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Correspondence 

Seeded Region Growing 

Rolf Adams and Leanne Bischof 

Abstract- We present here a new algorithm for segmentation of 
intensity images which is robust, rapid, and free of tuning parameters. 
The method, however, requires the input of a number of seeds, either 
individual pixels or regions, which will control the formation of regions 
into which the image will be segmented. In this correspondence, we 
present the algorithm, discuss briefly its properties, and suggest two ways 
in which it can be employed, namely, by using manual seed selection or 
by automated procedures. 

Index Terms- Image segmentation, region growing, semiinteractive 
image processing, watershed. 

I. INTRODUCTION 
In this correspondence, we deal with the segmentation of intensity 

images in which the individual objects or regions in the image are 
characterized by connected pixels of similar value. Thus, the method 
presented may not be applicable to highly textured images or to range 
images. It may be applied to images affected by lighting variation 
but only after suitable preprocessing (i.e., conventional background 
removal techniques). 

For the segmentation of intensity images, there are four main 
approaches [3], [8], namely, threshold techniques, boundary-based 
methods, region-based methods, and hybrid techniques which com- 
bine boundary and region criteria. Threshold techniques [ 131 are 
based on the postulate that all pixels whose value (gray level, color 
value, or other) lie within a certain range belong to one class. Such 
methods neglect all of the spatial information of the image and do 
not cope well with noise or blumng at boundaries. 

Boundary-based methods [6] use the postulate that the pixel values 
change rapidly at the boundary between two regions. The basic 
method here is to apply a gradient operator such as the Sobel or 
Roberts filter [2]. High values of this filter provide candidates for 
region boundaries, which must then be modified to produce closed 
curves representing the boundaries between regions. Converting the 
edge pixel candidates to boundaries of the regions of interest is a 
difficult task. 

The complement of the boundary-based approach is to work with 
the regions [16]. Region-based methods rely on the postulate that 
neighboring pixels within the one region have similar value. This 
leads to the class of algorithms known as region growing of which 
the “split and merge” technique [9] is probably the best known. The 
general procedure is to compare one pixel to its neighbor(s). If a 
criterion of homogeneity is satisfied, the pixel is said to belong to 
the same class as one or more of its neighbors. The choice of the 
homogeneity criterion IS critical for even moderate success [4], [SI, 
[ 121, and in all instances the results are upset by noise. 
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The fourth type are the hybrid techniques which combine boundary 
and region criteria. This class includes morphological watershed 
segmentation [lo] and variable-order surface fitting [3]. The wa- 
tershed method is generally applied to the gradient of the image. 
This gradient image can be viewed as a topography with boundaries 
between regions as ridges. Segmentation is equivalent to flooding the 
topography from the seed points [15] with region boundaries being 
erected to keep water from different seed points from meeting. Unlike 
the boundary-based methods above, the watershed is guaranteed to 
produce closed boundaries even if the transitions between regions 
are of variable strength or sharpness. The technique encounters 
difficulties with images in which regions are both noisy and have 
blurred or indistinct boundaries. The variable-order surface fitting 
method [3] starts with a coarse segmentation of the image into several 
surface-curvature-sign primitives (e.g., pit, peak, ridge, etc.) which 
are then refined by an iterative region growing method based on 
variable-order surface fitting. Because the technique was developed 
for machine vision applications where the image content may vary 
considerably, the segmentation is entirely data driven with no scope to 
involve higher level knowledge. The method is also computationally 
very expensive. 

We present here a new method known as “seeded region growing” 
(SRG) which is based on the conventional region growing postulate 
of similarity of pixels within regions, but whose mechanism is closer 
to that of the watershed. Instead of tuning homogeneity parameters 
as in conventional region growing, SRG is controlled by choosing 
a (usually small) number of pixels, known as seeds. This form 
of control and the corresponding result is readily conceptualized, 
which allows relatively unskilled users to be able to achieve good 
segmentations on their first attempt. The result is a robust and easy-to- 
use routine where higher level knowledge of the image composition 
can be readily incorporated into the technique through the choice of 
seeds. 

The SRG algorithm is presented in Section 11. In Section 111, we 
examine its properties and compare them to those of watershedding. 
Possible approaches to manual and automatic seed selection are 
discussed in Section IV and V, respectively. 

11. THE ALGORITHM 
Seeded region growing performs a segmentation of an image with 

respect to a set of points, known as seeds. We start with a number 
of seeds which have been grouped into 1 1  sets, say, . A I .  .-I,. . . . . - A r t .  
Sometimes, individual sets will consist of single points. It is in the 
choice of seeds that the decision of what is a feature of interest and 
what is irrelevant or noise is embedded. Given the seeds, SRG then 
finds a tessellation of the image into regions with the property that 
each connected component of a region meets (nonempty intersection 
with) exactly one of the and, subject to this constraint, the regions 
are chosen to be as homogeneous as possible. We present here 
a description of the method as applied to gray-scale images. The 
extension to color or multispectral images is straightforward (after 
choice of suitable metric in color or multispectral space). The method 
can be implemented on any shape grid (or graph) in any number of 
dimensions. 

The process evolves inductively from the seeds, namely, the initial 
state of the sets -41. -42. . . . . -A,, . Each step of the algorithm involves 
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(C) (d) 

Fig. 1. (a) Gray-scale image with 4 seeds marked (white diamonds). (b) The 4 regions after 10% of pixels have been allocated by SRG. (c) The 4 regions after 
50% of pixels have been allocated. (d) The final 4 regions. Notice how noise and unwanted features become engulfed and forced to join one of the desired regions. 

the addition of one pixel to one of the above sets. We now consider 
the state of the sets -4, after n? steps. Let T be the set of all as-yet 
unallocated pixels which border at least one of the regions 

1 { .r, , = l  

T = .r U A , ~ J Y ( . ~ )  n U A # 8 

where M ( . r )  is the set of immediate neighbors of the pixel .r.  In 
the examples to be presented in this correspondence, we will use a 
rectangular grid with immediate neighbors being those which are 8- 
connected to the pixel .r. If, for .r E T we have that -V(.r) meets 
just one of the A i ,  then we define i ( . r )  E (1 .2, .  . . , U }  to be that 
index such that -V(.r)nAt(.p # v) and define b ( . r )  to be a measure of 
how different .r is from the region it adjoins. The simplest definition 
for b(.r) is 

where g( . r )  is the gray value of the image point .r. If -Y(.r) meets 
two or more of the -4,. we take i (  .r.) to be a value of i such that S( .r.) 
meets .4, and h ( . r )  is minimized. Alternatively, in this circumstance, 

we may wish to classify ,r as a boundary pixel and append it to 
the set ll of already-found boundary pixels. Flagging such boundary 
pixels is useful for display purposes or for use with a semiinteractive 
corrective procedure as introduced in Section IV. We then take a 
L E T such that 

and append : to A4, ( 2 ). 
This completes step + 1. The process is repeated until all pixels 

have been allocated. The process commences with each A, being just 
one of the seed sets. The definitions (1) and (2) ensure that the final 
segmentation is into regions as homogeneous as possible given the 
connectivity constraint. 

In programming SRG, we make use of a data structure which 
we will term a sequentially sorted list (SSL). This is nothing new, 
although it has not often been used in image processing applications. 
An SSL is just a linked list of objects, in this case pixel addresses, 
which are ordered according to some attribute. When considering 
a new pixel, for example, at the beginning of each step of SRG, 
we take that one at the beginning of the list. When adding a pixel 
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Fig. 2. 
segmentation using square seed areas (7 x 7 boxes ). (e) ML classification. (0, (g), (h) Watershed segmentation using the same seeds as (b), (c), (d). 

(a) Artificial image with noise U = 2.0. (b), (c) SRG segmentation using differently positioned single point seeds (shown as circles). (d) SRG 

to the list, we must place it according to its value of the ordering 
attribute. In our case, the SSL stores the data of T which is ordered 
according to 6. 

The algorithm for implementing SRG (boundary flagging case) is 
as follows: 

Label seed points according their initial grouping. 
Put neighbors of seed points (the initial T) in the SSL. 
While the SSL is not empty: 

Remove first point y from SSL. 
Test the neighbors of this point: 

If all neighbors of y which are already labeled 
(other than with the boundary label) have 
the same label- 

Set y to this label. 
Update running mean of corresponding region. 
Add neighbors of y which are neither already 
set nor already in the SSL to the SSL according 
to their value of 6. (See note below). 

Flag y with the boundary label. 
Otherwise 

Note that previous entries in the SSL are not updated to reflect 
their differences from the new region mean. This leads to negligible 
difference in the results, but greatly enhanced speed. 

This stepwise description shows that, in executing the algorithm, 
each pixel is visited just once, although at each visit we also view 
each of the neighbors. Hence, it makes for a very rapid program. 

111. PROPERTIES OF SRG 
Fig. 1 gives a visual demonstration of the region growing mecha- 

nism. It also shows the effect of SRG in the presence of unwanted 
artifacts (e.g., the small round objects in the image). Provided none 
of the seeds falls within an unwanted feature, such features become 
subsumed by surrounding regions. An appreciation of the speed of 
the algorithm can be gained from the fact that the user-wait time 
to segment this 256 x 256 8-bit image was -4 s on a DECstation 
5 000/200. 

The natural question which arises from a demonstration of SRG is: 
how critical is the seed choice to a good segmentation? If achieving a 
good segmentation were as dependent on having chosen a particular 
“correct” set of seeds as the choice of the homogeneity parameter 
in standard region growing [4], [5], [12], we would have made no 
progress. Luckily this is not the case. If the regions are relatively 
noiseless, all that is necessary, for a good segmentation is that each 
seed pixel have a gray value which is typical of its region. However, 
if the regions are noisy, single point seeds may fall on an atypical 
pixel (i.e., an outlier statistically). A poor starting estimate of that 
region’s mean would result and the segmentation may be incorrect. 
To prevent this, it is recommended that small seed areas be used 
(instead of single pixels) when segmenting noisy images. Each seed 
area should be sufficiently large to ensure that a stable estimate of 
its region’s mean is obtained. 

The assumption inherent in the choice of the sample region mean 
for definition of 6 in (1) is that the noise in each region is of equal 
variance. If this assumption is not reasonable, then the appropriate 
choice of 6 would be 

g ( * r )  - 111eany€A,(,) [G’(Y)] 
h(.r)  = 

SDBEA,(,) [ d Y ) I  

where SD refers to the sample standard deviation of the region. 
However, this implementation of seeded region growing is much 
more computationally expensive and should be avoided, if possible. 
Where the standard deviation is a known function of the mean (e.g., 
for Poisson counts in SPECT imagery), a suitable variance-stabilizing 
transformation of the image should first be applied. 

A feeling for the stability of the SRG algorithm can be obtained by 
looking at its effect on the artificial two-dimensional image given by 

-10 .1‘ E [-50.-10) 
g ( . r . y )  = .r 1‘ E [-lo. 10) ( 10 .r E [lo. 501 

for y = 0 to 100. 
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(e) (f) 

Fig. 3. Artificial image with noise U = 10.0. (b), (c) SRG segmentati 
segmentation using square seed areas (7 x 7 boxes). (e) ML classification. ( 
the single seed SRG boundaries in (b) and (c) are biased to either side but 

(g) (h) 
sing differently positioned single point seeds (shown as circles). (d) SRG 
;), (h) Watershed segmentation using the same seeds as (b), (c), (d). Note that 
seed area boundary in (d) is in the center of the transition zone. 

(C) 
Fig. 4. (a) Micrograph of cell stained to differentiate cytoplasm and nuclc 
and 2 nuclei) are manually selected. (c) Result of segmentation by SRG if 
specified region is then broken down using a masked seeded region growing 
is nearly identical to the original segmentation in (b) (i.e., the two bounda 

:us. ( 
only 
with 
ries 

(d) 
b) Result of segmentation by SRG if all 4 seeds (for background, cytoplasm 
3 seeds are selected. (d) Taking the first incomplete segmentation in (c), the 

I respect to the 2 additional seeds shown. The resulting corrected segmentation 
differ in position by 1 pixel or less). 
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Fig. 5. (a) X-ray image of human chest in which the left and right lung fields are to be segmented. (b) A second X-ray image of human chest with very 
different left lung field. (c) Result of segmentation of (a) by SRG using automatically derived seed areas (10 x 10 boxes). These seeds, for the left and right 
lung fields and the region in between them, are found using a converging squares algorithm. (d) Result of segmentation of (b). 

In this example, we have two regions with a difference in gray 
levels of 20 and separated by a broad transition region. We will 
assume that the seeds for the segmentation of this image will only be 
placed within the region they represent and not within the transition 
region. A priori, the most appropriate boundary between the two 
regions is a vertical line at .c = 0. To test the stability of SRG with 
respect the presence of noise, we have added Gaussian noise with zero 
mean and standard deviation of (T = 2.0 and (T = 10.0 (Figs. 2(a) 
and 3(a), respectively). Since the assumption of equal variance noise 
is reasonable for these images, the implementation of SRG will use 
the definition of 0 in (1). 

To examine the effect of seed position and seed size variations, 
images (b), (c), and (d) of both figures show the SRG segmentations 
resulting from single point seeds in two different configurations, 
and small area seeds ( 7  x f areas), respectively. These results can 
be compared to the morphological watershed segmentation using 
the same seeds in images (f), (g), and (h), respectively. (Note that 
the watershed operation is actually applied to the gradient of the 
image, obtained using a Sobel filter.) For comparison, a nonspatial 
maximum likelihood (ML) classification (assuming Gaussian errors) 
[7] is included as image (e) using the known class statistics (e.g., 

= -10.0,ol = 2.0 for region 1, and p 2  = +10.0,(~2 = 2.0 for 
region 2 in Fig. 2). ML class allocation is shown (class 1 as black, 
class 2 as white) rather than the boundary between the two classes. 

From Figs. 2 and 3, we see that SRG gives superior results to 
the watershed segmentation and ML classification for both levels 
of image noise. They will give similar results only when there is 
no noise present. As for the influence of seed size on SRG, single 
pixel seeds provide a reasonable estimate of their region means for 
lower levels of noise (i.e., c = 2.0) and so accurate segmentation 
will result. However, for higher levels of noise (i.e., D = 10.0). 
the larger area seeds are required. In both noise cases, provided the 
seed pixels or areas give good estimates of their region means, their 
positions are not important. 

Of course, the test images used here are a lot simpler than a true 
image. It is hoped that these simple examples will still provide insight 
into the claimed robustness of seeded region growing and to the 
motivation behind the chosen algorithm. 

IV. SEMIINTERACTIVE IMAGE SEGMENTATION 
One fundamental problem of the segmentation task is that there 

is rarely one unambiguous separation of a given scene. Rather, the 
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(a) (b) (C) 

Fig. 6. (a) X-ray attenuation (CT) image of a human head. (b) A partial segmentation into three seed classes of bone, soft tissue, air (white, light gray, and 
dark gray, respectively) with unallocated pixels shown as black. This is simply a rough multilevel thresholding of the gray-scale range (i.e., air <30.90 < 
tissue <loo,  bone > 130). (c) Completed segmentation obtained by SRG from the seeds in (b). 

objects or classes to be delineated depend on the application, and the 
human interpreter is often the arbiter of which objects are significant 
and which are not. Thus, a minimal level of human input will always 
be required. Traditionally, the form of this control has been through 
a trial-and-error-based adjustment of parameters. The principle is to 
find a process which works for some data, often known as the training 
set, and then to apply it to a large quantity of similar images. The 
difference with seeded region growing is that the effect of the control, 
in the form of the seeds, is readily conceptualized. 

In the simplest application of SRG, a user views the image and, 
based on personal judgment, chooses the seed points, for example, by 
a mouse-based point-and-click mechanism. Seeded region growing 
completes the job. We refer to this as semiinteractive image pro- 
cessing, as it is neither fully automatic nor fully manual. It has the 
advantage of having an inbuilt quality control-the human operator. 

In a semiinteractive application of SRG, there are two factors we 
must keep in mind, namely, that results will go awry if a seed falls 
on a noisy point, and that users may make errors in the seed choice. 
The first problem is overcome by increasing the area of the seed 
to obtain a stable estimate of the statistics of that region. For the 
second problem, a simple corrective program can be built into the 
semiinteractive process. If, for example, too few seeds were initially 
chosen, then the result would include at least one region which should 
be subdivided. A user could be presented with this first segmentation 
with the option of splitting such regions. This is easily accomplished 
using a constrained form of SRG in which the implemented program 
restricts its processing to the regions being subdivided. As SRG 
does not require rectangular images for its operation, this corrective 
process will be very rapid. An example is shown in Fig. 4. Just as this 
example illustrates a semiinteractive corrective splitting, a corrective 
merging is also easy to encode. 

Thus, we have developed a robust, three-step (seed selection, SRG, 
correction) semiinteractive image segmentation process applicable to 
a wide range of images without the need for any exploratory data 
analysis or modeling of the data. 

V. AUTOMATED IMAGE SEGMENTATION 
In Section 11, we presented the algorithm of  seeded region growing 

in terms of sets A I .  A 2 .  . . . . -A,, whose initial states consisted of one 
manually selected seed point or area each. The obvious way to extend 

this method to automated image segmentation is simply to automate 
the process of seed selection. An example of this use is given in 
Fig. 5. Images (a) and (b) are X-ray images of the human chest in 
which the left and right lung fields are to be segmented. Note that 
these two images have quite different left lung fields. The seeds, 
for the left and right lung fields and the mediastinum (the region in 
between them) are found automatically using the converging squares 
algorithm [ I l l .  The high-level knowledge being used here is that 
suitable seeds for the left and right lung fields are the minima of 
the two minimum density regions (subject to the constraint that these 
regions are not on the edge of the image), and a suitable seed for the 
mediastinum is the maximum of the region of maximum density. In 
this case, minimum is defined not as the point of minimum value, but 
as the point of minimum value within the region of minimum density 
(and similarly for the maximum). The seeds and SRG segmentations 
of (a) and (b) are shown as images (c) and (d) respectively. 

The restriction of each seed leading to a distinct region is not 
necessary. The initial states of each of the .4, may consist of any 
positive number of states subject to the restriction that <4, r l  ‘4) = (b 
for i # j .  The algorithm then proceeds as before. 

We can use this formulation in treating SRG as a correction 
procedure as applied to a first attempt at segmentation obtained by 
some other automated method. The first process may only allocate 
some of the pixels whence SRG can be used to complete the 
segmentation. For example, the first process may form a rough 
approximation to the solution from which we extract a core by 
homotopic thinning [ 141 or other methods; this core is then extended 
to the whole image by seeded region growing. Fig. 6 gives an 
example of this use. 

VI. CONCLUSION 

We have presented here a description of seeded region growing as 
applied to gray-scale images. The extension to color or multispectral 
images is straightforward. SRG is a rapid, robust, easy-to-use image 
segmentation procedure requiring neither tuning parameters nor train- 
ing sets. It is applicable to a wide range of image types. By itself, 
however, it is not a self-contained process, as it also requires the 
input of a few control points in the image known as seeds. These can 
be manually entered or can be the output of other image processing 
algorithms. 
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Digital Planarity of Rectangular Surface Segments 

Peter Veelaert 

Absfrucr- We generalize the concept of evenness which has been 
developed for digital straight lines. Evenness is a necessary and sufficient 
condition for a digital arc segment to be a digital straight line segment. 
We prove that evenness is also a necessary and sufficient condition for a 
rectangular surface segment to be a digital plane segment. This is not true 
for surface segments of arbitrary shape. To clarify the relation between 
shape and evenness we introduce the notion of a regular shape and of an 
arbitrarily extendable even set. 

Index Terms-Digital planes, digital straight lines, evenness, flatness, 
Fourier-Motzkin elimination method, regular shape, straightness. 

I. INTRODUCTION 
Digital geometry is the study of the geometric properties of sets of 

points that lie on an n-dimensional lattice or grid. The digital straight 
line is the curve that has been studied most in digital geometry. 
Rosenfeld has shown that a digital straight line satisfies the chord 
property [4]. Hung has stated an evenness criterion and shown that it 
is equivalent to the chord property [ 11. Kim has shown that a digital 
straight line is a digital arc that is digitally convex [2].  Most of these 
properties have been proven by geometrical methods. An algebraic 
approach has been followed by Dorst and Smeulders to establish a 
correspondence between line segments and quadruples of integers [8]. 

Far less is known about digital planes. Kim has proven a chordal 
triangle property for digital planes [3]. This property only holds 
for infinite digital plane segments without a boundary. For plane 
segments of arbitrary shape, Kim has shown that the chordal triangle 
property is neither necessary nor sufficient. 

In this correspondence, we shall apply Hung’s notion of evenness 
to plane segments. For rectangular segments we shall prove that 
evenness is a necessary and sufficient condition for the segment to be 
part of a digital plane. We also show that the evenness criterion gives 
rise to an algorithm to detect flatness with time complexity 0 ( 7 i 2 ) ,  

where n is the number of points of the segment. Although there exist 
algorithms to detect flatness in O( n )  time (see [9], [l l]), the evenness 
criterion remains a valuable altemative because of its simplicity. 

The derivation of the evenness property by Hung was based on 
the grid-intersect digitization scheme. In contrast, we shall use an 
algebraic approach and relate the digitization of a line or plane 
to a system of linear inequalities. By elimination of the unknown 
parameters in these inequalities we will obtain conditions that a set 
of points must satisfy to be on a digital plane. The method we shall 
use to eliminate the unknowns is the Fourier-Motzkin elimination 
method which in fact can be used for any digitization that is related 
to a system of linear inequalities. 

In Section 11, we define flatness and evenness. Section 111 covers 
the Fourier-Motzkin method. In Section IV, we examine the relation 
between flatness and evenness for infinite segments. In ‘Section V, 
we investigate the evenness of regularly shaped segments. Finally, 
in Sections VI and VII, we discuss the application and meaning of 
these results. 
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