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Probabilistic Diffusion for Interactive
Image Segmentation

Tao Wang , Jian Yang , Member, IEEE, Zexuan Ji, Member, IEEE, and Quansen Sun

Abstract— This paper presents an interactive image segmenta-
tion approach in which we formulate segmentation as a proba-
bilistic estimation problem based on the prior user intention.
Instead of directly measuring the relationship between pixels
and labels, we first estimate the distances between pixel pairs
and label pairs using a probabilistic framework. Then, binary
probabilities with label pairs are naturally converted to unary
probabilities with labels. The higher order relationship helps
improve the robustness to user inputs. To improve segmentation
accuracy, a likelihood learning framework is proposed to fuse the
region and the boundary information of the image by imposing
a smoothing constraint on the unary potentials. Furthermore,
we establish an equivalence relationship between likelihood learn-
ing and likelihood diffusion and propose an iterative diffusion-
based optimization strategy to maintain computational efficiency.
Experiments on the Berkeley segmentation data set and Microsoft
GrabCut database demonstrate that the proposed method can
obtain better performance than the state-of-the-art methods.

Index Terms— Interactive image segmentation, paired distance
measurement, likelihood learning, probabilistic estimation, unary
potentials.

I. INTRODUCTION

IMAGE segmentation can be described as the partitioning
of an image into several connected homogeneous regions

based on similarity criteria using low-level visual features
and extracting one or more objects that are of interest to the
user from the background environment. Segmented semantic
regions or contours associated with real-word entities or scenes
are the basis for further advanced image processing. Therefore,
image segmentation is a key step from image processing to
image analysis, which is a fundamental problem in computer
vision.
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Many image segmentation methods have been proposed
in the literature. Segmentation schemes can be classi-
fied into unsupervised, semi-supervised and fully supervised
approaches. Unsupervised schemes can automatically segment
images based on feature clustering. Due to the lack of prior
knowledge of each class, such approaches lack universality and
thus are often used for specific tasks or preprocessing steps
of segmentation, such as the generation of superpixels. Fully
supervised schemes, such as convolutional networks [1], [2],
utilize a training set of images for semantic segmentation. The
segmentation results are associated with the training samples
of objects. However, for the same image, different users may
not be interested in the same target, which causes these
approaches to lack flexibility. Semi-supervised schemes, such
as the graph cut approach [3], allow the user to provide simple
interactions to represent label information during segmenta-
tion. Compared with the other two segmentation schemes,
semi-supervised schemes can add the users’ intentions to
obtain results meeting their demands. Furthermore, the prior
label information provided by the user helps improve segmen-
tation performance.

This paper considers semi-supervised schemes (also called
interactive approaches) for foreground-background segmenta-
tion. Given input image I , we aim to classify its pixels as one
of two mutually exclusive classes, F and B , corresponding to
foreground and background objects, respectively. During the
last decades, many interactive segmentation approaches have
been proposed, such as graph cut [3] and random walk [4].
In these approaches, unary and pairwise potentials that cor-
respond to region and boundary information, respectively,
are generally constructed for segmentation. A unary potential
measures the similarity of a pixel to the labels F and B , while
a pairwise potential quantifies the similarity between pairs of
pixels. Unary and pairwise relationships can be represented via
graphs and graph theory-based optimization algorithms can be
used to produce segmentations [5]. Since the prior information
of each class is provided by the user, unary potential is
usually quantified as the distance between unseeded pixels
and seeded pixels via some clustering algorithm, such as
Gaussian mixture model (GMM). If enough seeds are given,
GMM can accurately estimate the potential distribution of
each label. However, due to the defects of pixel-level features,
it is hard to capture the accurate label information when the
user’s interaction is limited (see Fig. 1(b)–(c)). In this case,
the user has to work harder to obtain satisfactory results. Thus,
effectively computing unary potential based on seeds is a key
problem of the interactive segmentation method.
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Fig. 1. Estimations of unary potentials from user inputs: (a) test image
with limited seeds; (b)–(c) probability maps estimated by GMM with labels
F and B , respectively; (d)–(e) probability maps captured by pixel-pair-based
measurement; (f)–(g) results via pairwise likelihood learning; and (h) final
segmentation result.

As an effective strategy to solve the above problems, meth-
ods based on perceptual grouping laws have been proposed [6].
Superpixels produced with unsupervised segmentation algo-
rithms [7], [8] are used to capture long-range grouping cues.
These methods were inspired by constraints, whereby pixels
constituting a particular superpixel should have the same label.
They benefit from using more informative features extracted
from the pixels within the regions. However, superpixels tend
to not emphasize proximity sufficiently and thereby generate
isolated regions in the segmentation results. To obtain reliable
results, the relationships among pixels and superpixels are
fused to enforce proximity and continuity. Both geometrical
adjacency and long-range cues are critical for segmentation.
As suggested in [9], superpixels are not always consistent
with boundaries in natural images. To overcome the influence
of inaccurate superpixels, many methods combining multiple
superpixels of the same image have been proposed [9]–[11].
Multiple superpixels can be produced based on one unsu-
pervised segmentation algorithm with different controlling
parameters or different unsupervised segmentation algorithms.
The propagation of superpixel-based grouping cues can help
improve robustness to user inputs and obtain more accu-
rate segmentation results. However, more superpixel variables
need to be defined, and more relationships between pixels
and superpixels need to be computed in these approaches,
which increases algorithm complexity. Furthermore, several
parameters are used to control the influence of pixel-level
and superpixel-level relationships in these models, and the
segmentation results are generally sensitive to these control-
ling parameters. To simplify the connections among multiple
superpixels, superpixels are divided into small, medium and
large sets in [12], where small and large superpixels are
used to encode local smoothness, and medium superpixels are
used to propagate sparse long-range grouping cues through l0
sparsity. However, the generation of multiple superpixels also
has considerable costs.

To extract accurate object details, interactive segmentation
methods should satisfy the robustness to seeds while main-
taining a low running time. As described above, pixel-level-
based approaches are sensitive to user inputs and perceptual
grouping approaches are limited by high algorithm complexity.
To address these problems, in this work, we propose an
interactive image segmentation method based on probabilis-
tic diffusion. Fig. 2 shows a toy example where two seed

points (shown as stars) are defined and all other elements are
labeled according to their affinity to the seed points. As shown
in Fig. 2(a), the initial probability (without diffusion) based
on the relationship between unseeded elements and seeded
elements is not sufficient to capture the intrinsic structure of
the data manifold when seed information is limited. In com-
parison, after diffusing the probabilities through the manifold
and capturing the intrinsic global manifold structure, we obtain
significantly improved clustering results. The contributions of
the proposed approach are concluded as follows:

First, a probabilistic framework is proposed to estimate
the distances between pixel pairs and label pairs. Instead of
the original relationship measurement between pixels and two
labels, F and B , the higher-order measurement between pixel
pairs and four label pairs, (F, F), (F, B), (B, F) and (B, B),
helps produce more accurate relationships between unseeded
pixels and seeded pixels. Second, the binary probabilities with
label pairs can be naturally converted to unary probabilities
with labels (see Fig. 1(d)–(e)). Third, to further improve
the segmentation accuracy, a likelihood learning framework is
proposed to impose a smoothing constraint on unary potentials
based on the pairwise similarities of pixels (see Fig. 1(f)–(g)).
Fourth, an equivalence relationship between likelihood learn-
ing and likelihood diffusion is established, and an iterative
diffusion-based optimization strategy is proposed to improve
computational efficiency. Partial pilot data presented in our
previous work proposed a pairwise likelihood learning method
for interactive image segmentation [13].

The rest of this paper is organized as follows: In Section II,
we will review related work to provide insight into interactive
graph-theory-based approaches. In Section III, we will intro-
duce the proposed method in detail. In Section IV, we will
show a series of experimental results on different datasets.
Section V will present the paper’s conclusions.

II. RELATED WORK

A. Graph Cut

Boykov and Jolly [3] first proposed the interactive graph
cut method to segment grayscale medical images. Lazy snap-
ping [14] constructed a graph based on superpixels instead
of pixels to improve efficiency. A coarse-to-fine user inter-
face was also designed to provide instant visual feedback.
GrabCut [15] extended the graph cut approach to color images
by using GMMs to model the F and B regions. Incom-
plete trimaps were also provided to simplify user interaction
through an iterative optimization process. Deep GrabCut [16]
combined a convolutional encoder-decoder network trained
end-to-end to overcome issues with the size of the inter-
active bounding box. In these works [17], [18], color and
texture information were efficiently combined to overcome
difficulties handling images containing textures. For objects
with specific shapes, shape priors were introduced into the
graph cut framework [19] to restrict the segmentation results
to a particular class of shapes, which helps improve the
accuracy of objects lacking salient edges. ACP-cut [20] used
semi-supervised kernel matrix learning to preserve the details
around object boundaries. Moreover, seed information was
propagated to achieve discriminative structure learning and
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Fig. 2. Illustration of the effectiveness of probabilistic diffusion on toy data, where two seed points are defined and highlighted as stars, and all other
elements are labeled according to their affinity to the seed points. (a)–(d) clustering results w.r.t. the number of iterations, where t represents the diffusion
number. As shown in (a), the initial probability (without diffusion) based on the relationship between unseeded elements and seeded elements is not sufficient
to capture the intrinsic structure of the data manifold when seed information is limited. Probabilistic diffusion can capture intrinsic global affinities, and thus
significantly improve clustering performance. (a) t = 0. (b) t = 50. (c) t = 100 (d) t = 150.

reduce computational complexity. In addition to the graph cut
for the optimization of binary cost functions, in this work [21],
segmentation is formulated as an inference problem based on
unary and pairwise assignment probabilities via a probabilistic
graph matching scheme.

B. Random Walk

Grady and Funkalea [22] first proposed interactive random
walk for medical image segmentation and extended it for gen-
eral image segmentation in [4]. To overcome weak boundary
and texture problems, random walk with restart [23] con-
structed a generative segmentation model by using the steady-
state probability to reduce dependence on seeds. Lazy random
walk [24] with self-loops considered the global relationships
between all pixels and seeds to solve the superpixel segmen-
tation problem in the weak boundary and texture regions.
Sub-Markov random walk [25] introduced the label prior
by adding auxiliary nodes to further improve segmenta-
tion accuracy—especially in thin and elongated regions.
Constrained random walk [26] advocated the use of multi-
ple intuitive user inputs to better reflect a user’s intentions.
In contrast to the methods mentioned above that formally
minimize the “distance” between pairwise pixels, Laplacian
coordinates [27] minimize average distances while better con-
trolling anisotropic propagation of labels, which ensures a
better fit on image boundaries. Normalized random walk [28]
incorporated a degree-aware term into the original model to
account for the node centrality of every neighboring node and
weigh the contribution of every neighbor to the underlying
diffusion process.

C. Perceptual Grouping Approaches

To improve the robustness to user inputs, many perceptual
grouping methods have been proposed that use superpixels

to capture long-range grouping cues [9]–[11]. The robust
Pn model [10] constructed higher-order parametric potentials
based on multiple superpixels with conventional unary and
pairwise constraints by using higher-order condition random
fields in a principled manner. Instead of estimating the number
of pixels that do not belong to the dominant label, in this
work [29], the sum of weights for pixels in the superpixel not
taking the dominant label is measured, which helps produce
finer higher-order potentials. The nonparametric higher-order
model [9] used the pairwise relationship between pixels and
their corresponding superpixels using a multi-layer graph.
A higher-order cost function of pixel likelihoods is designed
to enforce label consistency in superpixels. To further improve
segmentation performance, this work [11] introduced prior
label information to the nonparametric higher-order model,
and the multi-layer constraints among pixels, superpixels and
labels are fused for segmentation. As suggested in [9], these
superpixel-based methods are less sensitive to user inputs and
produce high-quality segmentation results.

The local relationship used in the graph cut and random
walk approaches makes them sensitive to seed quantity and
position; thus, it is hard for them to keep global coherence
with limited user interactions. Perceptual grouping approaches
extend the local relationship of pixels to the long-range
regional connectivity of superpixels. However, the genera-
tion of multiple superpixels and the computation of higher-
order relationships lead to high algorithm complexity in the
corresponding algorithms. Compared with these works, the
advantages of the proposed method are summarized as follows.
First, a higher-order measurement between pixel pairs and
label pairs is used to obtain a more accurate unary potential
under limited seeds. Second, a likelihood learning method is
proposed to diffuse local probabilities, which can help capture
the intrinsic global manifold structure, making the diffusion
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Fig. 3. Overview of the segmentation framework, where p0 represents the initial probability estimated from the seeds, p1 represents the updated probability
after the paired distance estimation, p2 represents the final probability by the likelihood learning and diffusion optimization and t represents the number of
iterations.

process simpler and more efficient than the perceptual group-
ing between pixels and superpixels.

III. IMAGE SEGMENTATION BY PAIRWISE

LIKELIHOOD LEARNING

The segmentation model is formulated as a probabilistic
estimation problem. Fig. 3 illustrates the framework of the
proposed algorithm. The initial probability p0 is first estimated
based on the seed information. A paired distance estimation
method is proposed to measure the relationships between
pixel pairs and label pairs (shown in III-A), which can help
improve the accuracy of unary potential with limited seeds.
After the binary probability transformation, p0 is updated as
the unary assignment probability p1 (shown in III-B). A like-
lihood learning method is proposed to fuse the region and
boundary information of the image to extend p1 to the final
probability p2 (shown in III-C). After equivalence analysis
with likelihood diffusion (shown in III-D), the likelihood
learning process can capture the intrinsic global manifold
structure by diffusing the local probabilities. A diffusion-based
optimization technique is proposed to improve optimization
efficiency.

A. Paired Distance Estimation

Input image I can be represented by graph G = (X, W ),
where X = {xi }N

i=1 is a collection of pixels, W = [
Wij

]
N×N

is the relationships of pairwise pixels and N is the number
of pixels. The task of segmentation is to classify each image
element xi as fxi ∈ {F, B}. The core of the proposed approach
is the estimation of marginal assignment probabilities based on
a paired relationship metric and pairwise likelihood learning.

The similarity Wij between pairwise pixels (xi , x j ) is
defined as a typical Gaussian function:

Wij =
{

exp(−βW
∥∥ci − c j

∥∥2
2) i f (xi , x j ) ∈ ℵ

0 otherwi se
(1)

where ci and c j denote the intensity feature at pixels xi and
x j , respectively, ℵ is the set of all neighboring pixel pairs in
the image and βW > 0 is a constant that controls the strength
of the weight, automatically selected as:

βW = 1

2E[∥∥ci − c j
∥
∥2

2]
(2)

where E[·] represents the expectation over all pixel pairs in ℵ.
It can be noticed that if two neighboring pixels have similar
features, their weight is large, and vice versa.

Fig. 4. Sketch map of prior information estimation from user inputs: (a) the
distance measurement between pixels and seeds by conventional methods, (b)
the paired relationship measurement between pixel pairs and label pairs by
the proposed method.

User inputs represent the prior label information, and the
conventional methods measure the distances between pix-
els and seeds to estimate the unary assignment probabili-
ties (shown in Fig. 4(a)). These methods are generally sensitive
to user inputs, and it is hard to obtain accurate results when
the number of seeds is limited. To improve robustness to user
inputs, this paper considers paired probability estimation by
measuring the similarities between pixel pairs and label pairs:
(F, F), (F, B), (B, F) and (B, B) (shown in Fig. 4(b)).

For any pixel pair (xi , x j ) ∈ ℵ, the distances d F F
i j , d F B

i j ,
d B F

i j and d B B
i j with label pairs (F, F), (F, B), (B, F) and

(B, B) are defined as:

d F F
i j = p(xi ∈ F, x j ∈ F)

= 1

2

[
p(xi ∈ F |x j ∈ F)p0(x j ∈ F)

+ p(x j ∈ F |xi ∈ F)p0(xi ∈ F)
]

(3)

d F B
i j = p(xi ∈ F, x j ∈ B)

= 1

2

[
p(xi ∈ F |x j ∈ B)p0(x j ∈ B)

+ p(x j ∈ B|xi ∈ F)p0(xi ∈ F)
]

(4)

d B F
i j = p(xi ∈ B, x j ∈ F)

= 1

2

[
p(xi ∈ B|x j ∈ F)p0(x j ∈ F)

+ p(x j ∈ F |xi ∈ B)p0(xi ∈ B)
]

(5)

d B B
i j = p(xi ∈ B, x j ∈ B)

= 1

2

[
p(xi ∈ B|x j ∈ B)p0(x j ∈ B)

+ p(x j ∈ B|xi ∈ B)p0(xi ∈ B)
]

(6)
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The initial probabilities of pixels with labels can be esti-
mated based on prior user inputs. For simplicity, in this
paper, the k-means algorithm is used to cluster both the
foreground and background seeds. Cluster centers {cL

k }K
k=1

are then produced, where L = F/B and K is the number
of clusters. For each pixel xi ∈ X , the initial probability
p0(xi ∈ L) is defined as:

p0(xi ∈ L) = max
k∈{1,...,K } exp(−

∥
∥
∥ci − cL

k

∥
∥
∥

2
) (7)

The value of p0(xi ∈ L) is normalized under the constraint
p0(xi ∈ F) + p0(xi ∈ B) = 1.

The conditional probabilities can be associated with the
relationships between the two pixels. For example, if the
similarity weight between xi and x j is large, they are likely to
belong to the same label. Therefore, under the condition fx j ∈
{F, B}, the probability that pixel xi belongs to the same label
( fxi = fx j ) is high, and the probability that pixel xi belongs
to the different label ( fxi �= fx j ) is low. Otherwise, if the
similarity weight between xi and x j is small, they are likely to
belong to different labels. Therefore, the probability that pixel
xi belongs to the different label ( fxi �= fx j ) is high, and the
probability that pixel xi belongs to the same label ( fxi = fx j )
is low. Based on the above observation, in this paper, we
simply define the conditional probabilities as follows:

p( fxi | fx j ) =
{

Ŵi j i f fxi = fx j

1 − Ŵi j i f fxi �= fx j

(8)

where fxi ∈ {F, B} and fx j ∈ {F, B} represent the labels of
pixels xi and x j , respectively. Ŵi j is an extended relationship
weight of pixels xi and x j , which both considers the similarity
in the intensity feature and the prior probability. In this way,
it is better to measure the relationship between different
components in the same object. The value of Ŵi j is defined as:

Ŵi j = 1

2
(Wij + DFij ) (9)

where Wij represents the similarity of pixel pair (xi , x j ) in
the intensity feature and DFij represents the similarity in
probabilities with the foreground label, which is defined as:

DFij = exp(−β DF
∥
∥∥p0(xi ∈ F) − p0(x j ∈ F)

∥
∥∥

2

2
) (10)

where β DF > 0 is a constant that controls the strength of
DFij , automatically selected as:

β DF = 1

2E[∥∥p0(xi ∈ F) − p0(x j ∈ F)
∥
∥2

2]
(11)

B. Prior Assignment Probabilities

Because Wij = W ji and DFij = DFji , the values of d F F
i j ,

d F B
i j , d B F

i j and d B B
i j can be simplified as:

d F F
i j = 1

2
Ŵi j

[
p0(xi ∈ F) + p0(x j ∈ F)

]
(12)

d F B
i j = 1

2
(1 − Ŵi j )

[
p0(xi ∈ F) + p0(x j ∈ B)

]
(13)

d B F
i j = 1

2
(1 − Ŵi j )

[
p0(xi ∈ B) + p0(x j ∈ F)

]
(14)

d B B
i j = 1

2
Ŵi j

[
p0(xi ∈ B) + p0(x j ∈ B)

]
(15)

Fig. 5. Comparison of unary potentials: (a) the test image with seeds;
(b)–(c) the probability maps of F and B , respectively, based on the pixel-level
measurement by GMM; (d)–(e) the probability maps of F and B , respectively,
based on the proposed pixel-pair-level measurement.

Since p0(xi ∈ F) + p0(xi ∈ B) = 1 and p0(x j ∈ F) +
p0(x j ∈ B) = 1, it can be seen that:

d F F
i j + d F B

i j + d B F
i j + d B B

i j = 1

2

[
p0(xi ∈ F) + p0(xi ∈ B)

+ p0(x j ∈ F) + p0(x j ∈ B)
]

= 1 (16)

The binary assignment probabilities of pixels xi and x j can
be converted to unary assignment probabilities. The initial
probabilities p0(xi ∈ L) and p0(x j ∈ L) are updated to
p1(xi ∈ L) and p1(x j ∈ L), respectively. For any pixel
xi ∈ X :

p1(xi ∈ F) =
∑

x j ∈Ni

d F F
i j + d F B

i j

=
∑

x j ∈Ni

1

2

[
p0(xi ∈ F)

+ Ŵi j p0(x j ∈ F) + (1 − Ŵi j )p0(x j ∈ B)
]

(17)

p1(xi ∈ B) =
∑

x j ∈Ni

d B B
i j + d B F

i j

=
∑

x j ∈Ni

1

2

[
p0(xi ∈ B)

+ Ŵi j p0(x j ∈ B) + (1 − Ŵi j )p0(x j ∈ F)
]

(18)

where Ni represents the neighborhood of xi . After the binary
assignment probabilities of all pixel pairs in set ℵ are trans-
formed into unary probabilities, the value of p1(xi ∈ L)
for each pixel xi ∈ X is normalized under the constraint
p1(xi ∈ F) + p1(xi ∈ B) = 1.

Examples of prior probability estimation are shown
in Fig. 5, where (a) shows the test image with seeds,
(b)–(c) show the results obtained by GMM based on the pixel-
level distance and (d)–(e) show the results produced by the
proposed method based on the pixel-pair-level relationship
measurement. It can be seen that the pixel-level distances
between pixels and seeds are not enough to discriminate the
label information when the user inputs are limited. The pixel-
pair-level relationships between pixel pairs and labels pairs
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can be regarded as the higher-order information of the pixel-
level distances and can produce more accurate estimation
of the prior probability under the same seed information.
Furthermore, instead of the two labels F and B , the distances
to the four label pairs, (F, F), (F, B), (B, F) and (B, B),
make the relationships more discriminating.

The relationships between doublets can be naturally
extended to higher-order relationships. More interactions can
be considered in higher-order measurement. For example,
eight label groups are involved when measuring the dis-
tances between triplets; however, the number of label groups
increases exponentially with an increase in order, which leads
to higher algorithm complexity. To maintain computational
efficiency, in this paper, only pixel-pair-level relationships are
considered.

C. Pairwise Likelihood Learning

The above probability estimation only considers the region
information regardless of the boundary information of the
image. To improve segmentation accuracy, we impose a
smoothing constraint on the unary prior potentials by a pair-
wise likelihood learning strategy.

Let P̄ F = [
p1(xi ∈ F)

]
N×1 and P̄ B = [

p1(xi ∈ B)
]

N×1
denote the probability vectors (abbreviate p1(xi ∈ F) as
p̄F

i and p1(xi ∈ B) as p̄B
i ). Let P̂ F = [

p2(xi ∈ F)
]

N×1 and

P̂ B = [
p2(xi ∈ B)

]
N×1 denote the novel probability vectors

after the likelihood learning (abbreviate p2(xi ∈ F) as p̂F
i

and p2(xi ∈ B) as p̂B
i ), where p2(xi ∈ F) and p2(xi ∈ B)

represent the novel probabilities of pixel xi belonging to the
labels F and B , respectively.

The likelihood learning process of P̂ F and P̂ B is defined
as minimizing the following two cost functions:

E(P̂ F ) = Eboundary(P̂ F ) + Eregion(P̂ F )

=
∑

(xi ,x j )∈ℵ
Wij · ( p̂F

i − p̂F
j )2 + λ

∑

xi∈X

di

·
[

p̄F
i · ( p̂F

i − 1

di
)2 + p̄B

i · ( p̂F
i )2

]
(19)

E(P̂ B) = Eboundary(P̂ B) + Eregion(P̂ B)

=
∑

(xi ,x j )∈ℵ
Wij · ( p̂B

i − p̂B
j )2 + λ

∑

xi∈X

di

·
[

p̄B
i · ( p̂B

i − 1

di
)2 + p̄F

i · ( p̂B
i )2

]
(20)

where Eboundary represents the boundary energy term, Eregion

represents the region energy term, di = ∑N
j=1 Wij and the

parameter λ = α/(1 −α)(0 < α < 1) is used to balance these
two energy terms. Eboundary constrains neighboring pixels
with high similarities to have similar likelihood probabili-
ties. Eregion constrains the likelihood estimation to maintain
consistency with the prior probabilities. Pixel xi should be
assigned high p̂F

i and low p̂B
i if its prior probability p̄F

i
is high, and vice versa. Both region and boundary informa-
tion are considered in the likelihood learning process, which
maintains regional connectivity and piecewise smooth in the
segmentation results.

Reformulate the cost functions in Eqs. (19, 20) in matrix
form:

E(P̂ F ) = (P̂ F )T (D − W )P̂ F + λD

·
[
(P̂ F − O

D
)T �F (P̂ F − O

D
) + (P̂ F )T �B P̂ F

]

(21)

E(P̂ B) = (P̂ B)T (D − W )P̂ B + λD

·
[
(P̂ B − O

D
)T �B(P̂ B − O

D
) + (P̂ B )T �F P̂ B

]

(22)

where D = diag([d1, . . . , dN ]), O = [1]N×1, �F =
diag(P̄ F ) and �B = diag(P̄ B). Differentiating E(P̂ F ) and
E(P̂ B) with respect to P̂ F and P̂ B , respectively, and setting
to zero, we have:

∂ E(P̂ F )

∂ P̂ F
= (D−W )P̂ F + λD(�F + �B)P̂ F −λ�F O = 0

(23)

∂ E(P̂ B)

∂ P̂ B
= (D−W )P̂ B + λD(�F + �B)P̂ B −λ�B O = 0

(24)

Since (�F + �B) is an identity matrix, �F O = P̄ F ,
�B O = P̄ B and λ = α/(1 − α):

P̂ F = TP̄ F (25)

P̂ B = T P̄ B (26)

where T = α (D−(1−α)W )−1. It can be seen that the likeli-
hood probabilities P̂ F and P̂ B can be obtained by multiplying
matrix T and prior probability vectors P̄ F and P̄ B .

D. Iterative Diffusion-Based Optimization

Iterative diffusion-based optimization involves solving the
inverse of a matrix of size N × N to compute matrix T ; time
complexity is O(N3). Although there are some approximate
strategies to improve computational efficiency, such as the
MATLAB division operator ‘\’, the algorithm burden is heavy
when the image size is large.

To overcome the above limitation, likelihood learning is
converted to likelihood diffusion. Instead of computing matrix
T , we diffuse the probabilities iteratively until convergence;
time complexity is O(N2). Following [30], the diffusion
strategy is described as:

(P̂ L )(t) = αQ(P̂ L )(t−1) + (1 − α)P̄ L (27)

where Q is the row-normalized matrix of W : Q = D−1 × W
and t is the iterative step.

1) Convergence Analysis: Referring to [30] and [31],
the closed form of the diffusion matrix P̂ L at step t can be
written as:

(P̂ L)(t) = (1 − α)t−1 Qt−1 P̄ L + α

t−2∑

i=0

(1 − α)i Qi P̄ L (28)

Because 0 < α < 1, we can derive:

lim
t→∞(1 − α)t−1 Qt−1 P̄ L = 0
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Algorithm 1 Diffusive Image Segmentation Algorithm

and

lim
t→∞

t−2∑

i=0

(1 − α)i Qi = (I − (1 − α)Q)−1 (29)

where I is the identity matrix.
Hence, after self-normalization, the diffusion matrix con-

verges to:

lim
t→∞(P̂ L)(t) = α(D − (1 − α)W )−1 P̄ L (30)

By comparing the Eqs. (25, 26) and the Eq. (30), it can be
concluded that the likelihood learning is equivalent to the like-
lihood diffusion. Therefore, we can design the algorithm as:

IV. EXPERIMENTAL RESULTS

The proposed method was experimentally verified by com-
paring it with state-of-the-art approaches—GrabCut [15], ran-
dom walk (RW) [4], normalized random walk (NRW) [28],
Laplacian coordinates (LC) [27], sub-Markov random walk
(SMRW) [25], nonparametric higher-order method (NHO) [9],
multi-layer graph constraints method (MGC) [11] and Deep-
GrabCut [16]—on the Berkeley segmentation dataset1 and
Microsoft GrabCut database,2 all of which have ground-
truth annotations. There are two parameters involved in the
proposed scheme, and their values are set as follows: the
number of clusters K is set to 4 and the region and boundary
controlling parameter α is set to 0.2. The 4-neighborhood rela-
tionship is used in the proposed method. The implementation
codes of the compared algorithms are offered by the original
authors, and the suggested parameters in their papers are used
for the comparison experiments.

A. Qualitative Benchmark Results

Fig. 6 shows the comparison with state-of-the-art interac-
tive segmentation methods. Fig. 6(a) shows the test images
from the Berkeley segmentation dataset with a few scribbles
(red: foreground, green: background). Fig. 6(b)–(i) shows the
segmentation results of GrabCut [15], RW [4], NRW [28],

1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/
segbench/S.

2http://research.microsoft.com/enus/um/cambridge/projects/visionimage-
videoediting/segmentation/grabcut.htm

TABLE I

MEAN ± STANDARD DEVIATION (STD) AND THE AVERAGE RANK (AR)
OF PRI AND VOI VALUES FOR THE COMPARED METHODS

ON THE BERKELEY SEGMENTATION DATASET

LC [27], SMRW [25], NHO [9], MGC [11] and the proposed
method. It can be seen that GrabCut and RW cannot obtain
satisfactory results when the number of seeds is limited. The
RW extension methods, i.e., NRW, LC and SMRW, can obtain
better results than RW; however, they are also sensitive to the
seeds. The pixel-level information learnt from limited seeds
is not enough to discriminate the foreground and background
labels. Compared with these pixel-level-based approaches, the
perceptual grouping methods NHO and MGC, obtain more
robust results by using multiple superpixels to propagate long-
range grouping laws. However, the object details around the
boundaries cannot be well preserved, especially for many thin
and slender regions. It can be clearly seen that the proposed
method produces the best results with accurate object details.
Paired distance estimation can help obtain accurate label
prior information with limited seeds, and pairwise likelihood
learning can help produce smooth object boundaries.

Fig. 7 illustrates the example segmentations on the
Microsoft GrabCut database. Fig. 7(a)–(i) show the segmen-
tation results of GrabCut [15], RW [4], NRW [28], LC [27],
SMRW [25], NHO [9], MGC [11], DeepGrabCut [16] and
the proposed method, where the results of DeepGrabCut
are obtained based on the tight bounding boxes provided
by [32] and other methods are initialized based on the public
trimaps in this database. Affected by low contrast, it can be
seen that the conventional methods cannot obtain accurate
object boundaries. Furthermore, they are very sensitive to
thin and slender objects and cannot obtain complete contours.
Comparatively, the proposed method can achieve high-quality
segmentation results. For the second and third test images, the
proposed method can obtain accurate boundaries of the banana
and the book regardless of the influence of low contrast. For
the last test image, the proposed method can detect complete
contours of the scissors. These qualitative comparison results
demonstrate the superior performance of the proposed method.

B. Quantitative Benchmark Results

Probabilistic rand index (PRI) [33] and variation of infor-
mation (VoI) [34] are used to quantitatively evaluate the seg-
mentation performance in the Berkeley segmentation dataset.
PRI measures the agreement between the segmented result and
the manually generated ground truth. PRI ranges from 0 to 1,
with a higher value representing a more accurate result.
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Fig. 6. Comparison to state-of-the-art approaches with a few scribbles. (a) Test image from the Berkeley segmentation dataset with scribbles (red: foreground,
green: background); (b)–(i) segmentation results of GrabCut [15], RW [4], NRW [28], LC [27], SMRW [25], NHO [9], MGC [11] and the proposed method.
(a) original. (b) GrabCut. (c) RW. (d) NRW. (e) LC. (f) SMRW. (g) NHO. (h) MGC. (i) Ours.

VoI measures the information content in each segmentation
and how much information one segmentation gives about the
other. VoI ranges in [0,∞), with a smaller value representing
a more accurate result. TABLE I lists the mean±standard
deviation and the average rank from the Friedman statistical
test [35] (with a significance level of 0.05) of PRI and VoI
for GrabCut [15], RW [4], NRW [28], LC [27], SMRW [25],
NHO [9], MGC [11] and the proposed method on the Berkeley
segmentation dataset. It can be observed that the proposed
method outperforms the other methods with the largest PRI
value and the smallest VoI value. The Friedman test determines
the chi-square (χ2) value as 25.13 (24.46) and the p-value
as 7.1e-04 (9.4e-04) for PRI (VoI). From the χ2 distribution
table, we find the critical value for (8 − 1) = 7 degrees of
freedom with 0.05 significance level is 14.07. Since the χ2

value is larger than the critical value, H0 is rejected and H1
is accepted, which substantiates the significant difference in
behavior among the compared methods.

We then demonstrated the quality of the proposed method
on the Microsoft GrabCut database. Error rate, which is
defined as the ratio of the number of wrongly labeled pixels
to the total number of unlabeled pixels, is used to evaluate
segmentation accuracy. Fig. 8 shows the error rate curves of
each test image in the Microsoft GrabCut database by applying
GrabCut [15], RW [4], NRW [28], LC [27], SMRW [25],
NHO [9], MGC [11], DeepGrabCut [16] and the proposed
method. The images are sorted in ascending order based on
the values of the proposed method. It can be clearly observed
that the proposed method obtains the best performance in
most cases. TABLE II summarizes the average error rates
obtained by various methods. Compared with the graph cut
and random walk methods [3], [4], [14], [15], [17], [23]–[28],
the proposed method has a significant improvement in the seg-
mentation error rate. Compared with the perceptual grouping
methods [9]–[11], the proposed method also shows a great
improvement of the error rate. Compared with the methods
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Fig. 7. Example segmentations on the Microsoft GrabCut database. (a)–(i) Segmentation results of GrabCut [15], RW [4], NRW [28], LC [27], SMRW [25],
NHO [9], MGC [11], DeepGrabCut [16] and the proposed method, where DeepGrabCut is initialized based on the tight bounding boxes provided by [32]
and other methods are initialized based on the public trimaps in this database. (a) GrabCut. (b) RW. (c) NRW. (d) LC. (e) SMRW. (f) NHO. (g) MGC.
(h) DeepGrabCut. (i) Ours.

Fig. 8. Error rates of all images in the Microsoft GrabCut database by applying GrabCut [15], RW [4], NRW [28], LC [27], SMRW [25], NHO [9],
MGC [11], DeepGrabCut [16] and the proposed method.

in [5], [16], [21], and [36], it can be observed that the proposed
method outperforms the deep-learning-based methods and the
latest interactive methods on the Microsoft GrabCut database.

Fig. 9 shows an illustration of the significantly improved
results of the proposed method compared with GrabCut [15],
RW [4], NRW [28], LC [27], SMRW [25], NHO [9],
MGC [11] and DeepGrabCut [16] on the Microsoft GrabCut
database. It can be observed that there are weak boundary
problems in all the test images in Fig. 9. The compared
algorithms cannot perform well on these images because the
local relationships utilized in them cannot accurately describe
the similarities between neighboring pixels around the weak

boundary regions. The proposed algorithm outperforms other
approaches and has a significant improvement in error rates.
The local relationship is extended to the global affinity by the
proposed probabilistic diffusion process, which helps capture
the intrinsic relationship of pixels around the weak boundary
regions and makes our algorithm suitable for weak boundary
problems.

C. Sensitivity Analysis

We analyzed the sensitivity of our method with respect to
seed quantity and placement. The standard segmentations are
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Fig. 9. Illustration of significantly improved results of the proposed method compared with GrabCut [15], RW [4], NRW [28], LC [27], SMRW [25],
NHO [9], MGC [11] and DeepGrabCut [16] on the Microsoft GrabCut database.

TABLE II

AVERAGE ERROR RATES (%) OF STATE-OF-THE-ART APPROACHES

ON THE MICROSOFT GRABCUT DATABASE

achieved from the initial trimaps provided by the Microsoft
GrabCut database. The initial seeds are randomly taken from
50% to 1% of total seed quantity. The perturbed segmentations
are recomputed from these selected seeds and compared
with the standard segmentations. Let F1 and F2 denote a
perturbed segmentation result and a standard segmentation
result, respectively. The normalized overlap ao is defined
as ao = |F1 ∩ F2/F1 ∪ F2|, which measures an overlap
rate between a perturbed foreground and the corresponding
standard foreground. Fig. 10 shows the comparison of exam-
ple segmentations on the Microsoft GrabCut database with
50%, 30%, 10% and 1% percent seeds. It can be seen that
almost the same results are produced, even with 1% seeds,
the proposed method can still obtain satisfactory segmentation
results. Fig. 11 shows the quantitative evaluation of normalized
overlap ao on the Microsoft GrabCut database when varying

Fig. 10. Segmentation results with respect to the variation of seed quan-
tity and placement. (a) Trimap input in the Microsoft GrabCut database;
(b)–(e) perturbed segmentations with 50%, 30%, 10% and 1% percent seeds.
(a) Trimap. (b) 50%. (c) 30%. (d) 10%. (e) 1%.

the seed quantity as 50%, 30%, 10% and 1% of total seed
quantity. The mean overlap rate is still over 0.95 when the
percent seeds drops to 1%. Fig. 12 shows the quantitative
evaluation of the error rates on the Microsoft GrabCut database
with different percent seeds. From the variation of the error
rates, we can find that the segmentation results are not sensitive
to the variation of seed quantity and placement. These quan-
titative and qualitative experiments show that the proposed
method has good robustness to the seeds.

D. Parameter Settings

The parameter α is used to control the influence of the
region and boundary energies. Fig. 13 shows the segmenta-
tion results on the Microsoft GrabCut database by varying
the value of α. With a larger α, region information plays
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Fig. 11. Normalized overlap ao on the Microsoft GrabCut database with
50%, 30%, 10% and 1% percent seeds.

Fig. 12. Error rates (%) on the Microsoft GrabCut database with 50%, 30%,
10% and 1% percent seeds.

Fig. 13. Segmentation results with respect to the variation of parameter α.
(a) α = 0.001. (b) α = 0.01. (c) α = 0.2. (d) α = 0.5. (e) α = 0.9.

a more important part and the details in objects can be
preserved. However, as shown in Fig. 13(e), the boundaries
are not smooth enough and it is hard to provide satisfactory
segmentations. Comparatively smoother boundaries can be
produced with a smaller α. However, as shown in Fig. 13(a),
the results may be over-smoothed and the details around
boundaries cannot be preserved well. Therefore, it is important
to determine an appropriate α to improve boundary accuracy
and reduce the over-smoothing effect. It can be seen that the
best segmentation results can be obtained when α = 0.2.
Fig. 14 shows the quantitative evaluation of the error rates on
the Microsoft GrabCut database with different values of α.

Fig. 14. Error rates (%) on the Microsoft GrabCut database by varying the
values of parameter α.

Fig. 15. Segmentation results with respect to the variation of parameter K .
(a) K = 1. (b) K = 2. (c) K = 4. (d) K = 7. (e) K = 9.

Fig. 16. Error rates (%) on the Microsoft GrabCut database by varying the
value of parameter K .

It can be observed that the lowest error rate is obtained
when α = 0.2. From the variation of the error rates, we can
find that the segmentation results are somewhat sensitive to
parameter α.

The parameter K represents the number of clusters. Fig. 15
shows the segmentation results on the Microsoft GrabCut
database by varying the value of K . It can be seen that almost
the same results are produced with different values of K .
Fig. 16 shows the quantitative evaluation of the error rates on
the Microsoft GrabCut database with different values of K .
It can be observed that the lowest error rate is obtained when
K = 4. From the variation of error rate, we can find that the
segmentation results are not sensitive to parameter K .
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TABLE III

AVERAGE RUNNING TIMES (s) OF GRABCUT [15], RW [4], NRW [28],
LC [27], SMRW [25], NHO [9], MGC [11] AND THE PROPOSED

METHOD ON ALL 20 IMAGES WITH SIZE 321 × 481
IN THE MICROSOFT GRABCUT DATABASE

Fig. 17. Illustration of error segmentations of the proposed algorithm:
(a) and (c) the same image with different scribbles (red: foreground;
green: background); (b) and (d) the corresponding segmentation results.

E. Runtimes
TABLE III lists the average run times of GrabCut [15],

RW [4], NRW [28], LC [27], SMRW [25], NHO [9],
MGC [11] and our method on all 20 test images
(size: 321 × 481) in the Microsoft GrabCut database on an
Intel Core i7-7700K CPU with 16 GB memory running at
4.20 GHz in MATLAB R2017a. It can be seen that GrabCut
and RW obtain the lowest run times. The run time of the
proposed method is slightly higher than GrabCut and RW and
is significantly lower than the perceptual grouping methods,
NHO and MGC. The average number of iterations of the
proposed method is 64, and the average run time is 1.2 s
to segment an image with size 321 × 481. The algorithm
complexity of the proposed method mainly focuses on the
computation of the multiplication of matrix Q (size: N × N)
and probability vector P̂ L (size: N × 1). Since Q is a sparse
matrix, this multiplication step is computationally efficient.

F. Limitations

We estimate the initial foreground/background distributions
from low-level features. Due to a lack of semantic infor-
mation, the pixel-level features cannot be used to distin-
guish the foreground and background in images with similar
foreground and background appearances. Fig. 17 shows an
example; (a) and (c) show the same image with different
scribbles (red: foreground, green: background), and (b) and (d)
are the corresponding segmentation results. As seen, if we
select all penguins as the foreground (shown in Fig. 17(a)),
a satisfactory result can be produced with limited seeds (shown
in Fig. 17(b)). If we select one penguin as the fore-
ground (shown in Fig. 17(c)), it is difficult to remove the
background of other penguins with similar appearances (shown
in Fig. 17(d)). Because the deep features have a high-level
understanding of objectness and semantics, combining the
proposed algorithm with semantically aware information can
be a good strategy to overcome the above limitations, but is
out of the scope of this paper and would be considered in our
future work.

V. CONCLUSION

In this work, we presented an interactive approach for
foreground/background image segmentation. The classification

is formulated using a probabilistic framework consisting of
unary potential estimation and likelihood learning. To improve
the robustness to the seeds, the distances between pixel pairs
and label pairs are measured to obtain prior label information.
To improve segmentation accuracy, the region and boundary
information are combined by a likelihood learning frame-
work. An equivalence relation between likelihood learning
and likelihood diffusion is also established, and an iterative
diffusion-based optimization strategy is proposed to maintain
computational efficiency. The qualitative and quantitative com-
parisons with state-of-the-art interactive approaches demon-
strate the superior performance of the proposed method.
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