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A B S T R A C T

In this paper, we present a segmentation algorithm to detect low-level structure present in images. The
algorithm is designed to partition a given image into regions, corresponding to image structures, regardless
of their shapes, sizes, and levels of interior homogeneity. We model a region as a connected set of pixels that
is surrounded by ramp edge discontinuities where the magnitude of these discontinuities is large compared
to the variation inside the region. Each region is associated with a scale that depends upon the fraction of
the strong and weak parts of its boundary. Traversing through the range of all possible scales, we obtain
all regions present in the image. Regions strictly merge as the scale increases; hence a tree is formed where
the root node corresponds to the whole image, nodes closer to the root along a path correspond to larger
regions and those further from the root capture smaller regions representing embedded details. To evaluate
the accuracy and precision of our algorithm, as well as to compare it to the existing algorithms, we present a
new benchmark dataset for low-level image segmentation. We provide evaluation methods for both boundary-
based and region-based performance of algorithms. We also annotate different parts of the images that are
difficult to segment with the types of segmentation challenges they pose. This enables our benchmark to give
an account of which algorithm fails where. We show that our proposed algorithm performs better than the
widely used low-level segmentation algorithms on this benchmark.
. Introduction

This paper is concerned with the problem of low-level image seg-
entation, that is, partitioning a given image into regions that rep-

esent low-level image structure. A low-level image segment is char-
cterized by a set of connected pixels having a certain degree of
ntensity homogeneity in the interior and a relative discontinuity at the
order with their surrounding, where the magnitude of discontinuity,
r the contrast, is large compared to the interior variation. While this
efinition of segment does not restrict the criteria that the notion of
omogeneity and contrast are based on, the term ‘‘low-level ’’ restricts
hem to local and intrinsic properties of pixels such as brightness,
olor, gradient, optical flow, etc. This distinguishes a low level segment
rom those constituting higher, e.g. object level segmentation, where
he homogeneity (e.g., inside an animal body segment) and contrast
discontinuity across the animal body segment) may be defined in terms
f somewhat higher, object level properties.

The sizes, shapes, homogeneity and intensity contrast values of re-
ions in an image are a priori unknown. The homogeneity and contrast
arameters associated with the population of regions in an image form
he set of photometric scales present in the image, while the region
izes are said to define the geometric scales present. The size of a region
elevant to low level segmentation is a local measure; it refers to the
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extent of the region in the vicinity of the pixel, as captured by, e.g., the
distance to the nearest point on the region border, and is called the
region’s local geometric scale (Ahuja, 1996). The set of scales associated
with a region is obtained from all the pixels in the region. Clearly, the
number and scale values possessed by a region of a given total size
depend on the region’s shape.

The goal of low-level image segmentation is to detect all valid
image regions regardless of their sizes, shapes, level of homogeneities
and contrast values, while identifying the scales associated with them.
Thus, an image in general contains multiple low-level segmentations,
associated with different natural scales occurring in the image. The set
of all valid regions can be organized as a hierarchical structure where
the hierarchy relates two regions by the containment relation – a given
region may be embedded within a larger region of higher contrast. This
hierarchical structure is a tree, called the segmentation tree (Ahuja,
1996), and it captures all the segmentations of the image and thus
represents the multiscale, low level structure of the image. To obtain
the segmentation tree of an arbitrary gray-scale (or color) image is the
objective of image segmentation pursued in this paper.

Evaluating and characterizing the performance of low level seg-
mentation algorithms is the second major focus of this paper. While
there have been efforts to develop evaluation methods for high-level
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segmentation (Martin et al., 2001; Everingham et al., 2010), the same
cannot be said about low-level image segmentation. To this end, we
develop a benchmark dataset for evaluating the quality of low-level
image segmentation algorithms by comparing their results with the
known ground truth. The benchmark dataset consists of a large number
of image patches that are small, and therefore, their contents are not
always recognizable. Their ground-truth segmentations are identified
by human subjects. These segmentations are low-level because, in the
absence of any cues about their high level content, humans may only
segment them by the spatial variations in the pixel values. We use
this dataset to characterize the performance of a given segmentation
algorithm in terms of three types of differences between the algorithm
results and ground truth regions, namely differences between: region
boundaries, region interiors, and both together.

The relationship between our objective of low-level segmentation
and semantic segmentation can be viewed as follows. The separation
of regions of different contrasts achieved by low-level segmentation
is useful since regions of interest in an image often correspond to
regions on physical objects, having similarities within, and differences
across, in physical properties. For example, these differences may be
in the materials or lighting present in these regions. Since, boundaries
between physical objects also are in general characterized by such
physical differences, detection of low-level regions is useful as primi-
tives whose connected sets may constitute semantic segments. The use
of our low-level segmentation as inputs, instead of raw images, can
thus potentially improve the complexity and performance of semantic
segmentation algorithms.

1.1. Related work

There is a large body of past work on segmentation. The earliest
techniques were based on thresholding where a histogram of color
values of all pixels is computed and then peaks and valleys of this
histogram are located. A given image is segmented by thresholding
it using the values where valleys occur in the histogram. These kind
of methods are extremely efficient and work well for simple figure-
background images. In practice, the valleys of the histogram cannot
be located easily and reliably. A survey of these methods is given
by Sahoo et al. (1988). Thresholding is still being used in segmentation
related tasks. For example, (Matas et al., 2002) use thresholding and
look for stable regions which do not change much as the threshold is
changed.

A significant body of work is based on region-growing. In this
technique, a region is expanded outward from a seed pixel, recursively
examining the pixels across the region boundary and absorbing them
in to the region if they are sufficiently similar to the region. Designing
this similarity test is the most important part of the technique because
it determines when the region stops to grow, i.e. where the boundary
of the segmented region lies. Related to region growing are split-and-
merge techniques where contiguous regions are recursively merged, or
a region is recursively split, until the resulting region is as large as
possible and its pixel values satisfy some predefined similarity rule. The
reader is referred to Stockman and Shapiro (2001) for a review of these
techniques.

Another popular technique for segmentation is clustering (Carson
et al., 2002; Comaniciu et al., 2001; Comaniciu and Meer, 2002; Ren
and Shakhnarovich, 2013; Yu et al., 2015; Kim et al., 2014). In this
approach, each pixel or superpixel (small group of pixels) (Achanta
et al., 2012) is associated with a feature vector containing some at-
tributes of the pixel (such as intensity or color) and/or the pixel’s
neighborhood (such as texture). To account for the location of the pixel
(or superpixel) in the image plane, either the 𝑥, 𝑦 positions of the pixel
are added to the feature vector or location information is implicitly
represented using pixel neighborhoods (for example, as in Kim et al.,
2014). Then, a clustering (e.g. Comaniciu and Meer, 2002; Ren and

Shakhnarovich, 2013) or embedding (e.g. Yu et al., 2015; Shi and
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Malik, 2000) method is used to find the clusters in the spatio-attribute
feature space. Clusters detected correspond to image regions. Although
any clustering method can be used for this purpose, agglomerative
methods, 𝑘-means, expectation–maximization and mean-shift clustering
are widely used. The main shortcoming of these approaches is that one
does not a priori know the relative importance of the parameters or
how to select their values for the clustering algorithm, e.g. the number
of regions, kernel bandwidth for mean-shift, number of agglomerative
stages to run (e.g., in Ren and Shakhnarovich, 2013), etc. A good
review of segmentation using clustering is given by Forsyth and Ponce
(2002).

Graph based methods have also been adopted for image segmenta-
tion (Zabih and Kolmogorov, 2004; Shi and Malik, 2000; Felzenszwalb
and Huttenlocher, 2004; Yu et al., 2015; Kim et al., 2014). In these
approaches, initially a graph is constructed where each node represents
a pixel or a group of pixels, and the edges between nodes encode
a measure of inter-node affinity. Affinity can be expressed in terms
of spatial proximity, intensity/color and texture similarity (possible
when a node represents a group of pixels) between nodes. In the work
of Zabih and Kolmogorov (2004) and Shi and Malik (2000), the goal is
to cut the graph into a predefined number of connected components in
such a way that the sum of weights of the edges that are cut is minimal.
In practice, finding these minimal cuts boils down to computing the
eigenvectors of a matrix called ‘‘the affinity matrix’’ which contains
the weights of edges in the graph. The most popular segmentation
algorithm in this category is the normalized-cuts (Shi and Malik, 2000)
(known as N-cuts). Recently, normalized-cuts was improved by Yu et al.
(2015) by solving a 𝐿1 regularized version of the objective function
in order to produce more definite transitions between regions. These
approaches also have the shortcoming of clustering based segmentation
methods wherein the user has to specify the number of regions in
advance. Another graph based method worth noting is Felzenswalb’s
algorithm (Felzenszwalb and Huttenlocher, 2004) where segmenta-
tion is formulated as finding multiple disjunct minimum-spanning-trees
(MST) that cover the entire image. Each tree corresponds to a distinct
region, and existence of an inter-region boundary is decided based on
a heuristic predicate that compares the contrast across the boundary
(minimum weight edge between two MSTs) and the interior contrast
(maximum weight edge) within each region (MST). This formulation
has similarities with our region model in that it compares the contrast
across and within the region but does so based only on the maximum
contrast edge in each case, instead of estimating it from the many
edges that occur across and within the regions. Further, the algorithm
computes a single-level partitioning of the image; that is, it ignores
multiscale aspect of segmentation. Finally, it implicitly uses the step-
edge model (hence ignores the ramp nature of the real world edges)
which causes the algorithm to produce many thin regions within the
ramp areas between regions.

In the context of our study, we can classify the previous work as ei-
ther not being multiscale, or imposing models on the geometry of edges.
The earliest approaches to segmentation such as thresholding (Haral-
ick and Shapiro, 1985), region-growing (Haralick and Shapiro, 1985)
and watersheds (Meyer and Beucher, 1990; Bleau and Leon, 2000)
ignore the multiscale aspect of the problem. Energy minimization based
approaches such as Markov random field (MRF) modeling (Geman
and Geman, 1984) and active contours (Xu and Prince, 1998) enforce
constraints on the local shape of regions; therefore, they are not capable
of detecting arbitrarily shaped regions. Graph based methods such as
normalized cuts (Shi and Malik, 2000) and graph cuts (Zabih and
Kolmogorov, 2004) require the number of regions to be given as
input, which yields a subset of all the regions present at all scales.
Clustering methods attempt to find regions as clusters in the joint
space of pixel positions and some features, (e.g. intensity, texture,
etc.) extracted from pixels. For this, they either need the number of
regions or some parameter specific to the method (such as density
estimation parameters, number of stages in agglomerative clustering,
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Fig. 1. An example illustrating high-level (i.e. object-level or semantic) segmentation
rom the BSDS500 dataset (Arbelaez et al., 2011). Five different ground-truth (GT)
egmentations (done manually by humans) are shown (b–f) for the image in (a). Note
hat many regions – especially within the butterfly’s wing and on the flower – are
issing in the GT segmentations.

tc.) (Comaniciu and Meer, 2002; Comaniciu et al., 2001; Kim et al.,
014; Ren and Shakhnarovich, 2013) as input. As discussed by Arora
nd Ahuja (2006), mean-shift based segmentation cannot detect steep
orners due to averaging and tends to create multiple boundaries, hence
any small regions, for the blurred edges in the image.

In recent years, many segmentation algorithms (including Arbelaez
t al., 2014; Yu et al., 2015; Ren and Shakhnarovich, 2013; Kim et al.,
014; Arbelaez et al., 2011; Donoser and Schmalstieg, 2014 as notable
xamples) have been developed aimed at maximizing performance on
he Berkeley Segmentation Benchmark Dataset (BSDS) (Martin et al.,
001; Arbelaez et al., 2011) which contains images segmented by
umans. We note that these are object-level, i.e. semantic or high-level,
egmentations and many intensity-wise pronounced but semantically
eak regions in the images are not marked. Also, some regions are
arked even if there is too little or no visual appearance (low-level)

vidence. An example image from this dataset and its ground truth
egmentations are given in Fig. 1. As one can observe, in 4 out of the
ground truth segmentations, the boundaries mark only the semantic

bjects, namely the butterfly and the flower. Only in ‘‘GT #4’’, details
ithin the butterfly’s wing are partly marked. From the viewpoint of

ow-level segmentation, these segmentations are unsuccessful due to
he fact that many regions in the wing of the butterfly and on the
lower are missing. Note that the butterfly example given in Fig. 1
s not an isolated but a typical one. One can find many such images
see also Fig. 12) in the BSDS dataset. It is not our goal, in this study,
o segment out (semantic) objects; instead, we aim to detect low-level
mage structures, i.e. regions, as accurately and completely as possible
o as to provide a reliable and usable input to other vision algorithms
as we have demonstrated in Cheng and Ahuja, 2012; Moaveni et al.,
013; Akbas and Ahuja, 2010, 2014; Singh and Ahuja, 2013; Ghanem
nd Ahuja, 2013; Nam and Ahuja, 2012; Singh and Ahuja, 2012, 2015).
he low-level segments (homogeneous regions) we extract are intended
o serve as primitives; an object/semantic segment is often a union of
uch low level segments. The value of detecting the low level segments
s somewhat like that of detecting strokes of characters and characters
n text, which may then be composed to form high-level/semantic
egments, corresponding to words and beyond. It is a different mat-
er as to what type of control flow might be involved between the
etections of low level and high level segments, but the detection
f low level segments is by itself a longstanding problem in image
nalysis and computer vision. Segmentation algorithms that try to
aximize performance on the BSDS dataset are mostly learning based

lgorithms, trained on high-level boundaries as in Fig. 1, and therefore
uned to high-level semantic segmentation. Nevertheless, we compare
he performance of our algorithm with two such state-of-the-art algo-
ithms (namely, gPb Arbelaez et al., 2011 and Multiscale Combinatorial

rouping (MCG) (Arbelaez et al., 2014)) from this category.

3

Fig. 2. Ramp model stipulates that any 1-D cross section of the boundary between
two adjacent regions across (illustrated as a curve, or a 1-D image here) is a ramp
characterized by an increasing or decreasing intensity profile.

1.2. Overview

We develop a segmentation algorithm which does not assume any
prior models of the shape, size, contrast, number and boundary ge-
ometry of regions. We follow the basic formulation of Ahuja (1996)
and Tabb and Ahuja (1997) but instead of viewing a region as being
surrounded by a step edge, we model an image region as a set of
connected pixels surrounded by ramp discontinuities, as done by Arora
and Ahuja (2006), with strictly increasing (or decreasing) intensity pro-
files. The ramp discontinuity across a boundary point has an associated
ramp height, or contrast, which allows us to associate a photometric
scale the boundary point. From the contrast values occurring all along
the boundary, we derive a single contrast value to associate with the
entire boundary, or region, and call it the photometric scale of the
region. We then analyze the discontinuities obtained for the entire
range of possible contrast values, given by the complete range of
intensity values, and obtain segmentations over all naturally occurring
photometric scales in the image. Finally, all regions detected at all
photometric scales are organized into a tree data structure, where the
hierarchy is defined by recursive containment of regions.

To evaluate the performance of our algorithm, as well as to compare
it to the existing algorithms, we develop a new benchmark dataset for
low-level image segmentation. Our method for evaluating the perfor-
mance of segmentation algorithms compares the ground truth with the
algorithm-provided segmentation in terms of agreement between the
boundary and interior properties as well as their combination. We also
classify different types of segmentation challenges and annotate the
benchmark dataset with their occurrences in individual test images.
This enables our benchmark dataset to give an account of which
algorithm fails where. Using this benchmark dataset, we show that our
proposed algorithm performs better than other widely used low-level
segmentation algorithms.

1.2.1. Contributions
In this paper, we make the following new contributions over our

previous work (Akbas and Ahuja, 2009):

1. We bring a theoretical justification for the greedy agglomerative
merging of regions by introducing the problem of ‘‘photometri-
cally stable regions’’ (Section 2.3). We believe that this theoret-
ical contribution will be useful for any work that uses greedy
agglomerative merging.

2. We simplify the segmentation algorithm by replacing the costly
relaxation labeling step by a basic watershed procedure.

3. We extend the benchmark dataset in several different ways:

• Ground-truth segmentation was obtained from multiple
human subjects instead of just one.

• Ground-truth segmentations were collected on a horizon-
tally laid tablet-pc by drawing on screen using a stylus pen,
which increased the quality of segmentation.

• We added two new performance measures, region-based
and combined-boundary-and-region-based, in addition to

the existing boundary-based measure.
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• And, most importantly, we enriched the benchmark dataset
by introducing a taxonomy of segmentation challenges,
and locating them in images, which reveals specific weak-
nesses and strengths of any given segmentation algorithm
in terms of performance on the various challenges.

The rest of the paper is organized as follows. In Section 2, we
describe our segmentation algorithm, including the ramp discontinuity
and region models, using them to detect regions at all photometric
scales, and their organization into a segmentation tree. Experimental
results are presented in Section 3 in two parts. First, we give sample
segmentation tree results for qualitative inspection. Next, we present
the benchmark dataset and compare the performance of our algorithm
with those of existing, widely used segmentation algorithms, in terms of
various segmentation challenges posed by the dataset. Finally, Section 4
presents conclusions.

2. The models and the algorithm

A set of connected pixels, 𝑅, is said to form a region if it is sur-
ounded by ramp discontinuities, and the magnitudes of these discon-
inuities (contrasts) are larger than the contrasts (intensity variations)
ithin 𝑅. To elaborate on this definition, we first describe the ramp
iscontinuity model.

.1. Ramp model

We assume that the discontinuities that separate adjacent regions
n an image are characterized by increasing or decreasing profiles of
ntensities along any path (e.g. a line segment) starting at one end of
he ramp and monotonically approaching the other. Consider the one-
imensional image 𝐼 given in Fig. 2. The part of the image between 𝑒1
nd 𝑒2 is a ramp. The width of the ramp is |𝑒1 − 𝑒2|, and its magnitude,
.e. contrast, is |𝐼(𝑒2) − 𝐼(𝑒1)|. The ramp endpoints can be detected by
nspecting the sign of the derivative of the image. Within a ramp, the
ign of the derivative does not change and its magnitude is non-zero; at
ramp endpoint, the derivative becomes zero, or may even change sign
hen overshoots and undershoots are present at region boundaries. To

dentify ramps, we consider all such paths, if any, associated with each
ixel 𝒑, and their profiles. In the next section, we describe how these
amp profiles are processed in order to produce a contrast map of the
mage.

.2. Ramp transform

The transform converts the input image 𝐼 to a scalar height field 𝐶.
he height at pixel 𝒑, 𝐶(𝒑), is computed as follows. Suppose 𝐼 is the
-D image given in Fig. 2. Then, for a pixel 𝑝 between 𝑒1 and 𝑒2,

(𝑝) =

{

|𝐼(𝑒2) − 𝐼(𝑒1)| , if 𝐼 ′′(𝑝) = 0
0 , otherwise.

(1)

That is, the contrast of the ramp is assigned to the pixel(s) where the
rate of change of the first derivative of the image, 𝐼 ′, is maximum
(zero-crossing of 𝐼 ′′(⋅), i.e. 𝐼 ′′(⋅) = 0).

When 𝐼 is a 2-D image, an infinite number of lines pass through
pixel 𝒑, each having its own intensity profile, passing through multiple
ramp discontinuities of the regions lying along. Each discontinuity has
its own local maximum. Let 𝜃, the angle that a line makes with the
horizontal axis of the image, parametrize these lines, and hence their
corresponding intensity profiles. For a pixel 𝒑 and an angle 𝜃, we take
the intensity profile passing through 𝒑 at 𝜃 as a 1-D image and compute
the associated directional contrast, 𝐶(𝒑, 𝜃), as described above. This is
done for a finite set of angles in [0, 2𝜋). Then, the final result is obtained
by taking the maximal contrast over angles at each pixel,

𝐶(𝒑) = max
𝜃

𝐶(𝒑, 𝜃). (2)
4

2.3. Region model and detecting ‘‘photometrically stable regions’’

As stated earlier, we model a region, 𝑅, as a set of connected pixels,
having ramp discontinuities along its border, such that the contrasts
(2D local variations) within the ramp are larger than those at pixels
within 𝑅. The region shape is assumed to be a priori unknown, and is
determined by the geometry of the surrounding ramp discontinuities.
We detect region boundary without making any restrictive assumptions
about its geometry.

To obtain regions that conform with the above model, note that the
output, 𝐶, of the ramp transform is a scalar height field wherein height
is proportional to contrasts of the ramp discontinuities. Neighboring
local maxima pixels lie along the axis of a ramp discontinuity and
serve as the edges of the associated region. To locate these maxima, we
use the watershed approach on the topography defined by 𝐶 (Vincent
and Soille, 1991). We start filling it with water, which starts rising
starting at the minima, and filling the landscape until neighboring pools
start merging at their common separating local maxima (Vincent and
Soille, 1991), starting with low lying pools progressing towards the
high. Each initially disconnected pool of water forms a unique region,
with maxima of 𝐶 serving as watershed ridges surrounding basins of
lower contrasts. A region’s contrast is determined by when it merges
with a neighboring pool. From the partitioning of 𝐼 , we produce a
boundary map 𝐵 where adjacent regions are separated by boundary
pixels (i.e. pixels on watershed ridges). The ridge edges constitute
region boundary map with the contrast at each boundary pixel known
from 𝐶.

Boundary contrasts and homogeneity levels of regions present in an
mage are a priori unknown. A region might have faint boundaries,
ence a relatively quite homogeneous interior due to the fact that
he contrasts within a valid region cannot be larger than its boundary
ontrasts. Or, it could have high contrast boundaries and a higher
evel of inhomogeneity inside, still lower than the boundary contrasts.
o account for this appearance variability, we associate each region
ith a photometric scale that describes its homogeneity and contrast.
ccordingly, segmentation at a given photometric scale 𝜎 is defined as

he set of all valid regions (i.e. regions with closed boundaries, without
ny leakages) having a photometric scale greater than 𝜎. Photometric
cale helps separate the different physically meaningful regions, as
iscussed in the paragraph just preceding Section 1.1

In previous work, the photometric scale of a region was defined
o be the minimal contrast along its boundary (Ahuja, 1996; Tabb
nd Ahuja, 1997; Arora and Ahuja, 2006). Based on this definition,
etecting all regions at a given photometric scale 𝜎 is a trivial task:
imply threshold 𝐶 at 𝜎. However, this (old) definition causes prema-
ure leakage. To illustrate, suppose a high contrast region boundary
as a few low contrast pixels. Because the region’s photometric scale
s determined by the lowest contrast along its boundary, this is not

valid region at high photometric scales, even though most of its
oundary has high contrasts. In this paper, we relax and generalize
he definition of the photometric scale of a region by not ruling out
ow contrast boundary pixels to be part of region boundaries at higher
hotometric scales. The old definition then becomes a special case of
his new definition.

Given a photometric scale 𝜎, we categorize the boundary pixels (in
) into two: strong and weak, depending on their contrasts being larger

han 𝜎 or not, respectively. To obtain the segmentation at scale 𝜎, we
ant to

• minimize the number of weak pixels that are part of region
boundaries, and

• maximize the number of strong pixels that are part of regions
boundaries, or, equivalently, minimize the number of strong pix-
els that are dangling (i.e. not forming a closed contour).
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Formally, 𝑆𝜎 , the segmentation at scale 𝜎, is the solution of the
ollowing optimization problem:

𝜎 = argmin
𝑆

∑

𝒑∈𝐵
𝟏{𝐶(𝒑)<𝜎,𝒑∈𝑆} +

∑

𝒑∈𝐵
𝟏{𝐶(𝒑)>𝜎,𝒑∉𝑆}, (3)

here 𝐶(𝒑) denotes the contrast of the boundary pixel 𝒑, 𝑆 is a valid
egmentation, ‘‘𝒑 ∈ 𝑆’’ means that pixel 𝒑 is part of the boundary of a
egion in 𝑆, and 𝟏{⋅} is the indicator function. The first term in Eq. (3)
ounts the number of weak pixels that are part of a region boundary
n 𝑆𝜎 , and the second term counts the number of strong pixels that are
ot part of a region boundary in 𝑆𝜎 .

Without loss of generality, this minimization problem can be for-
ulated in terms of boundary fragments in 𝐵 (each associated with

he closed contour of a separate region) instead of pixels in 𝐵. Doing
o would make processing more efficient because the entire fragment
ust either be accepted or rejected, as partial acceptance will lead to
dangling segment which is not desirable.

Let 𝐺 = (𝑉 ,𝐸) be the region adjacency graph corresponding to the
oundary map 𝐵. Each vertex in 𝑉 corresponds to a region, and each
dge in 𝐸 corresponds to a boundary-fragment separating two adjacent
egions. We assign weights to the edges in 𝐸 in terms of the given
hotometric scale 𝜎 as follows:

(𝑒) =
∑

𝒑∈𝑒
𝟏{𝐶(𝒑)≥𝜎} − 𝟏{𝐶(𝒑)<𝜎} ∀𝑒 ∈ 𝐸, (4)

here 𝑤(𝑒) is the weight of the edge 𝑒. The first term counts the number
f strong boundary pixels in 𝑒, and the second term counts the weak
nes. The larger is 𝑤(𝑒), the stronger is the fragment 𝑒, hence, more
esirable it is to be part of a region boundary in the segmentation
esult 𝑆𝜎 . As the optimization objective given in Eq. (3) dictates, we
ant a minimal number of weak pixels and a maximal number of

trong pixels to be part of the final solution, 𝑆𝜎 . We formally state
his problem, which we call as the ‘‘photometrically stable regions’’,
n terms of boundary fragments as follows.

Problem ‘‘PSR𝜎’’: PHOTOMETRICALLY STABLE REGIONS AT 𝜎

Given 𝜎 and graph 𝐺 = (𝑉 ,𝐸) with edges weighted according to Eq.
(4), color the vertices in such a way that the sum of the weights of
the monochromatic edges (i.e. those between same color vertices)
is minimized.

In the final graph 𝐺′, each unique color represents a region. The
solution 𝑆𝜎 is given by the coloring in 𝐺′.

his problem is NP-hard (see our proof in the Appendix). For its
olution, we consent to a greedy heuristic algorithm which we sketch in
he following. First, we construct the region adjacency graph 𝐺 = (𝑉 ,𝐸)
rom the boundary map 𝐵. We assign a unique color to each vertex
n 𝑉 and compute the weights of the edges in 𝐸 using Eq. (4). Thus,
nitially, each edge is dichromatic, i.e., by design, it separates two
ifferent regions. Now we identify the dichromatic edge with the lowest
eight. Let this edge be 𝑒 and the vertices that 𝑒 connects to each other
e 𝑣1 and 𝑣2 (i.e. 𝑒 is incident to 𝑣1 and 𝑣2). Making 𝑣1 and 𝑣2 the
ame color means that 𝑒 becomes a monochromatic edge. This action
s equivalent to merging the two regions represented by 𝑣1 and 𝑣2. Since
he goal of the optimization is to minimize the sum of the weights
f the monochromatic edges, we make 𝑒 a monochromatic edge only
f 𝑤(𝑒) is negative. Note that 𝑤(𝑒) < 0 means that 𝑒 is a weak edge
t the given photometric scale 𝜎. If 𝑤(𝑒) > 0, then we do not make
t monochromatic, since doing so would increase the objective value
sum of the weights of the monochromatic edges). This re-coloring rule
an be applied repeatedly until there are no dichromatic edges with
egative weights left. Note that as the algorithm progresses, making
wo vertices the same color may result in more than one edge in the
raph to become monochromatic.

In practice, instead of keeping track of which edges are monochro-

atic and which ones are dichromatic, when 𝑤(𝑒) is negative, we

5

Fig. 3. Illustration of steps in the algorithm. (a) Input image 𝐼 . (b) Output of ramp
transform, 𝐶. Here, the darker the pixel, the higher the contrast of the underlying ramp
discontinuity. (c) Basins of 𝐶. Each basin, associated with a unique local minimum of
𝐶, is represented with a different color. (d) Final labeling obtained by watershed. (e,
f, g) Results of multiscale segmentation: (e) Segmentation result at photometric scale
𝜎 = 5. (f) Segmentation at 𝜎 = 65. Two regions (head and the body) merged, which

eans the photometric scales of these regions are less than 65. (g) Segmentation for
𝜎 = 80. More regions have merged. The remaining regions are of photometric scale
larger than 𝜎 = 80. (h) Segmentation tree. On the left, each region is labeled by a
number. Using the containment relations of regions, our algorithm computes the tree
given on the right-hand side.

apply the following steps to make sure all edges in 𝐺 are dichromatic
(i.e. separating two different regions) at all times: (1) we remove 𝑒 from
𝐺, (2) we create a new vertex 𝑣3 to represent the new region 𝑅 which
is the union of the regions corresponding to 𝑣1 and 𝑣2, (3) we create

new edge between 𝑣3 and the vertex of each region that is spatially
adjacent to 𝑅 (if any), (4) recompute the weights for the new edges
reated in the previous step, (5) remove 𝑣1 and 𝑣2 from 𝐺. These steps
ead to the algorithm outlined in Algorithm 1.

Algorithm 1 PSR𝜎: Computing photometrically stable regions at
photometric scale 𝜎.
Input: Photometric scale 𝜎, boundary map 𝐵, ramp discontinuity

contrasts 𝐶.
utput: 𝑆𝜎 , segmentation at 𝜎.

1: Construct region adjacency graph 𝐺 = (𝑉 ,𝐸) from 𝐵.
2: Compute edge weights using Eq. (4).
3: while there exists an edge in 𝐸 with negative weight do
4: Identify the edge, 𝑒 ∈ 𝐸, with smallest weight 𝑤(𝑒).
5: Let 𝑣1 and 𝑣2 be the vertices that 𝑒 connects to each other. Let

𝑅1, 𝑅2 represent the regions corresponding to vertices 𝑣1, 𝑣2.
6: Remove 𝑒 from 𝐺.
7: Add a new vertex 𝑣3 to 𝐺, representing the newly formed region

𝑅3 = 𝑅1 ∪ 𝑅2.
8: Create new edges in 𝐺 between 𝑣3 and the vertices representing

the spatially adjacent neighbors of 𝑅3 (if any).
9: Compute the weights of the edges created in the previous step (if

any) using Eq. (4).
10: end while
11: 𝑆𝜎 is the segmentation defined by the final graph 𝐺.

The procedure given in Algorithm 1 guarantees a local minimum
solution for PSR𝜎. To see this, consider the output, 𝑆 , of the algorithm.
𝜎



E. Akbas and N. Ahuja Computer Vision and Image Understanding 199 (2020) 103026

c
r
s

Fig. 4. Sample segmentation result for qualitative inspection. From left to right: input image, segmentations at scales 𝜎 = 25, 45 and 70. Region boundaries are drawn with red
olor in between pixels (best viewed in color and when zoomed-in). Results show regions where the boundary is not simple. In particular, steep corners (at the left corner of the
oof in the lower-right part of the image), thin regions (on the roof ends) and jagged boundaries (in the middle-right where the roof meets the wall) can be observed. A partial
egmentation tree for this image is given in Fig. 11.
Fig. 5. Sample segmentation result for qualitative inspection, analogous to Fig. 4. From left to right: input image, segmentations at scales 𝜎 = 45 and 80. Many thin regions
(e.g. the spokes on the wheels), steep corners (e.g. at the front fork) can be observed. This example illustrates well the intuition behind 𝜎 (as a contrast threshold). For example,
at 𝜎 = 45 we see both the wheels and the spokes; however, at 𝜎 = 80, the spokes have disappeared, implying that the contrast of the spoke-regions is less than 80.
There are two possible actions on 𝑆𝜎 ; one can further remove an edge,
or one of the already removed edges (in line 6) can be brought back.
Taking the first action would remove a boundary fragment which con-
sists mostly of strong pixels since in the final graph 𝐺, it is guaranteed
that 𝑤(𝑒) > 0 for all 𝑒; and this action consequently would increase
objective value due to the second term in Eq. (3). On the other hand,
taking the second action would bring in a weak boundary fragment
which will increase the first term in (3). Therefore, 𝑆𝜎 is a local
minimum of PSR𝜎.

2.4. Multiscale segmentation

To obtain multiscale segmentation, we run the Algorithm 1 for a
range of photometric scales starting from 𝜎𝑚𝑖𝑛 to 𝜎𝑚𝑎𝑥 at 𝛥𝜎 increments
(lines 4–6 in Algorithm 2). This process ensures that remaining regions
always conform with the region model (that a region must have a close
contour) and successive merges continue to form a strict hierarchy.

Algorithm 2 The complete segmentation algorithm
Input: Image 𝐼 .
Output: Segmentation tree, 𝑇 , of 𝐼 .
1: 𝐶 ← RampTransform(𝐼)
2: Find local minima of 𝐶. These are seeds for regions.
3: Grow seeds using watershed which gives a labeling of all pixels, or

equivalently, a boundary map 𝐵.
4: for 𝜎 = 𝜎𝑚𝑖𝑛 to 𝜎𝑚𝑎𝑥 with 𝛥𝜎 increments do
5: 𝑆𝜎 ← PSR𝜎(𝜎, 𝐵, 𝐶) {call Algorithm 1}
6: end for
7: Collect and make a list, 𝐿, of all regions from all 𝑆𝜎 .
8: Construct the segmentation tree 𝑇 from the regions in 𝐿 based on

geometric containment relations.
6

2.5. Constructing the segmentation tree

As a part of the multiscale segmentation process described in the
previous section, regions merge as the scale of analysis, 𝜎, is increased.
This allows us to arrange the regions into a tree data structure ac-
cording to their geometric containment relationships. Suppose that
regions 𝑅1 and 𝑅2 at photometric scale 𝜎𝑛 have merged and become
𝑅3 at scale 𝜎𝑛+1. Then, in the segmentation tree 𝑅1 and 𝑅2 are made
the children of 𝑅3. Applying this rule recursively for all regions, we
obtain a tree of regions called the segmentation tree, where the root
node corresponds to the entire image itself. We present the overall
segmentation algorithm, where input is an image 𝐼 , and the output is
the segmentation tree of 𝐼 , in Algorithm 2. We illustrate all steps of the
algorithm on a simple synthetic image, in Fig. 3.

3. Experiments

This section describes how we evaluate the performance of our
algorithm, both qualitatively and quantitatively. We first give sample
segmentation and segmentation tree results for qualitative inspection.
Next, we describe the benchmark dataset we developed to evaluate the
performance of any low-level segmentation algorithm, ours included.
We use the benchmark to quantitatively compare the performance of
our algorithm with those of existing, popular approaches. Finally, we
evaluate the performances of the various algorithms on specific types
of image features such as blurred edges, corners, junctions and thin
regions. We believe that the fidelity of the segmentation delivered by
an algorithm at such image features is a good test of its performance.

3.1. Sample segmentations and segmentation trees

In Figs. 4–8, we present sample results of our segmentation algo-
rithm for qualitative evaluation. In these figures, region boundaries
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Fig. 6. Sample segmentation result for qualitative inspection, analogous to Fig. 4. From left to right: input image, segmentations at scales 𝜎 = 25, 40 and 60. This example, in
addition to non-trivial segmentations such as thin regions (e.g. the microphones cable on the man’s shirt) and low-contrast boundaries (e.g. the man’s arms against the background),
illustrates the fact that high-level/semantic objects (e.g. the upper torso of the man) are mostly composed (union) of our low level segments. A partial segmentation tree for this
image is given in Fig. 10.
Fig. 7. Sample segmentation result for qualitative inspection, analogous to Fig. 4. From left to right: input image, segmentations at scales 𝜎 = 45 and 80.
Fig. 8. Sample segmentation result for qualitative inspection, analogous to Fig. 4. From
left to right: input image, segmentation at scale 𝜎 = 140. The input mannequin image
is from (Elder and Zucker, 1998) (used with permission). This example, in particular,
shows sharp and blurred (diffuse) edges (cf. the edges on the mannequin itself and its
shadow) in the same image. Also, the boundary of the shadow of the mannequin’s head
has very low contrast. Our algorithm handles this challenging segmentation example
thanks to our ramp transform which computes contrast by taking ramp width into
consideration (further illustrated in Fig. 9).

are drawn with red color in-between the pixels. To be specific, if two
horizontally-neighbor pixels belong to different regions, we draw a red,
vertical line in between them. For vertically neighboring pixels, we
draw a horizontal line in between them. We used vector graphics to
draw these lines, so that the viewer can zoom in to see both the detailed
boundaries and the image itself. These figures are best viewed in color.

The results in Figs. 4–8 are for image parts where the boundary is
not simple. In particular, high curvature boundaries, e.g. steep corners,
can be found in the house image (Fig. 4, at the left corner of the roof in
the lower-right part of the image) and in the bicycle image (Fig. 5, at
the front fork of the bicycle.) Thin regions can be found in the bicycle
image at the spokes and other parts, in the house image in the roof
area, in the building image (Fig. 7) at the window frames, and in the
‘‘man with his bicycle image ’’ (Fig. 6) at the microphone on man’s shirt,
at the pole in the background, etc. Jagged boundary structure can be
found in the house image (Fig. 4) in the middle-right of the image in
the roof area. A good example for blurred edges, i.e. wide ramps, is
in the mannequin image (Fig. 8) where are very wide, diffuse edges
7

Fig. 9. Gradient magnitude (left) and ramp transform output (right) of the mannequin
image. The maximum contrast in each output is normalized to 1 for comparison. Images
have the same colormap range. While the gradient magnitude quickly vanishes as the
edges get more diffuse, ramp transform correctly computes contrasts regardless of the
ramp width.

(in the shadow area) with varying edge width along with very sharp
edges (on the mannequin itself). The results of our algorithm can be
seen to qualitatively correctly follow the perceptual edges in all these
challenging parts of the images.

The mannequin image is also a good example for demonstrating the
ramp transform. In Fig. 9, we present the output of the ramp transform
together with the gradient magnitude of the image for comparison.
The boundary contrasts of the shadow, i.e. the difference between the
interior and the background intensities across the shadow boundary,
are better estimated by the ramp transform. Due to the changing
lighting, the width of the ramp discontinuities increases from the left to
the right side of the image. Despite this variability in ramp width, ramp
transform estimates the ramp contrasts correctly whereas the gradient
magnitude fails to do so because it employs fixed-size finite difference
filters thus ignoring the changing ramp width.

We finally present two automatically generated sample segmenta-
tion trees in Figs. 10 and 11. As we noted earlier in Section 2.5, the
hierarchy is completely determined by containment relations of regions
and not by their photometric scales. In a segmentation tree, the root
node corresponds to the whole image, nodes closer to the root along
a path represent larger regions, while child nodes represent smaller,
embedded details of the parent node’s region.
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Fig. 10. Part of an automatically generated segmentation tree. The root node corre-
ponds to the whole image, and nodes close to the root along a path are large, while
heir children nodes are smaller and capture embedded details. Each region is drawn
n a light-blue background for better visualization of its boundaries. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version
f this article.)

Fig. 11. Part of an automatically generated segmentation tree, analogous to Fig. 10.

Fig. 12. An example illustrating the disconnect between low-level segmentation and
the ground-truth segmentation given in semantic segmentation datasets. The image on
the left is from the Segmentation Benchmark Dataset (Martin et al., 2001; Arbelaez
et al., 2011). On the right is its ground-truth segmentation. Many regions in the area
marked with the red bounding box (on the left) are not marked in the ground-truth.
See also Fig. 1 for another example.

3.2. Benchmark dataset

Creating a ground truth dataset for low-level image segmentation
is a challenging task because (1) segmenting an image by hand is
a laborious and tedious process, which adversely affects the quality
of the result, and (2) more importantly, humans tend to draw the
boundaries of only the (semantic) objects they see, and skip many other
boundaries even if they are visually strong (but perhaps do not play
an important role with respect to representing the object/semantics.)
Indeed, in Berkeley Segmentation Benchmark Dataset (BSDS) (Martin
et al., 2001; Arbelaez et al., 2011), human subjects segment out objects,
not regions, and that is why many details in terms of low-level segmen-
tation are missing. One example, among many, is given in Fig. 12. If
the ground-truth given in Fig. 12 is used to test the results of a low-
level segmentation algorithm, then the algorithm would be penalized
for detecting the details missing in the ground truth. This high-level
semantic bias towards objects must be eliminated in order to obtain a
ground-truth for low-level segmentation. We do not consider BSDS as a
8

Fig. 13. The set of images used to create the benchmark dataset.

suitable benchmark for low-level image segmentation. BSDS is good for
benchmarking high-level or object-level segmentation. Our goal in this
study is not object-level segmentation; instead, we want to detect all
regions as accurately and completely as possible. As stated in the last
paragraph of Section 1.1, through the example of text understanding,
the motivation here is to extract general purpose image syntax, which
could serve as an input to algorithms extracting semantics.

We address these challenges by having human subjects segment
small image patches instead of whole images. Obviously, hand segment-
ing a small image patch is much less work than segmenting a whole
image. Further, high-level knowledge bias is reduced to the extent the
small image patch lacks evidence of large objects. To further reduce
the bias, we also randomly rotate the image patch (at multiples of 90
degrees) which causes reduction/loss of object perception.

Fig. 13 shows a mosaic of the 15 images from which we collected
patches to create the benchmark dataset. 15 images may appear too few
to create a benchmark dataset, and, this would certainly be true if we
were targeting high-level semantic segmentation. However, our need is
an adequately large number of challenges for low-level segmentation,
i.e., image patches containing different challenges, which maybe con-
tained in much smaller number of images, particularly if the images
are suitably chosen to be rich in such challenges (see Section 3.2.7).
Therefore, we believe that for low-level segmentation, diversity of low-
level content of images rather than their number is more important. Our
set contains images of indoor and outdoor scenes, containing natural
and man-made objects at different scales, and a biomedical image.

The decision about what patch size to use came from the original
motivation, namely, creating a dataset in which the patches are small
enough to be devoid of easy hints about the object from which the
patch is derived. This means that the patch should be small enough
not to contain the smallest semantically meaningful part of the smallest
object contained in the images. For our images, the size of 50 × 50
pixels meets this criterion. We extracted 25 randomly located patches
from each image, thus obtaining 375 patches in total. Each patch was
segmented by 3 to 5 different subjects, resulting in a total of 1479
ground-truth patches. To ensure consistency across subjects, we devel-
oped a graphical user interface which let the subjects segment patches
by drawing boundaries using a stylus pen on a tablet-pc. Note that this
follows a dataset we introduced earlier in Akbas and Ahuja (2009). The
dataset obtained in this work incorporated three improvements over
(Akbas and Ahuja, 2009): (1) Ground-truth is obtained from multiple
subjects (same patch is segmented by multiple subjects) instead of
one as earlier. (2) Ground-truth is collected by asking the subjects
to pen-trace the segments’ borders on a horizontally laid tablet-pc,
which is a more natural setting than drawing on a standard vertical
(desktop) screen using a mouse as done by Akbas and Ahuja (2009). (3)
Additional performance measures, based on regions alone and regions
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Fig. 14. (a) An image from our benchmark dataset. (b) The patch represented by the
upper yellow square on (a) and its ground-truth segmentation. Note that the patch is
rotated 90 degrees clockwise. (c) The other patch and its ground-truth segmentation.

Fig. 15. Illustration of the boundary-based evaluation method for a single patch. (a)
An image from our dataset. The patch of interest is marked by the red square. (b)
Provided human segmentation for the patch. (c) Segmentation of (a) obtained by
our algorithm. (d) Our result at the location of the patch. (e) Segmentation of (a)
obtained by the mean-shift based algorithm. (f) Mean-shift’s result at the location of
the patch. (g) Matching result between the ground-truth (b) and our result (d). Red
pixels represent the ground-truth, blue pixel represent algorithm’s output (our result,
in this case). White lines denote matching pixels. (h) Matching result between (b) and
(f). See (g) for explanation. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

combined with boundaries, are obtained and included as a part of the
dataset.

Fig. 14 shows an image from the dataset and two example patches
randomly extracted from it, along with their subject-obtained segmen-
tations.

3.2.1. Performance measures
We evaluate the performance of a segmentation algorithm in terms

of the agreement of the segmentation it provides with the ground-truth
segmentations provided by human subjects. We measure the accuracy
of a segmentation in terms of: region boundaries, region interiors and
a combination of the two. Boundary-based evaluation measures how
precisely and completely the ground-truth boundaries are detected,
and the region-based evaluation measures how similar the algorithm’s
segmentation layout is to the ground-truth segmentation layout. The
combined measure involves both of these measures.

Since each patch is segmented manually by multiple different hu-
mans, we can measure ‘‘human performance’’ by comparing these
manual segmentations against each other using leave-one-out cross-
validation. In particular, for each patch, we leave out one of the human
segmentations as the test example, use the others as ground-truth
9

Fig. 16. Illustration of why a region-based evaluation method is needed. On the right
is the segmentation result obtained by Felzenszwalb’s algorithm (Felzenszwalb and
Huttenlocher, 2004) (with parameters 𝜎 = 0.5, 𝑘 = 750, and 𝑎 = 10; see Section 3.2.5
for an explanation of parameters) for the mannequin image on the left. The region that
corresponds to the shadow of the mannequin is not correctly segmented: it is merging
with the background at the head’s shadow (compare this result with the one given
in Fig. 8). Boundary-based method does not penalize this error much because most
of the shadow boundary is present, whereas the region-based method would assign a
high penalty because the error eliminates an entire, large region, i.e. the shadow of
the mannequin.

and measure performance. This process is repeated over all human
segmentations pertaining to that patch. ‘‘Median human’’ refers to the
median of leave-one-out cross-validation performances.

3.2.2. Boundary-based evaluation
We adopt the usual boundary-based evaluation method used in

BSDS (Martin et al., 2001; Arbelaez et al., 2011) as in Martin et al.
(2004). In this method, an optimal bipartite matching is computed
between the pixels in the ground-truth boundary map and the seg-
mentation boundary map, first. Then, the goodness of this match is
expressed in terms of recall and precision. Recall measures the propor-
tion of the ground-truth pixels that are matched by the segmentation,
and the precision measures the proportion of the segmentation pixels
that are matched. We illustrate this evaluation for a single patch in
Fig. 15. To account for the multiple ground-truths for a single patch,
a separate bipartite matching is computed between the segmentation
patch and each of its ground-truth patches, and overall precision, recall
are computed as done by Martin et al. (2004). When needed, we
combine precision and recall values into the F-measure defined as:
𝑓 = 2𝑝𝑟

𝑝+𝑟 .

3.2.3. Region-based evaluation
The boundary-based method falls short of penalizing a serious seg-

mentation error: leakage. When there is a leakage on a boundary, the
entire segment is lost, and yet the evaluation by the boundary-based
method may yield a continuous, intermediate value, proportional to
the fraction of the boundary matched, i.e. inversely proportional to the
amount of leakage (Fig. 16). The region-based method, on the other
hand, directly compares the complete partitions, not the corresponding
boundaries alone.

We use the variation of information (VI) (Meila, 2003) as our
region-based evaluation measure. VI is commonly used in the cluster-
ing literature and it measures the ‘‘distance ’’ between two partition-
ings of the same set. It has also been used to evaluate segmentation
performance (Arbelaez et al., 2009, 2011).

Given two segmentations 𝑋, 𝑌 of the same patch, VI is defined as:

I(𝑋, 𝑌 ) = 𝐻(𝑋) +𝐻(𝑌 ) − 2𝐼(𝑋, 𝑌 ) (5)

here 𝐻 is the entropy,

(𝑋) = −
∑

𝑥
𝑝(𝑥)log(𝑝(𝑥)), (6)

nd 𝐼 is the mutual information function,

(𝑋, 𝑌 ) =
∑∑

𝑝(𝑥, 𝑦)log
(

𝑝(𝑥, 𝑦)
)

. (7)

𝑦 𝑥 𝑝(𝑥)𝑝(𝑦)
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Here, lower-case letters represent regions; that is, 𝑥 is a region in
. 𝑝(𝑥) and 𝑝(𝑥, 𝑦) are computed as:

(𝑥) =
# pixels in 𝑥
# pixels in 𝑋

, 𝑝(𝑥, 𝑦) =
# pixels in (𝑥 ∩ 𝑦)

# pixels in 𝑋
. (8)

(𝑦) is computed in a similar way to 𝑝(𝑥) and 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥) since
# pixels in 𝑋) = (# pixels in 𝑌 ) as 𝑋 and 𝑌 are two different seg-

mentations of the same patch, and they contain the same number of
pixels.

3.2.4. Boundary and region combined evaluation
As illustrated in Fig. 16, there are cases where the boundary-based

evaluation gives a good result while the region-based evaluation score
is poor. To retain the quality of both, we combine both evaluations
by simply making a convex combination of them. For the boundary-
based evaluation part, we use the 𝐹 -measure, so larger 𝐹 -measure
values indicate better segmentation. For the region-based part, we use
VI wherein lower values represent better segmentation. To combine
both, we subtract the 𝐹 -measure from a positive constant 𝑐 and then
convexly combine it with VI, with 𝛼 as the trade-off parameter:

Combined = 𝛼(𝑐 − 𝑓 ) + (1 − 𝛼)VI (9)

The lower the value of the combined measure, the better the seg-
mentation is. We describe how to select values for 𝑐 and 𝛼 in Sec-
ion 3.2.6.

.2.5. Algorithms
We compare our algorithm1 with five available algorithms which

re widely used in the literature: Felzenszwalb’s graph-based algo-
ithm2 (Felzenszwalb and Huttenlocher, 2004), Multiscale NCuts3 (Cour
t al., 2005), the mean-shift algorithm4 (Comaniciu and Meer, 2002),
he gPB algorithm5 (Martin et al., 2004; Arbelaez et al., 2009, 2011),
nd the MCG (Multiscale Combinatorial Grouping) algorithm.6 (Ar-
elaez et al., 2014) Among these five algorithms, gPB and MCG are
ot considered low-level segmentation algorithms since their contour
etector was trained on the BSDS dataset. Nonetheless, we include them
ere due to their popularity and to highlight the contrast between the
esults obtained by low and high level segmentation algorithms.

Both Felzenszwalb’s algorithm and the mean-shift algorithm require
hree input parameters from the user and there is a large variability in
he results depending on the values of these parameters. We sample

large number of input parameters for both algorithms. Mean-shift
ased segmentation method (Comaniciu and Meer, 2002) requires a
patial bandwidth 𝜎𝑠, a range bandwidth 𝜎𝑟, and a minimum region
rea 𝑎. We select the following input parameter space: {𝜎𝑠, 𝜎𝑟, 𝑎} ∈ {5,
, 9, 11, 15, 20, 25}×{3, 6, 9, 12, 15, 18, 21, 24, 27}×{5, 10}. The graph-based
lgorithm (Felzenszwalb and Huttenlocher, 2004) expects a smoothing
cale 𝜎, a threshold 𝑘 which is the scale of observation (equation (5)
n Felzenszwalb and Huttenlocher (2004)), and a minimum region size
, as input. We use the following parameter space: {𝜎, 𝑘, 𝑎} ∈ {0.5, 1,
.5, 2} × {250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2500} × {5, 10}.
ultiscale NCuts takes a single input parameter which is the number

f regions, 𝑛. We use 𝑛 ∈ {20, 30,… , 300}. MCG algorithm produces an
ltrametric contour map for a given image. Then, one has to apply a
hreshold to it to obtain segmentations. We used 100 threshold values
ampled from the range [0, 1]. gPB algorithm does not require any input
arameters from the user and outputs segmentations at different scales
{0, 0, 025, 0.05, 0.075,… , 0.975, 1}). Like gPB, our algorithm does not

1 http://vision.ai.uiuc.edu/segmentation
2 http://www.cs.brown.edu/~pff/segment/
3 http://www.cis.upenn.edu/~jshi/software/
4 http://coewww.rutgers.edu/riul/research/code/EDISON/index.html
5 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/

esources.html
6 https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/

cg/#code
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Table 1
Best possible performance (BPP) for the boundary-based evaluation. For each patch,
the largest 𝐹 -measure obtained is the best possible performance. Corresponding recall
and precision values are also shown. Higher scores mean better segmentation. Best
performances are shown in bold.

Recall Precision F-measure

gPB 0.855 0.860 0.857
Graph-based 0.903 0.836 0.868
MCG 0.881 0.857 0.869
Mean-shift 0.912 0.878 0.895
NCuts 0.878 0.872 0.875
Segmentation tree (ours) 0.937 0.891 0.913

Median human 0.937 0.951 0.944

Table 2
Best possible performance (BPP) for the region-based evaluation as
measured by variation of information (VI). Lower scores mean better
segmentation. Best performance is shown in bold.

Variation of information

gPB 0.639
Graph-based 0.718
MCG 0.672
Mean-shift 0.658
NCuts 0.735
Segmentation tree 0.621

Median human 0.421

require any input parameters and outputs a hierarchy of regions, the
segmentation tree, whose regions are coming from segmentations at all
photometric scales. That is, for 8-bit grayscale images the photometric
scales used are {1, 2,… , 255}.

3.2.6. Comparison of algorithms
For a given patch in the benchmark dataset, each algorithm has a

set of different segmentation results depending on its input parameter
values. In the case of our algorithm, different segmentation results
corresponding to that patch can be obtained from the segmentation
tree. To account for all these different segmentations, we report the
boundary, region and combined-boundary-and-region performances in
two different ways. In the first, the overall performance of an algorithm
is computed by taking its best result per patch. We will refer to this
measurement as the best possible performance, or BPP for short. The
use of BPP is analogous to the multiple-segmentations (or the soup-
of-segments) approaches (Russell et al., 2006; Malisiewicz and Efros,
2007; Endres and Hoiem, 2010; Carreira and Sminchisescu, 2012)
where one or more segmentation algorithms are run with a large set
of input parameter values, and a higher level algorithm picks the
segmentation whichever it thinks is the best to solve a specific task at
hand. In the second way, the overall performance is computed by using
a fixed input parameter value set for all the patches in the dataset. We
refer to this as the performance per scale, or PPS for short. PPS would
thus suit commonly used segmentation algorithms which produce only
a single image segmentation (not a set of them, or a hierarchy).

We give the boundary-based BPP results of algorithms along with
the median human performance in Table 1. Our algorithm outperforms
the other five algorithms in terms of recall, precision and 𝐹 -measure.
Mean-shift is the second best, followed, in order, by NCuts, MCG,
Graph-based and gPB.

Table 2 presents the region-based BPP results. Again, our algorithm
performs the best, however, the rest of the ranks (of gPB, Mean-
shift, MCG, Graph-based, NCuts) here are different from those for the
boundary-based evaluation above. This means that for the other five
algorithms, best performing segmentation for the boundary-based eval-
uation is not always the best in terms of the region-based evaluation.
This was illustrated in Fig. 16.

Next, we look at the combined-boundary-and-region performance

evaluation (Eq. (9)). It has two free parameters 𝑐 and 𝛼. We let 𝛼 free

http://vision.ai.uiuc.edu/segmentation
http://www.cs.brown.edu/~pff/segment/
http://www.cis.upenn.edu/~jshi/software/
http://coewww.rutgers.edu/riul/research/code/EDISON/index.html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/mcg/#code
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/mcg/#code
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Fig. 17. Best possible performances (BPP) of algorithms for the boundary-and-region-
combined evaluation (Section 3.2.4). The parameter 𝑐 of the combined evaluation (Eq.
(9)) is adjusted so that the human performance curve is as flat as possible. Lower scores
(on the 𝑦-axis) mean better segmentation.

Fig. 18. Recall–precision plots. Each point corresponds to a fixed input parameter
value set for its corresponding algorithm. Human performance is represented by the
𝑓 = 0.943 curve shown in orange color. Closer points to the top-right corner mean
better segmentation. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

and plot the combined score for all values of it. We pick a value for
𝑐 so that median human performance is maximally close to a flat line,
which effectively makes it independent of 𝛼. This value turns out to be
1.36. We present the plots of the combined scores in Fig. 17.

A few comments can be made about the results in Fig. 17. First, the
ranking of algorithms from the best to worst is as follows: ours, Mean-
shift, gPB, MCG, Graph-based, NCuts. This ranking stays the same in
general except for 𝛼 ∈ [0, 0.25] where gPB seems to be slightly better
than Mean-shift, and for 𝛼 ∈ [0.9, 1] where MCG performs slightly better
than both gPB and Graph-based. Second, our algorithm consistently
maintains a margin with its closest competitor, for all values of 𝛼.
Finally, boundary-based performances (the rightmost part, where i.e.
𝛼 = 1) are confined to a smaller interval, and more scattered across it,
compared to the region-based performances (the leftmost part, where
i.e. 𝛼 = 0) where they cluster into two identifiable groups: (i) our
algorithm, Mean-shift, gPB and MCG, and (ii) Graph-based, NCuts.

Next, we give the boundary-based and region-based performance
per scale (PPS) results. In Fig. 18, Recall–precision points for different
input parameter values can be found. Each point corresponds to a
11
Fig. 19. Sample segmentation challenges as annotated in our benchmark dataset.
Regions with yellow boundaries indicate challenging areas for segmentation algorithms.
From left to right, the challenge types are blurred boundary, steep corner and junction,
low contrast boundary, and thin region.

Table 3
Variation of information scores per input parameter value set. Lower
scores mean better segmentation.

Variation of information

gPB 0.738
Graph-based 0.872
MCG 0.756
Mean-shift 0.824
NCuts 0.846
Segmentation tree 0.729

Median human 0.421

Table 4
Performances of algorithms on blurred boundaries.

Recall Precision F VI Combined

gPB 0.834 0.910 0.870 0.218 0.354
Graph-based 0.807 0.802 0.805 0.267 0.411
MCG 0.806 0.807 0.806 0.250 0.402
Mean-shift 0.882 0.849 0.865 0.233 0.364
NCuts 0.843 0.846 0.844 0.246 0.381
Seg. tree 0.906 0.839 0.871 0.213 0.351

Table 5
Performances of algorithms on high curvature boundaries which include steep corners
and jagged edges.

Recall Precision F VI Combined

gPB 0.846 0.912 0.878 0.185 0.334
Graph-based 0.914 0.857 0.885 0.198 0.337
MCG 0.881 0.855 0.868 0.198 0.345
Mean-shift 0.921 0.895 0.908 0.167 0.309
NCuts 0.872 0.872 0.872 0.192 0.340
Seg. tree 0.925 0.884 0.904 0.157 0.306

unique input parameter value set for its algorithm. Median human
performance is marked by the curve where 𝐹 -measure is equal to
0.943 (see Table 1). In this plot, the closer a point to the top-right
corner, i.e. the perfect Recall–precision point, the better it is. The
points that are closest to the human performance, and to the top-right
corner, tend to be from our algorithm. However, in medium-low recall
regime (recall < 0.7) gPB has better precision than ours. Region-based
PPS evaluations are presented in Table 3, which also show that our
algorithm outperforms others.

3.2.7. Performance evaluation on segmentation challenges
In order to provide some insights about which algorithm fails where,

we manually annotated regions of interests for typical segmentation
challenges (Ahuja, 1996; Tabb and Ahuja, 1997; Arora and Ahuja,
2006). We look at four challenge types: (i) blurred boundaries, (ii) high
curvature boundaries which include steep corners, jagged edges, etc.,
(iii) low contrast boundaries, and (iv) thin regions. For each type, we
collected 25 samples (See Fig. 19). Ground-truth for these regions of
interest is obtained from the already discussed human segmentations.
We use the same boundary and region based evaluations as in previous
sections to analyze the performance of segmentation algorithms on
selected challenges. We believe that such an analysis would provide
valuable insights into how to improve the algorithms.
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Table 6
Performances of algorithms on low contrast boundaries.

Recall Precision F VI Combined

gPB 0.800 0.832 0.815 0.196 0.370
Graph-based 0.818 0.810 0.814 0.171 0.359
MCG 0.832 0.759 0.794 0.208 0.387
Mean-shift 0.826 0.817 0.822 0.208 0.373
NCuts 0.790 0.800 0.795 0.191 0.378
Seg. tree 0.851 0.832 0.841 0.164 0.341

Table 7
Performances of algorithms on thin regions.

Recall Precision F VI Combined

gPB 0.774 0.895 0.830 0.219 0.374
Graph-based 0.884 0.867 0.876 0.191 0.338
MCG 0.882 0.870 0.876 0.221 0.352
Mean-shift 0.889 0.904 0.896 0.171 0.317
NCuts 0.851 0.889 0.869 0.212 0.351
Seg. tree 0.941 0.888 0.914 0.171 0.309

Fig. 20. Performance comparison on the segmentation challenge types. Normalized
combined-boundary-and-region performance is used for comparison.

Tables 4–7 give boundary, region and combined evaluation re-
sults for the four challenge types. Best results are marked in bold.
To compute the combined measure, we used 𝑐 = 1.36 for maximal
independence from 𝛼, as discussed in Section 3.2.6, and therefore an
arbitrary value for 𝛼, 0.5. In all four categories, our algorithm performs
the best. Rest of the rankings vary according to the type of challenge.

In order to compare algorithms across different challenges and to
see how failure is distributed on different types of challenges for a spe-
cific algorithm, we do the following post-processing on the combined
evaluation scores. For each challenge type, we take all the combined
scores and transform them so that they have zero mean and unit stan-
dard deviation, to obtain the ‘‘normalized combined scores ’’. Fig. 20
shows these normalized scores. Here, the baseline, i.e. the 0-line, can be
considered as the performance of an average segmentation algorithm;
and the lower the score, the better the performance. Our algorithm
clearly outperforms the others. In fact, it is the only algorithm which
does better than the average segmentation algorithm in all the four
challenge types. The next best algorithm appears to be Mean-shift, since
it does better than average in 3 of the challenge types. Next, in order,
are Graph-based, gPB, NCuts and MCG.

Fig. 20 allows us to make comments on how failure is distributed
over different challenge types for a specific algorithm. This is possible
because combined scores are normalized per challenge type over all
segmentation algorithms. gPB algorithm seems to be suffering from
thin regions the most. Blurred boundaries is the least concern for gPB.
For the Graph-based algorithm, the performance bottleneck appears to
be the blurred boundaries and the high-curvature boundaries. Mean-
shift is significantly poorer at low-contrast boundaries, while it is
particularly good at high-curvature boundaries and thin regions. NCuts’
12
and MCG’s performances are more or less uniformly poorer across all
the categories. The failures of our algorithm are also more or less
uniformly distributed across all challenge categories.

Finally, we provide segmentation results from different algorithms
for qualitative evaluation and comparison in Fig. 21. As each algorithm
produces a multi-scale segmentation, presenting them in a single figure
is a challenge. As a solution, we present a single segmentation result
per algorithm, which corresponds to the best result (i.e. the one with
the lowest error) based on the boundary-and-region-combined measure
described in Section 3.2.4. We chose the best four algorithms based
on the ranking given by the same measure (in Fig. 17). These are:
our algorithm, gPB, mean-shift and MCG. Examples of under and over
segmentation errors can be easily seen on the segmentation outputs.
Qualitatively, our segmentation results appear to have fewer errors
compared to the outputs of other algorithms (see Fig. 21).

4. Conclusion

We have presented a new multiscale algorithm for low-level image
segmentation. The algorithm is capable of detecting low-level image
segments, each defined by its own, arbitrary level of photometric homo-
geneity, and arbitrary shape. A low-level image structure, or region, is
defined as a connected set of pixels surrounded by ramp discontinuities.
To detect regions, the image is converted to a ramp magnitude map.
Then we find the basins of the ramp magnitude map and use them as
region seeds. These seeds are grown by a watershed procedure to get
the final segmentation. After this, we obtain multi-photometric scale
segmentation by doing a multiscale analysis over a range of scales
where, at each scale, boundary fragments having less contrast than the
scale value are removed. This process guarantees a strict hierarchy.
Using this property, we arrange the regions into a tree data structure
which we call the segmentation tree.

We have also presented a new benchmark dataset to evaluate the
performance of low-level segmentation algorithms. The dataset con-
sists of a number of image patches along with their ground-truth
segmentations done by human subjects. Our evaluations are in terms
of accuracies of the detected segment boundaries, entire segments,
and their best combinations. Boundary-based evaluation measures how
precisely and completely the ground-truth boundaries are detected,
while the region-based evaluation measures how similar the algorithm’s
partitioning of the image, i.e. segmentation, is to the ground-truth
partitioning. We have used the benchmark to quantitatively compare
the performance of our algorithm to those of existing, popular ap-
proaches, and shown that our algorithm outperformed others in all
our evaluations. In addition, our benchmark dataset contains a set of
annotated segmentation challenges such as low-contrast boundaries,
corners, junctions, etc. This enables us to evaluate the performances
of algorithms on these challenge types and give a breakdown of er-
rors across them which could be used to improve the segmentation
algorithms.
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Fig. 21. Best single-scale segmentation result generated by different algorithms, presented for qualitative comparison. For each algorithm, we picked the best result, that is the
one with the lowest error with respect to the ground-truth based on the boundary-and-region-combined measure (Section 3.2.4). Easily seen under-segmentation errors can be seen
in the first row, on the bricks of the wall; in the second row, on the fingerprint patterns; and in the last row, around the light-colored regions. Examples of over-segmentation
can be easily observed in the fourth row, around and within the letters; in the third row, on the black region in the bottom-right corner. Qualitatively, our segmentation results
(last column) appear to have fewer errors compared to the outputs of other algorithms. (Best viewed in color and when zoomed-in). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
g
Appendix. NP-hardness of PSR𝝈

NP-hardness of the problem PSR𝜎, namely the problem of comput-
ng photometrically stable regions, can be shown by a reduction from
he graph 𝑘-coloring problem. Whether the nodes of a given graph can
e colored using exactly 𝑘 unique colors in such a way that no adjacent
odes are colored with the same color is called the graph 𝑘-coloring
roblem, and is known to be an NP-complete problem (Garey et al.,
976; Havet, 2015). Here we present a polynomial time reduction from
n instance of the graph 𝑘-coloring problem to an instance of the PSR𝜎
roblem.

Suppose we are given a graph 𝐺 = (𝑉 ,𝐸) and we want to decide
f 𝐺 is 𝑘-colorable. To solve this decision problem, we construct a new
13
raph 𝐺′ that consists of 𝐺 as well as the complete graph 𝐾𝑘 = (𝑊 ,𝐹 ).
For each pair of nodes (𝑣,𝑤) where 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑊 , we add an edge
between 𝑣 and 𝑤 with weight −1. To all other edges, i.e. ∀𝑒 ∈ 𝐸 ∪ 𝐹 ,
we assign very large (positive) weights.

With this construction, we claim that 𝐺 is 𝑘-colorable, if and only
if PSR𝜎 solution on 𝐺′ has a cost of −|𝑉 |.

Proof. Suppose 𝐺 is 𝑘-colorable. Consider the following coloring
scheme on 𝐺′:

1. 𝐾𝑘 is colored with exactly 𝑘 colors in such a way that each node
gets a unique color,

2. Each node in 𝐺 picks a color from the 𝑘 colors in 𝐾 ,
𝑘
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3. Any two adjacent nodes in 𝐺 do not share the same color.

Note that conditions (2) and (3) are possible because 𝐺 is 𝑘-
colorable.

The PSR𝜎 cost, that is the sum of the weights of the monochromatic
edges, for the coloring scheme given above is −|𝑉 | because the only
monochromatic edges are between 𝐺 and 𝐾𝑘, there is one per node in 𝐺
and each has −1 weight. We claim that this is the optimal, i.e. minimum
cost, PSR𝜎 solution. To see this, consider the cases where we depart
from the given coloring scheme. If we used less than 𝑘 colors, the cost
would have been higher due to the large weights within 𝐺 and 𝐾𝑘. On
the other hand, if we used more than 𝑘 colors, the cost would have
increased due to the loss of monochromatic edges with −1 weights.

Next, suppose that 𝐺 is not 𝑘-colorable. This implies that conditions
(2) and (3) above are not possible, which results in a PSR𝜎 cost higher
than −|𝑉 |.
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