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A Continuous Random Walk Model With Explicit
Coherence Regularization for Image Segmentation

Mengfei Li

Abstract— Random walk is a popular and efficient algorithm
for image segmentation, especially for extracting regions of
interest (ROIs). One difficulty with the random walk algorithm
is the requirement for solving a huge sparse linear system when
applied to large images. Another limitation is its sensitivity
to seeds distribution, i.e., the segmentation result depends on
the number of seeds as well as their placement, which puts
a burden on users. In this paper, we first propose a continu-
ous random walk model with explicit coherence regularization
(CRWCR) for the extracted ROI, which helps to reduce the
seeds sensitivity, so as to reduce the user interactions. Then,
a very efficient algorithm to solve the CRWCR model will be
developed, which helps to remove the difficulty of solving huge
linear systems. Our algorithm consists of two stages: initialization
by performing one-dimensional random walk sweeping based on
user-provided seeds, followed by the alternating direction scheme,
i.e., Peaceman—Rachford scheme for further correction. The first
stage aims to provide a good initial guess for the ROI, and it is
very fast since we just solve a limited number of one-dimensional
random walk problems. Then, this initial guess is evolved to
the ideal solution by applying the second stage, which should
also be very efficient since it fits well for GPU computing, and
10 iterations are usually sufficient for convergence. Numerical
experiments are provided to validate the proposed model as well
as the efficiency of the two-stage algorithm.

Index  Terms—Random
Peaceman-Rachford scheme.

walk, image segmentation,

I. INTRODUCTION

MAGE segmentation models, e.g. energy-based ones, could

be labeled as continuous models or discrete models accord-
ing to their formulations. The former includes the Mumford-
shah model [1], Chan-vese [2] model, the Potts model [3] as
well as the active contour (AC) and geodesic active contour
(GAC) models [4], [5], while the latter mainly consists of
markov random field-based graph models.

A vast segmentation algorithms to solve the above men-
tioned models or their various relaxations have been proposed
in the literature. In the continuous setting, the technique of
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convex relaxation has been extensively utilized to develop
fast and robust approximation algorithms [6]-[10]. Level-
set method [11] based curve evolution is another popular
algorithm [12]-[16]. In the discrete setting, efficient algorithms
include the maxflow [17] based graph-cut algorithms like . — S
swap and a—expansion [18]-[20], Grow-cut [21] etc., while
for non-maxflow based graph algorithms, we have EWCVT
[22], normalized cuts [23], random walk (RW) algorithm [24]
etc. The high computational complexity and memory con-
sumption of the graph-cut algorithms have limited their use to
problems of moderated size. Graph-cut with GPU acceleration,
developed in 2008 [25] and more recently in 2015 [26], has
greatly reduced its computational complexity.

Continuous models are very flexible in the sense that they
could be easily modified, adapted or relaxed to construct
various approximate models. By this way, efficient and robust
algorithms could be developed. On the other hand, Discrete
models and their solving algorithms are more general in the
sense that they are formulated on graphs which don’t assume
regular structures, i.e. the nodes are not required to be arranged
in a lattice grid.

When working on images, which do possess regular lattice
grids, the discrete models or algorithms could sometimes be
reformulated in the continuous setting such that powerful
algorithms were derived. For example, the maxflow algo-
rithm (whether implemented by augmenting path or push-
relabel) was originally designed for graph-cut. Appleton and
Talbot [27] introduced a continuous maximal flow system
which is described by a partial differential equation system.
An efficient solver for flow simulation was also developed by
the authors. Yuan et al. [28] introduced alternative continuous
max-flow models and the technique of augmented Lagrangian
was utilized to design efficient algorithms for graph-cut seg-
mentation.

The basic idea of random walk was introduced by Karl
Pearson in 1905, while the RW algorithm for image segmen-
tation was proposed by Grady [24], [29]. Since then, RW
has been extensively researched and widely used for image
segmentation, especially for extracting regions of interest
(ROI). The connections between RW, graph-cut, normalized-
cuts and MRF have been investigated in [24], [29], and [30].
The connection between the RW algorithm and heat diffusion
has also been investigated in the literature [31]-[35].

Although the RW algorithm has been successfully applied
for image segmentation, it still suffers from some limitations.
Firstly, huge sparse linear systems need to be solved when
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applying the RW algorithm on large images, which might
still be difficult for modern linear system solvers. Secondly,
the segmentation results are sensitive to the distribution of the
seeded nodes, including the number of seeds as well as their
placement. This places a burden on users. The sensitivity of
seeds distribution could be understood as that the RW model
lacks regularization and more prior information is needed.
The main contributions of this paper can be summarized as

follows.
e A continuous model is formulated for the random walk

algorithm, which approximates well the discrete energy
defined for the RW model when working on images. This
continuous formulation leads to a fast solver for RW
based segmentation problems.

e A constraint term that explicitly measures the intensity
coherence of the extracted ROI is introduced and inte-
grated into the continuous RW model, which helps to
reduce seeds sensitivity, so as user interactions.

e An efficient algorithm to solve the continuous model
is proposed, which aims to remove the difficulty with
solving huge linear systems when applying random walk

based algorithms.
The remainder of this paper is organized as follows. In

Section II, more recent development of RW based algorithms
will be reviewed and analyzed. In Section III, we review
the theory of traditional RW algorithm, and the RW model
shall be reformulated in the continuous setting. In Section IV,
the alternating direction scheme, i.e. the Peaceman-Rachford
(PR) scheme for solving the huge linear systems is introduced.
The coherence constraint term is proposed in Section V,
followed by numerical experiments and analysis to verify its
effectiveness. Then, a very efficient two-stage algorithm will
be developed to solve the constrained model. Section VI dedi-
cates to numerical experiments and analysis for validating the
proposed model and algorithm. In Section VII, we conclude
this paper with discussions.

II. RELATED WORK

For dealing with the huge linear systems arising from apply-
ing the RW algorithm, various methods have been proposed
in the literature. Grady er al. [24] have tested the GPU
implementation of the congruent gradient solver. In [36]-[38],
the multi-grid (MG) solver and GPU acceleration have been
investigated. In [39] and [40], the technique of super-pixel
and super-voxel were utilized to reduce the number of vertex
nodes.

The preconditioned conjugate gradient (PCG) [41] method
is usually a good choice for solving large sparse symmet-
ric linear systems. The preconditioner could be the simple
Jacobi preconditioner [42] or constructed from the incomplete
Cholesky Factorization (ICF) [43]. In our experiments, while
the PCG solver converges with Jacobi preconditioner for
images size of 1282, it might fail to converge for images size
of 10247 in a reasonable number of iterations. This is under-
standable since the condition number of the linear systems
could be as large as O(N?), where N denotes the number
of pixels, and the Jacobi preconditioner usually is not quite
effective in reducing it. For the linear systems involved with
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the RW algorithm, the condition number might be much worse
since there are very small (close to zero) values corresponding
to edge nodes, which could promote or lead to singularity.
Convergence behavior can be much improved with an accurate
enough ICF preconditioner. However, more accuracy means
more computational complexity in construction and applica-
tion, as well as more memory consumption, which could be
prohibitive for very large matrix. The MG solver has been
proven to be very efficient for solving linear systems obtained
from discretization of elliptic partial differential equations.
However, when solving the huge linear systems from applying
the RW algorithm, difficulties might arise in devising the
prolongation, restriction and coarsening operators [36], [37].
So, when the data set is very large, new linear system solvers
specific for the problem at hand need to be developed.

The RW algorithm has also been extended in various ways
to deal with more challenging segmentation problems. The
lazy random walk algorithm (LRW) [44], [45], was utilized
as a key ingredient for superpixel generation in [40]. The
partially absorbing random walk algorithm (PARW) [46], was
generalized and employed for video supervoxel segmentation
in [47]. Please refer to [48]-[50] for more applications uti-
lizing the idea of random walk for video object detection.
The subMarkov random walk (SMRW), which was proposed
in [51], tried to unify many other random walk based algo-
rithms including RW, LRW and PARW. By adding auxiliary
nodes, SMRW can encode additional information to its graph,
so as to effectively segment objects with tubular structures.

The above mentioned methods, while successfully extending
the RW algorithm to suit different scenarios, they don’t take
the computational complexity or seeds sensitivity into consid-
eration. Indeed, the Markov nature and the linear transition
probability relationship between adjacent nodes would lead to
a sparse linear system to describe the stationary distribution.
To reduce the seeds sensitivity, additional prior information
is needed to regularize the RW model. The LRW and PARW
algorithms, although assuming different transition probabili-
ties, incorporate no additional prior information regarding to
the image content. For the SMRW algorithm [51], prior regard-
ing to the color distributions of foreground and background
has been incorporated. However, this prior intends to provide
shortcuts to nodes having difficulties to “communicate” to the
seeded nodes, rather than to reduce seeds sensitivity. Similar
idea (known as label prior) can be found in [52].

So, the two limitations, which seem internal to RW based
algorithms, still exist in the state-of-the-art algorithms, which
calls for further research for segmenting huge images by
applying the RW based algorithms.

III. THE CONTINUOUS MODEL FOR THE
RANDOM WALK ALGORITHM

In this section, we will build a continuous energy model for
the traditional RW algorithm, which is the basis for developing
the fast alternating direction PR scheme.

The traditional RW algorithm was formulated in the discrete
setting. The image is mapped into an undirected weighted
graph (V, E), where V consists of vertices (nodes) and E
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denotes the set of edges {ele € E C V x V}. The vertices
on the graph represent pixels in the image. Denote ¢;; as the
edge connecting two adjacent nodes v; and v;. Each edge is
assigned a value w;; called weight, which is usually defined
as

wij = exp(—=pL; — 1;)), (1)

where f is a adjustable parameter, and /; and /; denote the
gray values of the adjacent pixels corresponding to nodes v;
and v;.
The combinatorial Laplace matrix [53] is defined as:
d; if i=}],
Lij = 1—w;j if v;,v; are adjacent nodes,
0 otherwise,

where d; = X jw;;. The matrix L is sparse, semi-definite and
symmetric.

Let u denote the vector that defines the probability field on
the vertices, then the traditional RW algorithm tries to find a
minimizer of the following energy

1 T
Dlul = —u” Lu 2)
2
S.t.
Ru = b, 3)

where b is a vector consisting of zero elements except on
the specific locations corresponding to the foreground seeds
where their values are set to 1, and R is a diagonal matrix with
values of zero on the diagonal except on the specific locations
corresponding to the foreground and background seeds, where
their values are set to 1. So, the traditional RW algorithm
tries to find the minimizer of the above discrete energy with
the constraint that the values of the seeds are fixed to 0
(background) or 1 (foreground). We call (2) the traditional RW
model. The model (2) is motivated by the classical Dirichlet
integral defined as

DIl =~ / VoPdQ, @)
2 Ja

for potential field » and region Q. To find a minimizer of (4),
one could solve its Euler-Lagrangian equation

V2 =0, (5)

with suitable boundary conditions. Grady [29] showed that
with a properly defined metric regarding to the image contents,
the Dirichlet integral could be “translated” to the traditional
RW model.

It’s worth to point out that the energy of the traditional RW
model is not equivalent to the Dirichlet integral since a direct
discretization of (4) is not an approximation to (2), simply
because the equation (4) is isotropic and has nothing to do
with the image contents. In the following, we will formulate
the traditional RW model in the continuous setting to establish
a corresponding continuous energy.

Suppose a continuous image I (x, y) is defined on some
rectangular domain €, and users have marked some fore-
ground seeds as well as background seeds. Let v(x, y) denote
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the continuous potential field we are looking for. Define the
following energy

1
i) =5 [ 1200 + gdlin, o)
S.t.
ov
2. =0 @
Ro = b, (8)

where 711 denotes the unit outward normal of Q, b is a field con-
sisting of zero elements except on the locations corresponding
to the foreground seeds where their values are set to 1, and ‘R
denotes the projection operator

v(x,y), (x,y)is a seeded point;
0, otherwise.

Ro(x,y) = [

Note that R and b are the continuous analogs of R and
b in (3), i.e. R and b should approximate R and b in the
discrete setting, and (I, /) denotes the image gradient. The
function g(-) is defined as

g() = exp(—=pl- 7).

We call (6) the continuous RW (CRW) model, and the tra-
ditional RW model could be thought of as being an approx-
imation to (6). We acknowledge that the above continuous
RW model has been proposed in the literature, e.g. see [32].
However, the following derivation is still valuable to serve our
purpose. The Euler-Lagrangian equation of (6) reads

0 I ov 0 I ov _0 9
—g(g(x)a)—a((y)a)—~ 9)

To solve (9), we need to discretize both the domain Q as well
as the equation. Define

A 0 (a )61) A 0 a )61)
V= —— —_— D= —— L) —
L ox A ox )’ Ly dy 8L ay)’

AL = ALX + AL},.

Let the domain Q be uniformly discretized and approximated
by Qp = {(xi,yj), xi =ixh,y; = j*xh,i =0,1,...,
M—-1,j =0,1,...N — 1.}. Define 0Q, = {(xo,y;) U
(xm—1,yj) U (xi,y0) U (xi, yn—1),i = 0,1,....M — 1,
j=0,1,...,N — 1.}. For a digital image of size M x N,
each pixel could be mapped to a grid node in Q. Let v;;
denote v(x;, y;), and define
O, vij = =81 i-1j + (gi_1 ;&1 vi
_gi+%,jvi+1,ja

2 Co— . .
5Ly Vij = T&,j-10ij-1 + (gi,j—% +gi,j+%)vl>J

= 8i j+4Vij+1s

where g,‘_%,j = g((lx)i_%,j) ~ exp(_ﬁ(li,j - Ii—l,j)z), and

8ird > 8ij-) and 8ij+) could be defined and discretized in
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a similar manner. Then a second order approximation to (9)
on the grid (x;, y;) could be done as follows

52 v 5% vjj
Ap,vij = L;iz L1 omd, Ap,vij = ;zz + 0k,
S0
52 Vjj 5i,vij
Arvij = Lh—2 1;2 +0(h?) = 0. (10)

Let u denote the discrete function that approximates v on grid
points which satisfies

2 . 2 ..
5Lxulj 51‘),141]

e =0 (v

i.e.

(67, + 07 Juij =0, (12)

then (12) is a second order approximation to (9), which is
actually obtained by omitting the O(h?) term in (10). For
boundary nodes, ie. (x;,y;) € 0Ly, to keep the second
order accuracy, we need to introduce fictitious nodes and then
eliminate them by the boundary condition described by (7).
Moreover, one needs to define terms like g_1 J and g,, 1
etc. To coincide with the traditional RW algoriélm, these terms
shall be treated as zeros, which means that the points inside
Q have no interactions with outside points. In matrix-vector
form, (12) could be written as

Lu =0, (13)

where L is the matrix defined in (2) when the traditional RW
algorithm is applied to 4-adjacent graphs mapped from images
of size M x N, and u;; has been concatenated column by
column into vector u.

Due to the Neumann boundary conditions, the matrix L is
singular. This singularity shall be removed by imposing the
constraint (8), which could be approximated well by (3). It’s
easy to see that equation (13) is the Euler-Lagrangian equation
for equation (2). Since (13) is a second order approximation to
(9) on the grid points, which is the Euler-Lagrangian equation
for (6), we conclude that (2) and (6) are modeling the same
potential field, such that one is formulated in the discrete
setting while the other one is in the continuous setting.

For the continuous model, one still needs to solve a huge
sparse linear system if we just discrete its Euler-Lagrangian
equation directly. However, the continuous form of the model
makes alternative solution methods possible. In the next
section, an operator splitting approach will be proposed to
solve the continuous model efficiently.

IV. THE PEACEMAN-RACHFORD (PR) SCHEME FOR
SOLVING THE HUGE LINEAR SYSTEM

The equation (12) can be solved by the traditional RW
algorithm described in [29]. For later reference, we review
it briefly. Denote the seeded nodes as Vs and the unseeded
nodes as Vy, which satisfy Vyy UVy =V and VyyNVy = @.
By rearranging the nodes, the matrix L can be decomposed as

Ly B
E| s
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The objective function is then decomposed as

1 Ly B [x],
— T T M
ot st 2]
1
=§(x;,1LMxM + 2x5BTxM —i—ngUxU), (15)
where xj; and xy represent the potentials for seeded nodes
and unseeded nodes respectively. To minimize (15), one just
needs to solve the following linear equation

LUxU = —BxM. (16)

The traditional RW algorithm decomposes the potential field
into xy and xp7, and only xy is solved in (16). In this
way, the constraint Ru = b in (2) is directly absorbed and
handled. The drawback of this approach is that it ruins the
underlying structure of the potential field, i.e. the solution
could not be mapped to a structured grid anymore. When
considering some efficient solvers such as the Geometric
multi-grid method, or parallel computing devices such as GPU,
structured grid is usually required for better performance.
So our first effort is to deal with the constraint in a different
way, so as to preserve the grid structure.

A. Dealing With the Constraint—Penalty Method

To preserve the grid structure, we treat the whole potential
field as unknown, and handle the seeded nodes by the penalty
method. The traditional RW model (2) is a constrained min-
imization problem. By utilizing the classical penalty method,
the constrained model could be transformed into an uncon-
strained one

1 A
Dlu] = EuTLu—i—E | Ru—b|3. (17)

By this way, we don’t need to separate the seeded nodes
out from the unseeded ones. The Euler-Lagrangian equation
of (17) reads

(L +ARTR)u = AR"b, (18)

where L is a real symmetric five-diagonal matrix. It’s easy
to verify that R” = R, so RT R is a sparse diagonal matrix,
and L + ZART R is a symmetric five-diagonal sparse matrix.
On the continuous setting, the corresponding Euler-Lagrangian
equation should read

(AL + AR R)o = AR"b, (19)

where R* denotes the adjoint operator of R.

Similar ideas for preserving grid structure have been pro-
posed in [31], [37], and [54]. For the penalty method to work,
usually the parameter A must be set very large to effectively
impose the constraint. However, we will show in the next
subsection that for our model (17), the parameter 4 could be
fixed to any relative large value, e.g. within the range [1, 100].

The penalty method reveals a close connection between the
RW algorithm and the PARW algorithm. In the above context,
when a constant absorbing rate (which is parameterized by 1)
is set only for the foreground seeds, then the linear system
solved by the PARW algorithm is

(L + ARTR)u = RTb. (20)
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(b)

Fig. 1. Sensitivity tests for the parameter 4. (a) The cardiac image slice;
(b) the segmentation result by the traditional RW algorithm, with 2 = 100.

Compared to (18), the constant 4 is absent from the right
hand term b. However, for the PARW algorithm, multiplying
a constant to the right-hand term will not change the final
labeling. In fact, two similar linear systems will be solved
by the PARW algorithm, and the labeling is determined by
comparing the magnitudes of the two solutions, which shall
not be affected by a scaling constant.

B. Selecting the Penalty Parameter A

In the continuous setting, the unconstrained RW model has
the form

1 )
min D[u] = —/ |Viul? dQ—i-—/(E)f{u—b)de, (1)
2 Ja 2 Ja

(g(IX)uX,g(Iy)uy)T, ie. Vg ;ienotes the

0 0
weighted gradient operator (g (Iy) P g(ly) 6_) . Generally

where Viu =

speaking, to obtain the solution of the CRW model through
(21), the parameter 4 must be very large so as to enforce the
constraint. Fortunately, we will show below that this general
rule can be compromised when solving (21). In our tests,
equally good solutions could be produced when we vary 4
within the range [1, 100]. This is demonstrated by the experi-
ments performed on the medical cardiac CT image slice shown
in Figure 1(a), which is size of 256 x 256 pixels. Figure 1(b)
shows the segmentation result for the framed region specified
in Figure 1(a). For this test, one foreground seed and one
background seed are marked, as indicated in Figure 1(b).
The parameter /£ is set to 90. The original probability field
P, was computed through the formula xy = —L&leM,
while the probability field P, was computed by the formula
x = (L + RTR)™'(ARTb). Define AP = P,; — P;.
The L°°-norm of AP and the rooted mean square error
(RMSE): %, where N is the length of vector AP, were
computed against different values of A, and the results are
illustrated in Figure 2. When 4 > 1, both | A P || and RMSE
are less than 0.05, which are accurate enough for the final
thresholding segmentation. In order to ensure the correctness,
we set 4 = 100 in all the numerical experiments performed in
the following sections.

C. The PR Scheme for Solving the Linear System

Since A could be decomposed into Az, and A L, the
Operator Splitting method or semi-implicit methods could
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A
Fig. 2. ||AP||oc and RMSE against the parameter 4 € [0.005, 5].

be applied. We choose the PR scheme as our solver which
is unconditionally stable and seconder-order accurate in both
temporal and space. The solution of equation (19) could be
thought of as being the steady state of the following heat
conduction equation

ov . .

E—i—(AL—i—i% R = AR, (22)
where a pseudo-time variable ¢ has been associated to the
continuous potential field v, and one can use v(x,y,?) to
denote its value at the space-time point (x, y, 7).

Suppose the temporal domain is discretized by placing a
grid on the temporal axis with grid spacing A¢, which could be
indexed as n = 0,1,2,.... Let " = v(x, y, nAt). Given initial
guess Y, for n = 0.1,..., the PR scheme solves the following
two equations sequentially and iteratively until convergence:

Dn+% —pn 1 1
Az + AL 0" 4 Ap,o" + IR R" T2 = AR*D,
(23)
n+l _ n+ L
v vz n+3 n+l1 * n+l1 *
A7 +Ap0 2+ALyv + AR R = AR7D.

(24)

The above equations need to be further discretized in the
space domain. Let u! ; denote the grid function that approx-
imates v(x, y, t) on the grid {(i, j,n),i = 0,1,...,M — 1;
. = . o
j=0,1,....,.N—1,n=0,1,...}, ie. ui; = v(i, j,nAt).
Define
2
Of, Wij ==& 1 jwi-1,j + (81 ;+ &1 uij
_gi+%,j”i+l,j,
2
5Ly Ujj :_gi’j,%ui,jfl + (gi,jf% +gi’j+%)ui,j
_gl‘,j_;,_%ul‘,j-i-l’

which are second order approximations to Az v and Ap v
on the grid respectively. Then the equations for u} ; can be

written as
1
n+§ _n

Uij  TUj o ot o g T o 1+2
b ol ol + ART Rup * = ARb,
(25)
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n+l n+%
Mij TMij o mts
— "+ 0 U, ;
At x L]
i=0,1,....,M—1,

+ 07wl T + AR Rult! = iRb.
j=0,1,...,N—1. (26

Notice that equation (25) and (26) could be decoupled into
M and N independent one-dimensional problems, respectively.
In matrix form, these one-dimensional problems reduce to
tridiagonal linear systems, which could be solved efficiently
by the chasing algorithm (Thomas algorithm) [55]. The initial
guess 1" is usually set to zero. One might also build the prior
information about the foreground seeds into u° by setting the

values of their corresponding elements to 1.

D. Validation of the PR Scheme

The PR scheme boils down to an iterative solver for the
linear system (18) after discretization. To verify the effec-
tiveness of the proposed PR scheme, experiments need to
be performed to compare the PR scheme with other popular
sparse matrix solvers. We choose the PCG method as the com-
peting solver, since the matrix is symmetric positive definite,
which perfectly fits to the PCG method. Generally speaking,
ICF preconditioners should be applied to accelerate the CG
solver. However, as explained in the introduction section, for
very large matrix, the construction and implementation of
the ICF preconditioner are costly, or even prohibitive. So,
in our experiments, the Jacobi preconditioner is employed
when needed, since we aim to solve huge linear systems.

Suppose the size of the image is N x N, then the linear
system to be solved is size of N> x N2. The computational
complexity can be analyzed as follows. For each iteration of
the PCG method, it needs one matrix (5-diagonals) vector
multiplication and three vector dot products, which give total
8N? multiplication operations. For each iteration of the PR
scheme, it needs two matrix (3-diagnols) vector multiplications
and 2N Thomas algorithm, which give total 18 N2 multiplica-
tion operations. So, roughly speaking, compared to the PCG
method, the number of floating-point operations needed by the
PR method is doubled in each iteration. That’s to say, to gain
advantages, the PR method must consume no more than half
number of the iterations consumed by the PCG method to
compute the solution of the underlying linear systems.

The performance tests are done on the rock CT image slice
shown in Figure 3(a), where one foreground seed is marked
blue, while the background seeds are marked yellow. The
framed region indicated by the green rectangle, which is shown
in Figure 3(b), will be zoomed-in for better display in the
following figures. The original rock image slice is size of
680 x 669, which comes from a CT scan of a road surface
paved by rock and asphalt. To model large images, the rock
image is resized to 1380 x 1338 by calling the Matlab function
resize(). This is a more challenging problem than the cardiac
image case, since the image size is much larger and the gray
value variations are more complex. So, the median filter with
template window size of 7 x 7 is applied on the image before
performing any tests.

The PR scheme is unconditionally stable and any large
timestep Ar could be utilized. Large Ar usually leads to
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(@ (b)

Fig. 3. (a) The rock image, size of 1380 x 1338. One foreground seed
is marked as blue, while the background seeds are marked as yellow;
(b) zoomed-in image for the framed region specified in (a).

acceleration. However, in the context of numerical solution
of partial differential equations, the PR scheme’s accuracy is
O((AD?) + 0((Ax)?) + O((Ay)?), which means that large
At will introduces large error. So, a smarter strategy is that a
large At is used for the first 10 or 20 iterations, then a small
At is switched on for better accuracy. In the following tests
of PR method, we set Ar = 10000 for the first 20 iterations,
then At = 100 is switched on.

The results are shown in Figure 4, where PCG-500 refers
to the solution of the linear system, i.e. the probability
field, after 500 iterations, and PCG-500-ROI refers to the
labeling function by thresholding the probability field (using
the threshold 0.5). The other captions follow the same way
of interpretations. As shown in Figure 4(a), 500 iterations
of PCG only spread the foreground seed information a little
bit. After 1000 iterations, the probability field seems quite
good as shown in Figure 4(e). However, the labeling function
shown in Figure 4(b) shows that the probability field is still far
from convergence. After 2000 iterations, PCG converges to the
ideal solution, as shown in Figure 4(c) and (f). On the other
hand, 50 iterations of the PR method already compute rather
good results for both the probability field and the labeling
function, as shown in Figure 4(g) and (j). After just about
100 iterations, the PR scheme converges to the ideal solution,
since the PR-100 and PR-200 are almost identical, which
indicates convergence.

V. A NEwW CONSTRAINT MODEL

In this section, a regularization term that measures the gray
value coherence of the extracted ROI will be introduced and
combined into the CRW model, which helps to reduce seeds
sensitivity, so as to reduce user interactions. Besides, a very
fast algorithm will be proposed to solve the regularized CRW
model.

A. The Continuous RW Model With Coherence Regularization

The traditional RW model is sensitive to seeds distribu-
tion, especially when a small number of nodes are marked.
Another issue with traditional RW is the boundary leakage
problem, i.e. the boundaries of the extracted ROI are easy
to grow out of the ideal ones. This phenomenon is actually
observable if one checks the results of previous experiments
shown in Figure 1(b) and Figure 4(f). To overcome such a
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(a) PCG-500-ROI (b) PCG-1000-ROI (c) PCG-2000-ROI

(d) PCG-500 (e) PCG-1000 (f) PCG-2000

(g) PR-50-ROI (h) PR-100-ROI (i) PR-200-ROI

10K

(j) PR-50 (k) PR-100 (1) PR-200

Fig. 4. Efficiency comparison of PCG method and PR scheme. (a)-(c) show
the segmentation results by the PCG method; (d)-(f) show the probability field
computed by the PCG method; (g)-(i) show the segmentation results by the
PR scheme; (j)-(I) show the probability field computed by the PR scheme.

drawback, an intuitive idea is to add a regularization term
that measures the intensity coherence inside the extracted ROI.
This motivates the following constraint:

/ 02 VIdQ < 5, (27)
Q

where |VI| denotes the norm of image gradient, and J controls
the strength of the constraint. Note that for background region,
v ~ 0, while for foreground region, v ~ 1. So, the constraint
intends to measure the total variation of the ROI with respect
to the image. The CRW model incorporating the constraint
(27) can be formulated as

1
B0 = 5 [ 18000 +gdlae,  @8)

S.t.

Ro = b, / 02| VIdQ < 6. (29)
Q

We name the above model as continuous random walk with
coherence regularization (CRWCR). To solve this model,
we apply again the penalty method to transform it into an
unconstrained one

1 )
min Ex[v] = —/ IViol> dQ + —/(9% — b)%dQ
2 Ja 2 Ja

+1/ 2\vIldQ,  (30)
2 Ja

whose Euler-Lagrangian equation is

(AL + AR R+ y |VI])o = AR, 31)
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where 4 and y are penalty parameters for the seeds constraint
and coherence constraint, respectively. The parameter A can
be fixed to 100, as discussed previously. The parameter y,
however, is problem dependent and needs to be tuned to
achieve satisfactory result. This is a typical situation for
regularization parameters.

There is an interesting connection between the coherence
regularization and the label prior introduced in [52] by Leo
Grady and further explored in [51]. In the spirit of [52],
to incorporate the label prior, two extra seeded “floating” nodes
should be added to the graph for two-classes, i.e. foreground
and background segmentation, and the label prior is encoded
into the weights for the edges connecting the floating nodes
and all other nodes. Let ' and 4% denote the foreground float
node and background float node respectively, and y A}, s =
1,2 denote the weights for the edge e(v;, h*), i.e. between
node v; and float node /A*, where v; is any node other than
the floating nodes. Without considering other seeded nodes,
the linear equation to be solved in [52] reads

2
(L+ y ZA’)xs =y,

r=1

(32)

where x* denotes the probability field, whose ith element v}
denotes the probability that a random walker starting from
node v; first reaches a seeded node with label s. The symbol
A" is understood to be a diagonal matrix with the values of 1"
on the diagonal. Due to x! 4+ x% = 1, just one equation needs
to be solved. Suppose we choose to solve the first equation
that involves with x!. If we set 1! = 0, and define A2 as the
approximation to the gradient [VI| on the discrete grid, then
the equation (32) reduces to

(L Ty A2) xl=o, (33)
which is discretely equivalent to (31) without considering
seeded nodes. Alternatively, one can think that if just one
floating node marked as background is added to the graph,
then with properly defined weights, the CRWCR model (after
discretization) reduces to the traditional RW model running
on the augmented graph. This analysis leads to the conclusion
that the solution of the CRWCR model possesses the same
probability interpretation as the solution of the traditional
RW algorithm. Especially, the solution of the CRWCR model
should map to the range [0, 1], i.e. the maximum (minimum)
principle applies.

To verify the effectiveness of the proposed CRWCR model,
we performed the following experiment. A one-dimensional
signal was extracted from the cardiac image, which was shown
as the green line in Figure 5(a). One foreground seed and two
background seeds were specified. Then the CRWCR model
was applied on this one-dimensional signal. Note that in
this case, a tridiagonal linear system needs to be solved.
Figure 5(b) shows the results of traditional RW model, while
Figure 5(c) shows the result of the proposed CRWCR model.
From the zoomed-in regions, one can clearly see that the
traditional RW model suffers from boundary leakage problem,
while the CRWCR model (with y = 0.000001) successfully
and accurately extracts the foreground.



1766

Fig. 5. (a) The green line shows the one-dimensional signal (139th line of the
cardiac image), one foreground seed is marked as blue and two background
seeds are marked as yellow; (b) the result of traditional RW algorithm;
(c) the result of the CRWCR model.
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Fig. 6. One-dimensional comparison of the traditional RW model and the
proposed CRWCR model. (a) the result of traditional RW algorithm; (b) the
result of proposed CRWCR model.

To examine the results further, we plot the one-dimensional
signal and the segmentation results in Figure 6, where the
foreground seed, background seeds and extracted foreground
are marked as blue square node, yellow square node and red
curve, respectively. By comparing Figure 6(a) and (b), one
can tell that the traditional RW model tends to extract larger
foreground, i.e. some background pixels are mis-classified as
foreground pixels. On the contrary, the CRWCR model tries
to separate the foreground and the background at the favorable
places.

Our next experiment is performed on the rock image (size
of 680 x 669) shown in Figure 7(a), where the framed region
is to be zoomed-in for better display. The 420th column of
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Fig. 7. (a) The rock image, with a framed region; (b) Zoomed-in image
for the framed area in (a); (c) the result of the traditional RW model; (d) the
result of the CRWCR model.

the rock image was extracted as a one-dimensional image to
run the tests. As shown in Figure 7(b), one foreground seed
and two background seeds are specified. Figure 7(c) and (d)
show the segmentation results by the traditional RW model and
the CRWCR model, respectively. By examining the zoomed-
in regions, one can see that the extracted foreground region,
i.e. the red line segment, from the traditional RW model
has unfortunately exceeded the real boundaries, as shown
in Figure 7(c). On the contrary, the CRWCR model (with
y = 0.001) extracts the foreground rather accurately, and the
ends of the red line segments anchor precisely at the ideal
boundary, as shown in Figure 7(d).

To look into more details, we also plot the one-dimensional
image and the segmentation results in Figure 8. By comparing
Figure 8(a) and (b), one can tell that the traditional RW model
seems to be a bit “aggressive”, which is actually unfavor-
able, in extracting the foreground region. On the contrary,
the CRWCR model tries to separate the foreground and the
background at the expected locations.

To further demonstrate the effectiveness of the CRWCR
model, additional experiments were performed on the two
dimensional cardiac and rock images. To avoid possible early
stopping of iterative methods, when solving the linear systems
(5-diagonal matrices) obtained from the discretization of equa-
tion (31), the Matlab backslash solver was called directly. For
the CRWCR model, the parameter y is set to 0.0006. Note that
the results are not very sensitive to y . In our tests, y = 0.0001
also works fine. For both the cardiac image and the rock
image, with same seeds distribution, the proposed CRWCR
model successfully captures the boundary of the foreground
region, while the traditional RW model fails to do so, as shown
in Figure 9 (corresponding to the framed region illustrated
in Figure 1) and Figure 10 (corresponding to the framed region
illustrated in Figure 7).
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Fig. 8. One-dimensional comparison of the traditional RW model against the
proposed CRWCR model. Line profiles are extracted from the 420th column
of the rock image. (a) the result of the traditional RW model; (b) the result
of the CRWCR model.
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Fig. 9. (a) the result of the traditional RW model; (b) the result of the
proposed CRWCR model.

B. Fast Solver for the CRWCR Model

As discussed in Section I, for huge linear systems, even
sparse symmetric positive definite ones, the iterative solvers
might fail to work properly in an efficient manner. In this
situation, the PR scheme provides a remedy. For our CRWCR
model, the PR scheme solves the following two equations
iteratively until convergence:

(14 At(Ap, + 7 |VI| + AR R 2
= 0"+ At(ARD — AL 0",

(1+ At(Ag, + 7 VI + AR R)p" !
— 0™ £ ATORD — Ap, 0" 7).

(34)

(35)
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Fig. 10. (a) the result of the traditional RW model; (b) the result of the
proposed CRWCR model.

Note that the PR scheme fits well for task-level parallel
computing, since both equation (34) and (35) can be decoupled
into a series of one-dimensional equations which can be
solved independently. To further accelerate the PR scheme,
we propose to combine it with an initialization procedure,
which aims to provide a good initial guess. This is realized by
solving one-dimensional CRWCR models for each row and
column of the image. So, the proposed algorithm consists
of two stages, which can be summarized as Algorithm 1,
where CRWCR(!, F, B) applies the CRWCR model on image
I, with foreground seeds F' and background seeds B. Its output
should be the set of pixel indices that define the foreground
region. For convenience, instead of using one dimensional
global indexing of the nodes (pixels), we return to the two
dimensional pixel coordinate indexing, which we think is more
appropriate to describe our algorithm. So, in the description
of Algorithm 1, (i, j) refers to the node (pixel) resides in the
ith row and jth column of the image.

For the traditional RW algorithm, the threshold for the
final thresholding segmentation is usually set to 0.5. In the
initialization stage, however, the parameter 7'1 is set to 0.6.
This is necessary to make sure that the foreground com-
puted by the initialization procedure belongs to the ideal
foreground. For the same reason, the parameter y is set to
0.2, which is much larger than that in the PR correction stage.
Based on our experience, the iteration number for both the
initialization procedure and the PR correction procedure is
set to 10. For more challenging problems, it might need to
be increased accordingly. Some convergence measure might
also be employed to adapt this number automatically. In the
initialization procedure, it’s possible that there exist only
foreground seeds for certain rows or columns. To deal with
such cases, the two ending pixels of the image rows and
columns are always specified as background seeds.

VI. NUMERICAL EXPERIMENTS AND ANALYSIS

To demonstrate the effectiveness and efficiency of the pro-
posed CRWCR model and the two-stage algorithm, various
experiments will be performed on the cardiac image, rock
image and images from public image data set.

A. Efficiency Test: Comparison With PCG

In previous tests, the efficiency of PR scheme against
the PCG method has been validated on solving huge
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Algorithm 1 Two-Stage Algorithm

1: procedure STAGE 1: INITIALIZATION

2 Input : image I, seeds S

3 Output: foreground seeds F', background seeds B.

4: Set iter =0, 8 =90, =100,v = 0.2,71 = 0.6.

5 repeat

6: For each ¢ = 1,2, -, if 34, such that (i,j) € S,
compute v = CRWCR(I(4,:), S, B).

7: F« FU{(i, k) :u(k) > T1}

8: S+ F

9: For each j = 1,2,---, if 3, such that (i,5) € S,
compute v = CRWCR(I(:, j), S, B).

10: F+ FU{(k,j):u(k) >T1}

11: S+ F

12: iter < iter + 1

13: until iter > 10

14: end procedure

15: procedure STAGE 2: PR SCHEME CORRECTION

16: Input: image I, foreground seeds F', background seeds
B

17: Output: foreground F

18: Set u¥ = zeros(size(I)), u’(F) =1, n =0, T2 =
0.5, v = 0.0006.

19: repeat

20: n<n+1

21: Compute u"*1/2 by solving equation (34)
22: Compute u" ! by solving equation (35)

23: until iter > 10
2% F <+ FU{(i,j):u"Ti(i,j) > T2}
25: end procedure

linear systems. For the two-stage algorithm, the second-stage,
i.e. the PR scheme can theoretically be replaced by any itera-
tive solver, especially by the PCG method. In this subsection,
we will show that the PR scheme employed in the second
stage usually still performs better than the PCG method.

It needs to be pointed out that if the first stage of initializa-
tion provides a very good approximation to the ideal solution,
then PCG, or maybe any other iterative solver, will generally
work efficiently, since just small local corrections are needed.
However, the initialization might not always perform well.
Figure 11(a) shows such a situation. With two foreground
seeds (marked as blue) and two background seeds (marked
as yellow), the initialization stage (10 rounds of sweeping)
fails to capture the left part of the boundary. Note that the
experiments are done on the original rock image, and the
initialization is actually carried out with a large y = 0.001
on purpose, which will restrict the diffusion ability of the
foreground seeds. For such a relatively bad initialization, PR
could be still much more efficient than the PCG method.
As shown in Figure 11(b) and (e), for both 10 iterations, PCG
improves the initialization a bit, while PR already captures
well the ROI’s boundary. As a comparison, the PCG method
needs about 100 iterations to obtain a satisfactory result.

The result of PR after 50 iterations is shown in Figure 11(f).
As one can see that there is no obvious difference between
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Fig. 11.  Efficiency comparison with PCG. (a) the result of initialization;
(b)-(d) the results of PCG after 10, 20 and 100 iterations, respectively;
(e)-(f) the results of PR scheme after 10 and 50 iterations, respectively.

the results shown in Figure 11(d) and (f). In fact, the PR
scheme converges in 20 iterations for this test. PR-50 rather
than PR-20 is shown because it helps to demonstrate how
PCG and PR perform with same computational complexity.
By further comparing PR-10 and PCG-20, one can come to the
conclusion that with enough iterations, PR and PCG produce
same results. However, if one just want the results in 10 (or 20)
iterations, then the PR scheme gives much better result than
the PCG method. Please note that in this test, the parameter
At is fixed to 100 and the smarter strategy for setting Az is
not adopted.

B. Effectiveness Tests on Reducing User Interactions

1) Test on the Cardiac Image: Figure 12(a) shows the
result of the traditional RW algorithm corresponding to the
framed region illustrated in Figure 1. One foreground seed is
specified inside the heart region, while the background seeds
are specified by a yellow polygon around the heart. For both
the initialization procedure (shown in Figure 12(b)) and the
two-stage algorithm (shown in Figure 12(c)), the foreground
seed is the same, while the image boundary is specified as
background.

Even with plenty of background seeds, the traditional RW
algorithm still can not produce satisfying result, and some
background regions are misclassified as foreground. On the
other hand, the extracted foreground by the two-stage algo-
rithm fits the heart quite well. Note that the initialization
procedure has computed a rough shape of the heart, as shown
in Figure 12(b). However, the zigzagged boundary as well as
small holes inside the heart make it clear that the initialization
procedure itself is not enough for accurate segmentation, and
the PR correction procedure is indispensable.

Another interesting aspect of the two-stage algorithm is
that it even does not need user-specified background seeds,
which greatly simplifies user interactions. Please note that
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Fig. 12.  Comparison of the traditional RW algorithm against the two-stage
algorithm. (a) The result of traditional RW algorithm; (b) the result of
initialization procedure; (c) the result of proposed two-stage algorithm.

the yellow polygon provides much stronger prior than the
image boundary. Experiments show that for the traditional
RW algorithm, one cannot just mark the image boundary as
background seeds.

2) Tests on the Rock CT Image: Random walk algorithms
allow interactive segmentation. Users might firstly mark some
foreground seeds and background seeds, run the RW algorithm
and then examine the results. If not satisfied, users could mark
additional seeds and run the algorithm again.

The interactive segmentation process is demonstrated in Fig-
ure 13 for the traditional RW algorithm. Figure 13(a) shows
the rock image, where the framed region will be zoomed-in
for displaying the results better. As shown in Figure 13(b),
two foreground seeds are marked in blue, while background
seeds are specified by the yellow box. The segmentation result
seems good except at the middle valley. Suppose that we want
to separate the stone along the middle valley, then additional
background seeds are marked as shown in Figure 13(c). The
result, however, is still not satisfying. By adding more fore-
ground as well as background seeds along the valley, the final
result shown in Figure 13(d) seems quite good. As a com-
parison, the interactive segmentation process of the two-stage
algorithm is shown in Figure 14. With same foreground and
background seeds as shown in Figure 13(b), the segmentation
result for the initialization procedure is shown in Figure 14(a).
As one can see, the extracted boundary along the valley fits the
stone boundary well. Then by marking additional background
seeds in just one place, as shown in Figure 14(b), the two-stage
algorithm already produces satisfying result.

This experiment suggests that the two-stage algorithm usu-
ally needs less user interactions than the traditional RW
algorithm to achieve similar segmentation result.

C. Comparison With State-of-the-Art Methods

The LRW [40], PARW [46], [47] and SMRW [51]
algorithms are more recent developments of the basic idea
of random walk. As stated previously, similar linear systems
are also involved with these algorithms. So, the proposed
two-stage algorithm could have been applied to reduce
the computational complexity of these algorithms. In the
following experiments, we will show that the above men-
tioned algorithms still suffer from the seeds sensitivity and
boundary leakage problems, and the proposed CRWCR model
overcomes this limitation.

The LRW and PARM algorithms are implemented by
ourselves, while the implementation for the SMRW algorithm
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Fig. 13. Interactive image segmentation by the traditional RW algorithm.
(a) the rock image with a framed area for zoomed-in display; (b) the
first interactive segmentation result; (c) the segmentation result with added
background seeds; (d) the final segmentation result with added foreground
and background seeds.

Fig. 14. Interactive image segmentation by the proposed two-stage algorithm.
(a) the result of initialization; (b) the result of the two-stage algorithm.

is downloaded from https://github.com/shenjianbing/Sub
Markov-Random-Walk-for-Image-Segmentation-.

The LRW algorithm is parameterized by a variable a
which denotes the probability of leaving the vertices. The
labeling for a node is determined by its commute time to
the seeded nodes of different classes, e.g. foreground and
background. Let the Laplace matrix L = D — W, where D
is the diagonal matrix formed by the main diagonal of L.
Then the coefficient matrix of the linear systems that need
to be solved for LRW is (I — aS), where I denotes the
identity matrix, and S = D~Y/2WD~1/2. In the following
experiments, the parameters are set as oo = 0.9998 according
to the suggestions in [40]. The PARW algorithm solves linear
systems with the coefficient matrix A_l(A + L), where A
is a diagonal matrix. In the following experiments, we set
A = 61 as done in [47], in which case, the coefficient matrix
reduces to (1 + L), where 6 performs as a regularization
parameter. For the SMRW algorithm, the parameters are set
as ¢ = 0.0004, 6, = 60, 2 = 2% 10710 These parameters have
subjected to fine tuning.
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Fig. 15.

First column: tested images with marked seeds; Second column: results of LRW; Third column: results of PARW with fine-tuned parameter 0:

0.001(bear), 0.00001(river), 0.0001(brain tumor); Fourth column: SMRW; Last column: results of CRWCR.

The experiments are carried out on four images from public
image data set, i.e. the Berkeley segmentation data set (the
first two images of the first column, i.e. the bear and river,
https: // www 2.eecs.ber keley.edu/Research/Projects/CS/vision/
bsds/) and the Brain Tumor Segmentation data set
(the last two images of the first column, http:/spl.
harvard.edu/publications/bitstream/download/5270).

The results are demonstrated in Figure 15. The first col-
umn shows the tested images, as well as the foreground
seeds (marked as blue) and the background seeds (marked
as yellow). The second to fifth columns show the segmen-
tation results of LRW, PARW, SMRW and the proposed
CRWCR model (y = 0.0001, implemented with the two-stage
algorithm), respectively. For the bear image, the LRW and
PARW fail to capture part of the boundary, while the SMRW
algorithm and the CRWCR model successfully detect the bear
from the context. The SMRW algorithm even captures the
boundary better at the head and the rear sections. For the river
image, the LRW and PARW algorithms still fail to capture
some boundary sections, while both the SMRW algorithm and
the CRWCR model capture the river’s boundary quite well.
However, the SMRW algorithm also captures other boundaries
which don’t belong to the ROI. This might because the label
priors (learned density distributions utilizing Gaussian Mixture

Models) built into the SMRW algorithm could not separate
the foreground and background well. For tumor segmenta-
tion, the LRW and PARW algorithms demonstrate obvious
boundary leakage by including part of background regions into
the ROI, while the SMRW algorithm produces meaningless
segmentation. On the other hand, the proposed CRWCR model
always produces reliable and satisfactory results.

VII. REMARKS AND CONCLUSIONS

We proposed a continuous random walk model with coher-
ence regularization (CRWCR), and an efficient two-stage algo-
rithm for solving it. Various numerical experiments against the
traditional RW algorithm and the state-of-the-art algorithms
show that the proposed CRWCR model could successfully
reduce seeds sensitivity (i.e. user interactions).

The proposed two-stage algorithm could help to remove the
difficulty of solving huge linear systems involved with the
traditional RW algorithm as well as state-of-the-art random
walk based algorithms including LRW, PARW and SMRW.
Both procedures of the two-stage algorithm are very efficient
since they fit well for parallel computing and usually very few
iterations are needed. According to our experiments, for an
1024 x 1024 image, running the two-stage algorithm once (with
CUDA acceleration) needs about 0.1 seconds on a laptop with
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Intel i17-6700HQ CPU and GTX965M GPU. The source code
(C++ with CUDA acceleration) for implementing our algo-
rithm shall be available at https://github.com/feifeizuo/crwecr.

The proposed two-stage algorithm can be easily extended to
deal with volume images. In this case, the PR scheme needs
to be replaced by other semi-implicit schemes, since the PR
scheme are not consistent in 3D domain. One can also apply
the ADMM [56] framework on the energy functional of the
CRWCR model to develop efficient algorithms. This will be
investigated in our future work.
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