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a b s t r a c t 

Traditional active contour models perform poorly on real images with inhomogeneous sub-regions. In or- 

der to overcome this limitation, this paper has proposed a novel segmentation algorithm. Firstly, analyz- 

ing the smoothing conditions for image segmentation, we construct a smoothing function with improved 

total variation. This function can smooth the inhomogeneous sub-regions, preserve the strong edges and 

enhance the weak edges. Then, the level set is employed to segment the smoothing component using 

the smoothing function. Lastly, according to the confidence level of segmentation sub-regions, we add a 

convergence condition to the smoothing to prevent the segmentation curve from vanishing. Experimental 

results indicate that this model is insensitive to noise and can deal with inhomogeneous intensity. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Region-of-interest plays an important role in various applica-

ions including medical applications ( Yeo et al., 2013 ) and video

ncoding ( Cha and Kim, 2005 ). Further, it is a critical intermedi-

te step in machine vision. For example, to recognize a particu-

ar person in a crowd, the face sub-region need to be extracted

 Wang et al., 2014 ). Image segmentation has the ability to extract

he region-of-interest. Although this technology has been widely

tudied for specific applications in recent decades, it is still a chal-

enging task for researchers and developers to develop a universal

echnique ( Shen et al., 2014 ). 

The classical segmentation algorithms assume that the sub-

egion has common characteristics ( Vese and Osher, 2004 ), i.e.

olor, intensity, specific features and so on. The same specific de-

cription cannot be given for the characteristics of different ob-

ects. Further, it is easily affected by noise and sub-region texture.

he noise causes pseudo-edges and weakens the differences among

ub-regions, and the sub-region texture may form a weak edge or

nhomogeneous sub-region. Above all, inhomogeneous sub-regions
∗ Corresponding author. 
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077-3142/© 2016 Elsevier Inc. All rights reserved. 
nd noise are the two main factors for segmentation on real im-

ges. 

The segmentation models based on active contour are popu-

ar algorithms for dividing an image into foreground (region-of-

nterest) and background, they basically make use of a deformable

urve which conforms to various shapes of objects ( Khan, 2014 ).

rom the curve representation cue, the models can be broadly clas-

ified as either parametric active contour (i.e. the snake model

 Kass et al., 1988 )) or geometric active contour (i.e. the level set

 Chan and Vese, 2001b )). In the Snake model, the curve is param-

terized by arc length in a Lagrangian framework. It is difficult for

his framework to handle topological structure deformation of con-

our, such as the curves merging and splitting. The geometric ac-

ive contour models give a solution ( Tsai et al., 2001 ), in which the

ontour is represented implicitly as the zero level set of a func-

ion in an Eulerian framework ( Chan and Vese, 2001a ). According

o the energy function of their curve evolution, the models can

e broadly classified as either edge-based or region-based models

 Xiao et al., 2014 ).The edge-based models, which use local informa-

ion, are very sensitive to noise. The region-based models, which

tilize the global information, can segment images with noise. 

In general, the classical segmentation models can extract car-

oon objects ( Andersson et al., 2013 ). However, they can not deal

ith the inhomogeneous sub-regions and weak edges of real

http://dx.doi.org/10.1016/j.cviu.2016.06.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2016.06.006&domain=pdf
mailto:535459443@qq.com
http://dx.doi.org/10.1016/j.cviu.2016.06.006
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images. To smooth inhomogeneous sub-regions, a Gaussian filter

( Li et al., 2005 ) is employed. A Gaussian filter with large stan-

dard variance may seriously blur boundaries and lead to the over-

convergence of a curve. Conversely, when the Gaussian filter has a

small standard variance, the curve will be premature. It is difficult

to adaptively choose the standard variance of Gaussian function.

The improved level set method improves the accuracy of specific

object location ( Yang et al., 2014 ) by incorporating object shape

into the initial curve. The segmentation model, which combines

shape and enhancing gradient features, can split images with noise

and weak edges ( Yeo et al., 2014 ). 

By minimizing the Mumford-Shah smooth function ( Mumford

and Shah, 1989 ), images are decomposed into different sub-

regions. However, this function is difficult to minimize due to non-

convexity in general. To decrease computation costs, the CV model

( Chan and Vese, 2001b ) can successfully split images with ho-

mogenous sub-regions using the mean of the sub-regions. How-

ever, for real images, there is a significant difference between the

segmentation curve and the ground truth. To segment inhomoge-

neous images, the piecewise smooth (PS) models ( Vese and Chan,

20 02, Tsai and Yezzi, 20 01 ) are proposed. However, their applica-

tion is limited due to their expensive computational cost. The local

image fitting (LIF) model ( Li and Kao, 2007 ) has low computational

complexity. The local binary function (LBF) ( Li and Kao, 2008 ) is

proposed to segment images’ inhomogeneous regions. By normal-

izing local image fitting energy (NLIFE) ( Peng and Liu, 2012 ), Peng

and Liu (2014 ) proposed a local region-based active contour model.

In order to improve the traditional segmentation models per-

formance for real images, this paper has proposed a novel seg-

mentation model. In this model, we analyze the smoothing condi-

tions for segmentation, and construct a smoothing function with

improved total variation inspired by the Mumford-Shah and to-

tal variation functions. This function can smooth inhomogeneous

sub-regions, maintain strong edges and enhance weak edges. Then,

the level set has been employed to split the smoothing compo-

nent. Lastly, a convergence condition for image smoothing is built

according to the confidence level of different smoothing compo-

nent sub-regions, in order to avoid vanishing of the level set curve.

Compared with the Chunming Li model ( Li et al., 2005 ), the Chan

and Vese model ( Chan and Vese, 2001b ) and the Janakiraman IMST

model ( Janakiraman and Chandra Mouli, 2008 ), experimental re-

sults show that this model is insensitive to noise, and can handle

inhomogeneous intensity at the same time. 

The outline of the paper is as follows. In the next section, we

analyze the smoothing conditions for segmentation and construct

the smoothing function using the improved total variation. Next,

in Section 3 , combining the improved total variation with the level

set, a new image segmentation model has been proposed. The pro-

posed model is implemented in Section 4 , and a convergence con-

dition for image smoothing is built to avoid segmentation curve

vanishing. The experimental results are given in Section 5 . Finally,

the conclusion is given in Section 6 . 

2. The improved total-variation smoothing 

The CV model is the curve evolution implementation of the

Mumford–Shah model. The Mumford-Shah function ( Mumford and

Shah, 1989 ) is: 

E(u , C) = 

τ

2 

∫ 
�

| u 0 − u | 2 d xd y + 

∫ 
�/C 

| ∇u | 2 d xd y + ν| C | ) (1)

Where u 0 : � → R is a given image, u is a piecewise smooth

component of an image u 0 , there are analogical features within a

sub-region and significant differences among sub-regions. Inspired

by this image representation, we give the smooth representation
hich satisfies the following equation: 

(u ) = 

τ

2 

∫ 
�

(u − u 0 ) 
2 
d xd y + 

∫ 
�

ψ( | ∇u | ) d xd y (2)

Let us suppose that E ( u ) in Eq. (2) has a minimum resolution u ,

hen it satisfies the Euler-Lagrange equation 

(u − u 0 ) − ∇ · ψ( | ∇u | ) = 0 (3)

To analyze the diffusion performance of the function ψ(| ∇u |),

e are going to show that it can be decomposed using the local

mage structures, that is, the tangent and normal directions to the

sophote lines. The diffusion performances along the tangent and

ormal directions are respectively denoted by ρT and ρN : 

T = 

ψ 

′ ( | ∇u | ) 
| ∇u | , ρN = ψ 

′′ ( | ∇u | ) (4)

In order to smooth non-uniformity regions and preserve bound-

ries, the function ψ(| ∇u |) may satisfy the following two condi-

ions: 

(1) At locations where the gradients are low, we would like

to encourage the same smoothing speeds in both tangential

and normal directions. Assuming that the function ψ(| ∇u |)

is regular, this condition may be achieved by implementing

the following: 

lim 

| ∇u | → 0 

ψ 

′ ( | ∇u | ) 
| ∇u | = lim 

| ∇u | → 0 
ψ 

′′ ( | ∇u | ) = α > 0 (5)

(2) In a neighborhood of an edge (strong gradients), if we want

to preserve this edge, it is better to diffuse along this edge

and not across it. If we want to enhance this edge, it is bet-

ter to reverse diffusion along the normal direction. To do

this, it is sufficient to annihilate or negative for ρN : 

lim 

| ∇u | →∞ 

ψ 

′ ( | ∇u | ) 
| ∇u | = β > 0 , lim 

| ∇u | →∞ 

ψ 

′′ ( | ∇u | ) = γ ≤ 0 

(6)

The function ψ(| ∇u | ) = | ∇u | 2 blurs image edges and satisfies

he first condition, that is, the diffusion performances along the

angent and normal directions are one. To preserve edges, Rudin,

sher and Fatemi proposed total variation ( Chan et al., 2001 ). It

oes not obey the first condition, that is ρN ≡ 0. According to the

bove, the two conditions are incompatible. By analyzing the total

ariation, we construct a new function. 

 ( | ∇u | ) = 

| ∇u | 
σ 2 

exp 

(
−| ∇u | 2 

2 σ 2 

)
(7)

The diffusion performances of this function are following: 

ρ
T 

= 

(
1 

| ∇u | σ 2 
− | ∇u | 

σ 4 

)
exp 

(
−| ∇u | 2 

2 σ 2 

)
, 

N = 

( | ∇u | 3 
σ 6 

− 3 | ∇u | 
σ 4 

)
exp 

(
−| ∇u | 2 

2 σ 2 

)
(8)

here the variation of the intensity is weak, ρT > 0 and ρN < 0.

n the neighborhood of edges (| ∇u | → ∞ ), both converge to zero

seen Fig 1 ). 

The smoothing model of the improved total variation is as fol-

ows: 

 

(IT V ) (u ) = 

τ

2 

∫ 
�

(u − u 0 ) 
2 
d xd y + 

∫ 
�

| ∇u | 
σ 2 

exp 

(
−| ∇u | 2 

2 σ 2 

)
d xd y 
(9) 
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Fig. 1. The diffusion performance of the function ( σ = 0 . 5 ). The solid and dash dot 

curve denote the diffusion in the tangent and normal direction respectively. 
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Fig. 2. The curve of weight coefficient. The solid curve denotes weight of the total 

variation, the dot curve represents the weight of the improved total variation with 

σ = 0 . 5 . 
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a  
. Image segmentation model 

The level set has been employed to segment images. It’s basic

dea is that contours are represented as the level set of an implicit

unction φ( x, y ), that is C = { (x, y ) | φ(x, y ) = 0 } . The inside region

( x, y )| φ( x, y ) < 0} and outside region {( x, y )| φ( x, y ) > 0} corre-

pond to the foreground and background. To simplify, the outside-

nd inside-region of the curve are approximated by the Heaviside

unction H ( φ). The curve is represented as the one-dimensional

irac measure δ( φ), it is the derivative of H ( φ). H ( φ) and δ( φ) are

efined respectively as: 

(φ) = 

{
1 φ ≥ 0 

0 φ < 0 

, δ(φ) = 

dH(φ) 

dφ
(10)

The segmentation model using level set is minimized in the fol-

owing energy function ( Li et al., 2005 ): 

 

li (φ) = λ

∫ 
�

gδ(φ) | ∇φ| d xd y + v 
∫ 
�

gH(−φ) d xd y 

+ 

μ

2 

∫ 
�

( | ∇φ| − 1) 
2 
d xd y (11) 

Incorporating the improved total-variation smoothing model,

he energy function of segmentation is proposed : 

(φ, u ) = E li (φ) + E IT V (u ) 

 λ

∫ 
�

gδ(φ) | ∇φ| d xd y + ν

∫ 
�

gH(−φ) d xd y 

+ 

μ

2 

∫ 
�

( | ∇φ| − 1) 
2 
d xd y 

+ 

τ

2 

∫ 
�

(u − u 0 ) 
2 
d xd y + 

∫ 
�

| ∇u | 
σ 2 

exp 

(
−| ∇u | 2 

2 σ 2 

)
d xd y (12) 

here g is the edge indicator function of smoothing component u ,

t is defined: 

(u ) = ( 1 + | ∇u | ) −1 
(13) 

By calculating variations, the Gateaux derivative ( Evans, 1998 )

f the function E ( φ, u ) in ( 12 ) can be written as 

∂E(φ, u ) 

∂φ
= −μ

[
�φ − ∇ •

( ∇φ

| ∇φ| 
)]

− λδ(φ) ∇ •
(

g 
∇φ

| ∇φ| 
)

−νgδ(φ) (14) 
here � is the Laplacican operator. By introducing an artificial

emporal variable t , we use the steepest descent process to get

inimization of the function E ( φ, u ), whose gradient flow is: 

∂φ

∂t 
= − ∂E(u , φ) 

∂φ
= μ

[
�φ − ∇ •

( ∇φ

| ∇φ| 
)]

+ λδ(φ) ∇ •
(

g 
∇φ

| ∇φ| 
)

+ νgδ(φ) (15) 

The smooth component u is a result of the proposed smoothing

ethod. By applying Euler-Lagrange equation, we can obtain the

iffusion equation for smoothing 

∂E(φ, u ) 

∂u 

= τ (u − u 0 ) 

−∇ ·
[ ∇u 

| ∇u | 
(

σ 2 − | ∇u | 2 
σ 4 

)
exp 

(
−| ∇u | 2 

2 σ 2 

)]
(16) 

. Implementation 

.1. The digitization of the improved total variation smoothing 

During the image smoothing, the component u in ( 16 ) contains

he constant intensity sub-region in which the gradient is zero, i.e.

 ∇u | = 0 . To avoid this problem, we introduce a small enough pos-

tive number a ( a = 0 . 001 ), | ∇u | in ( 16 ) is defined as: 

 

∇u | a = 

√ 

a 2 + | ∇u | 2 (17) 

To compute the smoothing component, we use a semi-implicit

nite difference scheme. Give the center pixel α and four neigh-

ors region �, the approximation of ( 16 ) can be simply written as:

 (α) = 

1 

τ + 

∑ 

p∈ �
ω(p) 

[ 

τu 0 (α) + 

∑ 

p∈ �
ω(p) u (p) 

] 

(18) 

here 

(p) = 

σ 2 − | ∇u (p) | 2 a 

σ 4 | ∇u (p) | a exp 

(
−| ∇u (p) | 2 a 

2 σ 2 

)
In ( 18 ), the smoothing component contains the information of

n image. If pixels p and α are located in a sub-region where the
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Fig. 3. Result of segmentation with different parameters. 
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gradients are low, the coefficient ω( p ) is large, and the pixel α is

the weight-sum of the neighboring pixels. If pixels p and α are lo-

cated in different sub-regions, that is, | ∇u ( p )| → ∞ , ω( p ) is nega-

tive and the edges are enhanced. 

Compared with the weight of the total variation, that is

ω 

T V (p) = | ∇u (p) | −1 , this weight coefficient ω( p ) is larger where

the gradients are low. This sub-region is seriously smoothed. In

the neighborhood of an edge, ω( p ) < 0 < ω 

TV ( p ), this method can

enhance edges where gradients are equal or greater than σ . The

curves of weight coefficient on the neighbor pixel are shown in
Fig 2. d  

i  
.2. Numerical scheme for the level Set 

During the contour evolving, the Dirac function δ( φ) in ( 14 ) is

lightly smoothed, and δb ( φ) defined by: 

b (φ) = 

{
0 | φ| > b 
1 

2 b 

[
1 + cos ( πφ

b 
) 
] | φ| ≤ b 

(19)

In this paper, we use the regularized Dirac δb ( φ) ( b = 1 . 5 ). The

emporal partial derivative ∂ φ/ ∂ t is approximated by the forward

ifference, and the spatial partial derivative ∇φ = ( ∂φ/ ∂x , ∂φ/ ∂y )

s approximated by the central difference. As the above difference



K. He et al. / Computer Vision and Image Understanding 152 (2016) 29–40 33 

Fig. 4. Result for a plane and cloud image with slightly inhomogeneous sub-regions. 

Fig. 5. Result for a grass and sand image with severely inhomogeneous sub-regions. 
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y  
chemes, the approximation of ( 14 ) can be simply written as: 

φk +1 − φk 

�t 
= μ

[ 

�φk − ∇ •
( 

∇ φk ∣∣∇ φk 
∣∣
) ] 

+ λδb ( φ
k ) ∇ •

( 

g(u ) 
∇ φk ∣∣∇ φk 

∣∣
) 

+ νg(u ) δb ( φ
k ) (20) 

here, �t is the time step. 
Unfortunately, since lim | ∇u |→∞ 

| ∇u | 
σ 2 exp (−| ∇u | 2 

2 σ 2 ) = 0 in ( 12 ), the

moothing component converges to the mean of the initial im-

ge, which leads to the level set curve vanishing. To avoid this

henomenon, we give the confidence level of segmentation sub-

egions, it is defined as following: 

r = 

card( A 

N (φ ≤ 0) ∩ A 

N−1 (φ ≤ 0)) 

max { card( A 

N (φ ≤ 0)) , card( A 

N−1 (φ ≤ 0)) } (21) 

Here the set A 

N ( φ ≤ 0) represents inside region {( x, y )| φ( x,

 ) < 0} and the zero level set curve { (x, y ) | φ(x, y ) = 0 } for the
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component u N , the set A 

N−1 (φ ≤ 0) of u N−1 . u N and u N−1 are

the component of the N and N − 1 times iteration smoothing,

respectively. 

According to the confidence level of the segmentation sub-

regions, we build the condition of convergence on the image

smoothing, which is defined as: 

Pr ≥ T (22)

The proposed segmentation is described as follows: 

program ImageSegmentation (Output) 

{Initial: τ, σ, λ, μ, ν, �t, T, ϕ 0 ( x, y ) and u 0 = u 0 } 

N is the number of image smoothing 

Begin 

N: = 0; 

Repeat 

Computing the weight coefficient ω(p) of smoothing component u N uses: 

ω 

N (p) = 

σ 2 −| ∇ u N−1 (p) | 2 a 

σ 4 | ∇ u N−1 (p) | a exp (− | ∇ u N−1 (p) | 2 a 

2 σ 2 ) ; //formula (18) 

Computing image smoothing component u N uses: 

u N (α) = 

1 
τ+ ∑ 

p∈ �
ω(p) 

[ τu 0 (α) + 

∑ 

p∈ �
ω(p) u N−1 (p) ] ; //formula (17) 

Computing the edge indicator function of smoothing component u N uses: 

g( u N ) = 

1 
1+ | ∇ u N | ; //formula (13) 

segmentation based on the level set for smoothing component u N uses: 

//formula (20) 
φk +1 −φk 

�t 
= μ[ �φk − ∇ • ( ∇ φ

k 

| ∇ φk | ) ] + λδb ( φ
k ) ∇ • (g( u N ) ∇ φ

k 

| ∇ φk | ) + νg( u N ) δb ( φ
k ) ; 

Until 

The convergence condition: 

Pr ≥ T ; //formula (22) 

Output: the result of segmentation. 

End 

5. Experimental results 

The experiments are conducted using VC 6.0 on the PC with

Intel-Core CPU 3.40 GHz and 4GB of RAM without any particular

code optimization. The images shown in this paper are selected

from the Berkeley segmentation database and the Internet. During

the implementation of the proposed model, we used the param-

eters λ = 5 . 0 , μ = 0 . 04 , ν = 3 . 0 , �t = 5 . 0 and T = 0 . 95 for all ex-

periments. 
Fig. 6. Result for a real im
The image is smoothed using the improved total variation in

he proposed model, and smoothing performance depends on pa-

ameters σ and τ in ( 16 ). To analyze the relationship between

arameters and segmentation performance, a 480 × 320-pixel

otted-tree image with inhomogeneous sub-regions (i.e. Crown re-

ion of the tree) is smoothed with different parameters, and the

esults of segmentation are shown as Fig. 3 . When σ is small and

is given, the regions with low gradient can be protected, lead-

ng to evolving curve under-convergence. Otherwise, the edges are

moothed and the curve has over-convergence. When τ is small

nd σ is given, the partial sub-regions of the object are regarded

s the background region, i.e. pot region. When τ is large, the par-

ial background is regarded as the object. The F-measure of seg-

entation with different parameters is listed in Table 1. 

In this model, the smooth components converge to the mean of

he image without constrained conditions, which can lead to dis-

ppearance of the level set curve. To validate how the smoothing

umber affects the segmentation performance, a 480 × 320-pixel

lane and cloud image of the Berkeley segmentation database has

een chosen. In this image, some sub-regions are slightly inhomo-

eneous. The segmentation results and corresponding edge indi-

ator functions are shown in Fig. 4 . The F-measure, precision and

ecall are 0.913, 0.989, and 0.847 with 18 times, respectively. 

A 480 × 320-pixel grass and sand image with severely inho-

ogeneous sub-regions is segmented, shown as Fig. 5 . F-measure,

recision and recall with 60 times are 0.971, 0.984, and 0.958, re-

pectively. Observation of different iterations of the edge indica-

or function shows, the smoothing method using improved total

ariation can preserve the edge and smooth the region with inho-

ogeneous intensity. With the increasing number of iterations, the

ifference of the edge indicator function around the boundaries is

bvious. 

The weak edges are a key factor affecting the segmentation per-

ormance. To test if this algorithm could handle weak edges, the

esult of segmentation on a 480 × 320-pixel image is shown as

ig. 6 . From Fig. 6 e and f, the edge indicator function becomes

maller at weak edges. It means that this method can enhance

eak edges. The F-measure, precision and recall are 0.949, 0.945,

nd 0.952, respectively. 
age with weak edge. 
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Table 1 

F-measure of image segmentation with different parameters. 

τ σ

0 .2 0 .3 0 .4 0 .45 0 .5 0 .55 0 .6 0 .7 1 .0 

0 .5 0 .712 0 .754 0 .811 0 .845 0 .861 0 .856 0 .852 0 .841 0 .838 

0 .6 0 .734 0 .812 0 .832 0 .883 0 .907 0 .87 0 .861 0 .859 0 .845 

0 .8 0 .798 0 .838 0 .856 0 .902 0 .928 0 .902 0 .887 0 .879 0 .878 

0 .9 0 .835 0 .846 0 .873 0 .914 0 .944 0 .936 0 .921 0 .92 0 .915 

1 .0 0 .849 0 .863 0 .892 0 .923 0 .954 0 .951 0 .948 0 .940 0 .938 

1 .2 0 .845 0 .86 0 .881 0 .921 0 .945 0 .940 0 .940 0 .937 0 .938 

1 .5 0 .841 0 .857 0 .876 0 .916 0 .938 0 .932 0 .932 0 .93 0 .927 

2 0 .839 0 .855 0 .87 0 .912 0 .937 0 .930 0 .928 0 .926 0 .922 

4 0 .832 0 .851 0 .867 0 .907 0 .937 0 .926 0 .92 0 .918 0 .918 

Fig. 7. Comparison of the segmentation method on the image ‘the eagles’. 

Fig. 8. Comparison of the segmentation method on the image ‘the swans’. 
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Table 2 

CPU time and score of segmentation comparison of Figs. 7–11 . 

Method Image and it’s size 

Fig .7 Fig .8 Fig .9 Fig .10 Fig .11 

480 ×320 508 ×321 320 ×221 600 ×392 480 ×320 

The proposed method precision 0 .996 0 .951 0 .960 0 .994 0 .928 

recall 0 .871 0 .877 0 .930 0 .951 0 .856 

F-measure 0 .930 0 .913 0 .945 0 .972 0 .891 

CPU time (s) 9 .672 30 .84 7 .529 39 .396 41 .345 

Li precision 0 .991 0 .880 0 .930 0 .927 0 .413 

recall 0 .884 0 .707 0 .873 0 .857 0 .768 

F-measure 0 .934 0 .784 0 .900 0 .890 0 .537 

CPU time (s) 8 .579 24 .226 6 .288 28 .975 24 .461 

CV precision 0 .891 0 .717 0 .927 0 .889 0 .223 

recall 0 .932 0 .963 0 .871 0 .922 0 .859 

F-measure 0 .911 0 .822 0 .898 0 .905 0 .354 

CPU time(s) 6 .365 19 .822 4 .989 17 .552 14 .258 

IMST precision 0 .965 0 .905 0 .933 0 .952 0 .642 

recall 0 .854 0 .864 0 .896 0 .932 0 .866 

F-measure 0 .927 0 .819 0 .912 0 .941 0 .658 

CPU time(s) 4 .188 12 .919 4 .175 12 .152 11 .588 

Fig. 9. Comparison of the segmentation method on the image ‘the tree’. 
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To test segmentation performance using the proposed method

on the real images, the experiments are carried on to compare

with baseline model Chan and Vese ( Chan and Vese, 2001b ) ac-

tive contour model-CV, as well as two other existing methods,

Chunming Li’s ( Li et al., 2005 ) level set model-Li and Janakiraman

( Janakiraman and Chandra Mouli, 2008 )-IMST. The partial results

are shown in Figs. 7–11 . The CPU time and score of segmentation

of the methods are given in Table 2 . Except the IMST method, the

effects of the methods on the slightly inhomogenous image are al-

most the same, such as Figs. 7–9 . However, on images with se-

vere inhomogeniety(as Figs. 10 and 11 ), the effect of the proposed

method is better than the others. On Fig. 11 , the locations of two

persons contour using the CV model and the Li model are far away

from the true boundaries, and even worse in IMST model. 

Compared to the other three models, the effect of the proposed

method is better. On the number of the smoothing, Li’s model only

needs one time Gaussian smoothing, Chan and Vese model does

not smooth, but the proposed method uses iteration smoothing to
chieve a better result. So the computation time is costly. On the

ame size images with the different inhomogeneity, the computa-

ion time mainly depends on the degree of the regional inhomo-

eneity. For example, the CPU time of Fig. 7 is 9.762 s, and it is

1.345 s in Fig. 11. 

The noise is a major factor which leads to inhomogeneous in-

ensity. To test if this algorithm is insensitive to noise, we seg-

ent degraded images with additive white noise, partial results are

hown in Fig. 12 . The initial contours are the same in Li,CV and the

roposed model. The scores of segmentation on images with noise

re listed in Table 3. 

In Table 3 , on the image without noise, the F-measure, pre-

ision and recall of image segmentation using the three meth-

ds are almost equal. However, for noisy images, the differ-

nce of segmentation score using the different methods is

arger. 

In order to test the ability of handling noise, we take the

core of segmentation on the image without noise as a bench-
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Fig. 10. Comparison of the segmentation method on the image ‘the cycas’. 

Fig. 11. Comparison of the segmentation method on the image ‘two persons’. 

Table 3 

Score of segmentation comparison of image with noise (where Pre, Rec, F-M denote precision, recall and F-Measure, respectively). 

PSNR(dB) Method 

The proposed method The Li’s model The CV model The IMST model 

Pre Rec F-M Pre Rec F-M Pre Rec F-M Pre Rec F-M 

22 .70 0 .995 0 .947 0 .970 1 .0 0 .974 0 .987 0 .997 0 .916 0 .955 0 .996 0 .952 0 .984 

21 .23 0 .996 0 .946 0 .970 1 .0 0 .970 0 .985 0 .996 0 .927 0 .957 0 .995 0 .950 0 .969 

20 .25 0 .996 0 .946 0 .970 1 .0 0 .968 0 .985 0 .992 0 .920 0 .955 0 .986 0 .947 0 .962 

18 .85 1 .0 0 .942 0 .970 0 .963 0 .941 0 .952 0 .992 0 .917 0 .953 0 .964 0 .921 0 .955 

17 .07 1 .0 0 .941 0 .970 0 .942 0 .936 0 .939 0 .955 0 .922 0 .938 0 .942 0 .918 0 .921 

15 .54 1 .0 0 .941 0 .970 0 .871 0 .911 0 .891 0 .925 0 .841 0 .881 0 .850 0 .871 0 .862 

14 .78 0 .998 0 .927 0 .961 0 .831 0 .891 0 .859 0 .858 0 .927 0 .891 0 .825 0 .851 0 .810 

12 .69 0 .874 0 .947 0 .909 0 .758 0 .818 0 .787 0 .625 0 .961 0 .758 0 .632 0 .819 0 .788 

12 .13 0 .778 0 .962 0 .860 0 .718 0 .769 0 .743 0 .637 0 .953 0 .763 0 .617 0 .803 0 .752 

Without noise 0 .995 0 .948 0 .971 1 .0 0 .983 0 .992 0 .985 0 .953 0 .968 0 .995 0 .952 0 .985 

MD 0 .217 0 .021 0 .111 0 .282 0 .214 0 .249 0 .348 0 .036 0 .210 0 .379 0 .149 0 .233 

SD 0 .076 0 .009 0 .038 0 .108 0 .072 0 .089 0 .146 0 .033 0 .080 0 .148 0 .058 0 .088 
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Fig. 12. Comparison of the proposed method with the Li, CV on real images with noise. Row1 initial curves (red) and the ground truth (yellow), Row2 segmentation results of 

the proposed model, Row3 segmentation results of the Li, Row4 segmentation results of the CV, Row5 segmentation results of the IMST. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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mark. The maximum difference (MD) of F-measure using the pro-

posed method is 0.111. The MD of model Li, CV and IMST are 0.249,

0.210, 0.233, respectively. The MD using the proposed method is

smaller than that of the other three models, which shows that the

proposed method performs well on images with noise. The stan-

dard deviation (SD) of F-measure using the proposed method is

0.038, while that of Li, CV and IMST are 0.089, 0.080, 0.088, re-

spectively. The standard deviation using the proposed method is

smaller than that of other models, this algorithm is insensitive to
noise. F  
Although the proposed method is insensitive to noise, the com-

uter time is longer than the other models. In the proposed

ethod, the lower the PSNR, the longer the CPU time. The CPU

ime comparison of segmentation on an image with noise is shown

n the Table 4. 

The proposed method just uses the gradient of luminance com-

onent, but neglects the chroma variation. Some failed examples

re shown in Fig. 13 . Some failed segmentation was caused by

he chroma gradient and strong edges within the initial contour.

or example, partial boundaries of the penguin are formed by the
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Table 4 

CPU time (in second) comparison of segmentation on image with noise. 

PSNR (dB) 22 .70 21 .23 20 .25 18 .85 17 .07 15 .54 14 .78 12 .69 12 .13 Without noise 

The proposed method 6 .381 6 .393 7 .643 7 .782 7 .925 10 .154 10 .911 11 .232 12 .373 4 .932 

Li model 4 .971 5 .083 6 .115 6 .332 6 .542 8 .391 9 .773 10 .187 10 .574 3 .666 

CVmodel 3 .822 3 .887 4 .134 4 .657 4 .774 5 .393 5 .413 5 .991 6 .353 3 .526 

IMST 1 .913 1 .920 1 .921 1 .924 1 .926 2 .011 2 .025 2 .198 2 .202 1 .894 

Fig. 13. Some examples of our method with weak performance. 
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hroma gradient, and there are strong edges in the initial contour

f the girl. 

. Concluding remarks 

In order to improve the traditional models performance for real

mages, and to combine it with the classical level set, the new im-

ge segmentation model is proposed. Compared to the comparison

ethods above, the proposed method is insensitive to noise and

an deal with inhomogeneous sub-regions. However, the proposed

ethod just uses the gradient of image luminance component, but

eglects the chroma gradient. The computation is costly due to

he gradient descent algorithm. We plan to discuss in the future

ow to fuse luminance and chroma gradient further, to promote

he quality of image segmentation, and to solve the partial differ-

nce equation by using a conjugate gradient in order to reduce the

omputational time. 
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