions.

In the supplementary material, we prove that ISF converges
and outputs connected superpixels — a property that avoids
the post-processing step required in several other approaches.
We also demonstrate by extensive experiments that the ISF
superpixels can be computed fast with high value of boundary
recall and low value of undersegmentation error. Different
from the baselines, ISF can produce efficient methods with
highly effective superpixel delineation independent of the
dataset. In most cases, including high-level applications, such
as sky segmentation, the methods can be competitive or
superior to several state-of-the-art methods.

As shown, the compromise between boundary adherence
and superpixel regularity in ISF can be controlled by properly
choosing the parameter α in Equations 3 and 4. Indeed, more
superpixel regularity has shown to be important for sky image
segmentation and 3D MR image segmentation of the brain.
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TABLE III
AVERAGE PROCESSING TIME FOR SUPERPIXEL SEGMENTATION IN THE BERKELEY DATASET.

N = 250 N = 500 N = 1000 N = 5000

Method Time (sec) Time (sec) Time (sec) Time (sec)

ISF-MIX-MEAN (α = 0.5) 0.248 0.227 0.199 0.127

ISF-MIX-MEAN (α = 0.12) 0.158 0.129 0.101 0.067

ISF-MIX-MEAN (α = 0.04) 0.075 0.066 0.057 0.049

ISF-GRID-ROOT (α = 0.5) 0.250 0.249 0.243 0.201

ISF-GRID-ROOT (α = 0.12) 0.257 0.253 0.236 0.159

ISF-GRID-ROOT (α = 0.04) 0.244 0.235 0.210 0.127

SLIC 0.036 0.038 0.041 0.042

SLIC + ISF (two iterations) 0.104 0.105 0.108 0.109

ISF-REGMIN 0.055 0.056 0.057 0.057

LSC 0.257 0.259 0.262 0.267

ERS 0.952 1.012 1.065 1.224

This result requires further and more careful investigation.
We also plan to pursue the ideas of incorporating object
information in superpixel delineation [49] and of exploit-
ing hierarchical superpixel segmentation [50] in high-level
applications. The combination between deep-learning-based
approaches and superpixel delineation is also a promising path,
whenever a large number of annotated images is available [56].
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