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Abstract

Superpixels provide a useful intermediate image repre-

sentation. Existing superpixel methods, however, suffer from

at least some of the following drawbacks: 1) topology is

handled heuristically; 2) the number of superpixels is ei-

ther predefined or estimated at a prohibitive cost; 3) lack of

adaptiveness. As a remedy, we propose a novel probabilistic

model, self-coined Bayesian Adaptive Superpixel Segmen-

tation (BASS), together with an efficient inference. BASS is

a Bayesian nonparametric mixture model that also respects

topology and favors spatial coherence. The optimization-

based and topology-aware inference is parallelizable and

implemented in GPU. Quantitatively, BASS achieves results

that are either better than the state-of-the-art or close to it,

depending on the performance index and/or dataset. Qual-

itatively, we argue it achieves the best results; we demon-

strate this by not only subjective visual inspection but also

objective quantitative performance evaluation of the down-

stream application of face detection. Our code is available

at https://github.com/uzielroy/BASS.

1. Introduction

Superpixels [37], relatively-small image segments, form

a compact intermediate image representation that is a key

preprocessing step in many computer-vision tasks, e.g., [6,

14, 18, 22, 24, 25, 27, 30, 33, 34, 35, 46, 54]. Existing

superpixel methods, however, suffer from at least some of

the following shortcomings: 1) Topological constraints are

handled only via post-processing heuristics, and thus the

resulting superpixels are no longer directly related to their

objective; 2) the number of superpixels, K, is either defined

manually or estimated at a usually-prohibitive computational

cost (at least for methods of superixels with flexible shapes,

as opposed to those that support only limited geometric

primitives); 3) Limited adaptiveness to the global and local

levels of image details, causing important details to be lost

while wasting many superpixels in uninformative regions.

This work was partially supported by the Lynn and William Frankel

Center for Computer Science at BGU.

Figure 1: BASS adapts the size, shapes, and number of the

superpixels to the image content, thereby providing an unsu-

pervised and compact detail-preserving intermediate image

representation. From left to right: original images; superpix-

els colored by their mean colors, superpixel boundaries. The

same hyperparameters were used for both the images.

Here we propose a novel adaptive model of superpixels

(Fig. 1) together with an efficient inference. This model, self-

coined Bayesian Adaptive Superpixel Segmentation (BASS),

is based on the Dirichlet-Process Gaussian Mixture Model

(DPGMM). The latter is an important example of Bayesian

Non-Parametric (BNP) mixture models. Such models pro-

vide a flexible and principled approach to the unsupervised-

learning task of clustering and were first introduced to the

computer-vision community over a decade ago; see, e.g. [45].

A key benefit of the BNP approach is that the inference pro-

cedure finds not only the clusters but also their number, thus

letting these models adapt their complexity to the complexity

of the data. Particularly, BASS automatically adapts K to

the complexity of the image both globally and locally. BASS
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Table 1: A comparison of BASS with key methods.

(a) SLIC [1], (b) reSEEDS [43], (c) ETPS [52], (d) TSP [9],

(e) FSCSP [17], (f) BASS.

(a) (b) (c) (d) (e) (f)

Connectivity × X X X X X

Parellelism X × × × X X

Adaptive K × × × X × X

Anisotropic covs × X X × X X

Spatial coherence × × X × × X

differs from a DPGMM in that it respects topology (e.g., it

explicitly disallows a superpixel consisting of disconnected

regions) and encourages spatial coherence (i.e., it favors

smoother inter-superpixel boundaries). The proposed effi-

cient optimization-based inference is inspired by a DPGMM

parallel sampler [8]. Seemingly, BASS’ topological con-

straint prevents parallelizing the computations of that algo-

rithm. A careful design, however, lets the proposed inference

support massive parallelization without violating the topol-

ogy, facilitating a massively-parallel GPU implementation.

BASS’ quantitative results are either better than the state-of-

the-art or close to it, depending on the performance index

and/or dataset. Qualitatively, we argue it achieves the best re-

sults and show it by not only subjective visual inspection but

also objective quantitative evaluation of the performance of

a face-detection downstream application. Finally, we show

that BASS improves a deep-net-based segmentation.

2. Related Work

Below we focus on methods most related to ours; for

more comprehensive surveys of superpixels, see [44, 49].

The most widely-used superpixel method is SLIC [1], which

is based on spatio-color K-means clustering; recall K-means

is a restricted case of the Gaussian Mixture Model (GMM).

In fact, SLIC can be seen as a particular case of 4 cate-

gories: 1) methods based on spatio-color clustering using

a K-component GMM; 2) methods with a parallelized im-

plementation [36]; 3) methods whose model and inference

do not respect topology and thus resort to post-processing

heuristics to fix connectivity issues such as holes and dis-

connected regions; 4) methods of fixed K. The proposed

method, BASS, belongs only to the first two categories. Ex-

amples of spatio-color GMMs are [7, 1, 9, 17]. Exclud-

ing [9], these methods fix K. Despite its varying K, [9]

is a parametric model. Moreover, BASS, like [17], makes

weaker assumptions on the covariances than [9] (see § 4)

and thus, e.g., has more flexibility in modeling the shape of

each superpixel. Unlike [7, 1, 9, 17], BASS favors spatial

coherence. It also differs from [7, 1], as well as from many

other superpixel methods, in that it preserves connectivity.

Several superpixel methods explicitly handle connectivity,

Figure 2: BASS without (left) and with (right) the Potts term.

e.g. [28, 47, 48, 52, 9, 17]; SEEDS [47] and ETPS [52] do it

by considering updates only of boundary pixels while penal-

izing segmentations that harm connectivity. A newer version

of SEEDS, reSEEDS [43], also models region compactness.

Chang et al. [9] proposed a connectivity-constrained prob-

abilistic model. The connectivity constraints in [47, 52, 9],

however, complicate parallelization so these works propose

only serial implementations. Freifeld et al. [17] improved

on [9] by adding a flexible Bayesian prior on the spatial

covariance and by proposing a parallelized implementation,

though, unlike BASS, it was too conservative in the sense

did not exploit the full extent of the potential parallelism.

With the exception of [9], all the works above use a user-

defined K and do not alter it. This is problematic both locally

and globally. Locally, different regions of the image might

require different amounts of superpixels. As these methods

are local in nature, since the global K is fixed, the number

of superpixels they tend to allocate to each region depends

almost entirely on its area, not content. Thus, fine details are

lost while uninformative areas are over segmented. Globally,

manually fixing K per image is infeasible for large datasets,

while using the same K for all images is far from optimal.

Thus, several methods proposed an adaptive K. The two

main approaches for this are top-down and bottom-up. In the

first, one starts with a few large segments that are gradually

split into smaller ones. Works that do it via graph-based

methods [39, 41, 15] usually suffer from high computational

costs. Another top-down approach [32] incrementally par-

titions the image by horizontal and vertical splits; however,

as noted in [1], computing the optimal paths is expensive.

The bottom-up approach starts from many small segments,

and then gradually merges them; e.g., Alpert et al. [2] use a

probabilistic method, Shen et al. [40] relied on DBSCAN,

and in [38] merges are done via a model trained to detect fea-

ture similarity. Such an agglomerative approach may also be

achieved via Gestalt grouping principles [26]. Some meth-

ods combine the top-down and bottom-up approaches using

splits and merges. These allow to adapt not only K but also

8471



Algorithm 1: BASS INFERENCE

Input: Data: (xi)
N
i=1 where xi = (li, ci), li ∈ R

2,

ci ∈ R
3;

Output: K, (zi)
N
i=1 ⊂ {1, ...,K}, (µj ,Σj ,πj)

K
j=1

1 Init()

2 Nsplit ← 0 , Nmerge ← 0
3 for it← 1 to Niter do

4 for every j do in parallel

5 Update (µj ,Σj ,πj) by Eqs. (8)–(12)

6 for Row (mod 2) ∈ {0, 1} do in parallel

7 for Col (mod 2) ∈ {0, 1} do in parallel

8 Update zi by Eq. (13)

9 if it (mod 32) == 0 then

10 (zi)
N
i=1, K ← Split(j, Nsplit) by Alg. 2

11 Nsplit++

12 if it (mod 32) == 15 then

13 (zi)
N
i=1, K ←Merge(j, Nmerge) by Alg. 3

14 Nmerge++

superpixels’ sizes. Such flexible-size methods can partition

the image into meaningful segments by preserving details in

complex regions on the one hand and not over-segmenting

homogeneous areas on the other hand. An example for such

methods is SMURFS [31]; however, SMURFS fails to re-

tain compactness. Methods that achieve more compactness

include [9, 12, 29]. Note that the superpixels from [12] are

restricted to polygons. Our approach uses splits and merges

to generate an adaptive amount of flexible-size superpixels in

an efficient manner that allows preserving details. Due to its

shape prior and favoring of spatial coherence, BASS main-

tains compactness. Thus, BASS enjoys both the benefits of

compactness and detail-preserving segmentation.

The proposed efficient optimization-based inference is

closely related to, and inspired by, a parallel DPGMM sam-

pler proposed (unrelated to superpixels) in [8]. The key

differences are that we replace their sampling with deter-

ministic operations, that we respect topological constraints,

and that we account for an additional prior term that favors

spatial coherence. Finally, Table 1 summarizes some of the

key differences between BASS and a few key methods.

3. Preliminaries

Let N be the number of pixels in the image, and let

xi = (li, ci) ∈ R
5 denote the measurement associated with

pixel i where li ∈ R
2 is the 2D location and ci ∈ R

3 is the

color. As is common in works on superpixels we use the

Lab color space. Extensions to other color spaces, RGBD

data, or even deep features, are straightforward and thus

not discussed here. Spatio-color clustering methods, ours

included, partition (xi)
N
i=1 into K disjoint groups, where

Algorithm 2: SPLIT

Input: j, Nsplit

Output: (zi)
N
i=1, K

1 switch Nsplit (mod 2) do

2 case 0 do

3 c1j ← µl
j + (0, 1) , c2j ← µl

j − (0, 1)

4 case 1 do

5 c1j ← µl
j + (1, 0) , c2j ← µl

j − (1, 0)

6 for i← 1 to 2 do in parallel

7 dij ← Run BFS to get the distance of each pixel

from the center cij
8 Assign each pixel to the sub-superpixel closer to it.

9 if Hsplit > 1(see Sup. Mat.) then

10 Accept split and update (zi)
N
i=1

11 Update (zi)
N
i=1

12 Update K

zi is the measurement-to-cluster assignment, known as the

label, of xi, and thus also of pixel i. Cluster j is the set

of measurements labeled as j; i.e., {xi : zi = j}. The as-

sociated superpixel is {pixel i : zi = j}, and thus zi is also

a pixel-to-superpixel assignment. The number of clusters,

K , |{j : j ∈ z}|, is the number of unique elements in

z = (zi)
N
i=1; i.e., z is a K-region image segmentation. Let

ZK , {1, . . . ,K}N denote the set of all segmentations into

(no more than) K regions. A superpixel is called connected,

if it is (path-) connected in the topological sense. It is called

simply-connected if it is connected and has no holes. A seg-

mentation is valid if each of its superpixels is connected.

The pdf of a K-component GMM, in R
n, has the form

p(x; (µj ,Σj , πj)
K
j=1) =

∑K

j=1
πjN (x;µj ,Σj) (1)

where N (x;µj ,Σj) is a Gaussian pdf (of mean µj ∈ R
n

and an n × n covariance matrix Σj) evaluated at x ∈ R
n

and where the weights (πj)
K
j=1 form a convex combination.

Let θj = (µj ,Σj) denote the parameters of Gaussian j. In a

Bayesian GMM, (θj)
K
j=1 and (πj)

K
j=1 are viewed as random

variables, drawn from a prior distribution, p((θj , πj)
K
j=1). A

standard independence assumption implies the factorization

p((θj , πj)
K
j=1) = p((πj)

K
j=1)

∏K

j=1
p(θj) . (2)

Standard choices are a Normal-Inverse Wishart (NIW)

distribution for p(θj) and a Dirichlet distribution for

p((πj)
K
j=1) [20]. The key reason is that, with these conjugate

priors, the posterior distributions have the same functional

form as the priors, and their updates from the priors are given

in closed form via sufficient statistics [42, 20]. The Bayesian

8472



Algorithm 3: MERGE

Input: j, Nsplit

Output: (zi)
N
i=1, K

1 Direction = [north,west,east,south]

2 Choose the smallest adjacent neighbor from

direction[m (mod 4)]
3 if Hmerge > 1 (see Sup. Mat.) then

4 Add j to the proposed merge group

5 if Merge 3 or more adjacent SP was suggested then

6 Update the proposed merge group, by keeping

the smallest two
7 Update (zi)

N
i=1

8 Update K

GMM inference is often done by alternating between

p((πj)
K
j=1|z, (xi)

N
i=1)

∏K

j=1
p((θj , πj)|z, (xi)

N
i=1) (3)

and p(z|(θj , πj)
K
j=1, (xi)

N
i=1) ; (4)

e.g., Gibbs sampling [21, 20] alternates between sampling

(θj , πj)
K
j=1 using Eq. (3) and sampling z given Eq. (4). By

conditional independence, the N labels (zi)
N
i=1 can be sam-

pled in parallel. Similarly, the K parameters (θj)
K
j=1 can be

sampled in parallel, and at the same time with the sampling

of the weight vector (π1, . . . , πK). Another approach (more

relevant to the proposed method), is Iterated Conditional

Modes (ICM) [5], a greedy optimization method with fast

convergence. Its computational structure and parallelism are

similar to Gibbs sampling, except that instead of conditional

sampling, one uses conditional modes.

A DGPMM [16, 3] is a Bayesian nonparametric extension

of the Bayesian GMM. Loosely speaking, it entertains the

notion of infinitely-many Gaussians. Let θ = (θj)
∞

j=1 and

π = (π1, π2, . . .) such that πj > 0 ∀j, and
∑∞

j=1 πj = 1.

Given π and θ, the xi’s are assumed to be i.i.d. draws

from p(x|θ,π) =
∑∞

j=1 πjN (x;µj ,Σj) . In analogy to

the Bayesian GMM, the infinite-length θ and π themselves

are assumed to be drawn (independently) from their own

prior distributions: the weights, π, are drawn using a stick-

breaking process (whose details are inessential to understand-

ing our paper) with a so-called concentration parameter, α,

while the parameters, (θj)
∞

j=1, are i.i.d. draws from their

prior p(θj), typically an NIW distribution.

Let zi be the index of the Gaussian from which xi was

drawn, and let z = (zi)
N
i=1. Recall K = |{j : j ∈ z}|

and note that K ≤ N . By possibly renaming indices, we

may assume without loss of generality that {j : j ∈ z} =
{1, 2, . . . ,K}. Here K is random and is determined by α:

the higher α is, the larger the expected value of K is.

As in the finite case, one often alternates between

p(θ,π|z, (xi)
N
i=1) and p(z|θ,π, (xi)

N
i=1). One efficient

sampling-based DPGMM inference method (unrelated to su-

perpixels) was proposed in [8]. This Markov-Chain Monte-

Carlo method alternates between 1) changes to K using

splits and merges of clusters and 2) given K, Gibbs-sampling

GMM inference. Importantly, within each iteration, all com-

putations in their algorithm, including the splits and merges,

are massively parallelizable. In fact, the computations can

be not only parallelized but also distributed [11].

Finally, we touch upon connectivity. Changing a label

in a valid segmentation might break connectivity. A point

whose label can be changed without breaking connectivity

is called a simple point [9]; see also our Sup. Mat. It can

be shown that the answer to the question whether a pixel

is a simple point or not is a function of only the labels of

its neighbors in a 3 × 3 neighborhood when considering

simply-connected regions, or a 5 × 5 neighborhood when

considering connected regions. For more details, see [9].

4. BASS: Model and Inference

BASS is a variant of the DPGMM. Unlike the latter,

BASS: 1) disallows (topologically-) invalid segmentations;

2) favors spatially-coherent segmentations. More formally,

BASS differs from the standard DPGMM in that the la-

bels, z, given the weights π, are no longer conditionally-

independent. Rather, BASS assumes a 2-step process for

generating z given π. First, N temporary labels, z̃ =
(z̃1, . . . , z̃N ), are drawn i.i.d. from π. Next, the actual labels,

z = (z1, . . . , zN ), are defined via the action of Π, an N×N
random permutation matrix (namely, Π has one entry of 1 in

each row and each column and zeros elsewhere), on z̃; i.e.,

z = Πz̃ where Π is drawn, given z̃, by

p(Π|z̃) ∝ ✶valid(z) exp
(
−β
∑

i∼i′
✶zi 6=zi′ (z)

)
. (5)

We now explain Eq. (5). If A is an event, then ✶A is its

indicator function. The event valid stands for a valid seg-

mentation. The notation i ∼ i′ indicates that pixels i and i′

are neighbors according to to some predefined graph G, e.g.,

a regular 2D grid with a 4- or 8-connectivity. Thus, BASS as-

signs zero probability to any invalid segmentation. The role

of exp
(
−β
∑

i∼i′ ✶zi 6=zi′ (z)
)
, which has the form of the

Potts model [50], is encouraging spatial coherence of z; see,

e.g., Fig. 2. The parameter β > 0 controls the importance of

that term. As for modeling each Gaussian, we follow other

works on spatio-color GMMs [7, 1, 9, 17] and assume that

1) given zi, color and location are conditionally independent;

2) the color covariance is isotropic. This implies:

N (xi;µj ,Σj) = N (li;µj,l,Σj,l)N (ci;µj,c, σ
2
j,cI3×3)

µj =

[
µj,l

µj,c

]
,Σj =

[
Σj,l 02×3

03×2 σ2
j,cI3×3

]
. (6)

Differently from [7, 1, 9], however, our Gaussians are

more flexible since 1) we do not assume the spatial co-
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Figure 3: Comparing methods for a range of 10 different K values on the BSD (left) and SBD (right) datasets. For each such

value, all methods were initialized, and ended with, about the same K (see text). For all 3 metrics, the higher the better.

variances, Σj,l’s, are isotropic and 2) we treat all 4 quanti-

ties, (µj,l,Σj,l,µj,c, σ
2
j,c) as latent, random, and possibly-

dependent on j. Particularly, we place an NIW prior

on (µj,l,Σj,l) and a multivariate Normal-Inverse-Gamma

(NIG) prior on (µj,c, σ
2
j,c). In contrast, in [7, 1, 9]

(Σj,l, σ
2
j,c) were assumed to be known, Σj,l was isotropic,

and the unknown variables µj,l and µj,c were treated as

deterministic. Our modeling of a Gaussian is akin to [17]

except that in [17]: 1) the σ2
j,c’s were assumed to be known

and identical to each other; 2) instead of an NIW prior on

(µj,l,Σj,l), they used a uniform prior on both µj,l and µj,c

and an Inverse-Wishart (not to be confused with NIW) on

Σj,l. These differences from [17] are subtle, and, if we were

to treat K as fixed (as [17] did), would be almost immaterial.

However, when we infer K, the NIW prior and NIG priors

are essential for computing the associated Hastings ratios.

Most superpixel methods, ours included, specify how to

weight location versus color; consequently, the results of

most methods are often very sensitive to the weight’s value.

The fact we, like [17], estimate the spatial covariance (as

opposed to assuming it is known) gives us some robustness to

picking the “wrong” weight. The Potts term further increases

this robustness beyond that of [17].

Given the data, (xi)
N
i=1, we seek to infer the latent K, as

well as the latent z = (zi)
N
i=1 where each zi ∈ {1, ..,K}. A

natural question is whether (and how) an efficient DPGMM

inference method can be used for the more complicated

BASS model. Our proposed inference is inspired by [8]. The

key differences are as follows: 1) we replace all their sam-

pling operations with deterministic operations. Particularly,

given K, we replace their Gibbs sampling with ICM [5].

Likewise, when proposing splits and/or merges, instead of

deciding on acceptance/rejection by flipping a coin biased

by Hastings’ ratio, we deterministically accept the proposal

if and only if the ratio exceeds 1. The rationale is that

this greedy approach converges faster than sampling. 2)

Both our label updates and our proposed splits/merges re-

spect topological constraints. 3) Our label updates also take

into account spatial coherence. We now provide the details

for the proposed inference, summarized in Alg. 1. Since

p(θ,π|z, (xi)
N
i=1) depends on z only through (nj)

K
j=1

(where nj =
∑

i=1 ✶zi=j(zi)), which are invariant under

the action of Π, working with p(θ,π|z, (xi)
N
i=1) in BASS is

the same as in DPGMM. Working with p(z|θ,π, (xi)
N
i=1),

however, is harder in BASS since, due the loss of conditional

independence, p(z|θ,π, (xi)
N
i=1) 6=

∏N
i=1 p(zi|θ,π,xi).

This difficulty affects not only the label updates but also the

splits/merges. It has no effect on estimating (θj)
K
j=1 and the

cluster weights. The required computations are as follows.

Consider first the case of a fixed K. The priors are:

p(µj,l,Σj,l) =NIW(µj,l,Σj,l;mj,l, κj,l,Λj,l, νj,l) ;

p(µj,c, σ
2
j,c) =NIG(µj c, σ

2
j,c;mj,c, κj,c, aj,c, bj,c) ;

p((πj)
K
j=1) =Dir((πj)

K
j=1;α) . (7)

Parameter updates. The conditional modes are (see [20])
(

α∗
j − 1

∑K
j′=1 α

∗
j′ −K

)K

j=1

= argmax
(πj)Kj=1

p((πj)
K
j=1|z, (xi)

N
i=1)

(8)

Λ
∗

j,l

ν∗

j,l
+3 = argmax

Σj,l

p(Σj,l|z, (xi)
N
i=1) (9)

m∗
j,l = argmax

µj,l

p(µj,l|Σj,l, z, (xi)
N
i=1) (10)

b∗

a∗+5/2 = argmax
σ2

j,c

p(σ2
j,c|z, (xi)

N
i=1) (11)

m∗
j,c = argmax

µj,c

p(µj,c|σ
2
j,c, z, (xi)

N
i=1) (12)

where the closed-form expressions for the “starred” quanti-

ties on the LHS of Eqs. (8)–(12) appear in our Sup. Mat.
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Figure 4: Superpixels. Rows, top to bottom: reSEEDS [43];

ETPS [52]; TSP [9]; FSCSP [17]; BASS. All methods were

initialized, and ended with, K ≈ 150. See text for de-

tails. Columns 1 and 3 show superpixel boundaries overlaid

over original images. Columns 2 and 4 show mean colors.

BASS captures fine details (e.g. parachutist and parachute;

the women’s nostrils) while keeping regular boundaries.

A single label update. Fix z/i , (zi′ : i
′ 6= i). If pixel i

is a simple point then zi is updated by the conditional mode

of p(zi|(θj , πj)
K
j=1, (xi)

N
i=1, z/i):

zi = argmax
j:∃i′∈η4(i) s.t. zi′=j

πjN (li;µ
l
j ,Σ

l
j)N (ci;µ

c
j , σ

2
j I3×3)

× exp
(
−β
∑

i′′:i∼i′′
✶j 6=zi′′ (z)

)
(13)

where the last term penalizes label j according to how many

neighboring pixels of pixel i have a label other than j.

Parallel label updates. Naive parallel label updates can,

and usually do, break connectivity: even if two neighbors are

simple points, updating both their labels simultaneously can

violate connectivity. This difficulty prevented parallel label

updates in methods such as [9, 52, 43]. However, as noted

in [17], a large portion of the labels of simple points can be

updated in parallel, provided the points are sufficiently far

from each other; however, [17] was too conservative, spacing

these points needlessly far from each other. This led to par-

allelization over only N/9 label updates. We note here that

any pair of simple points that are at least one pixel apart from

each other can be updated in parallel. This implies that N/4
label updates can be considered at once. This parallelization

scheme is also consistent with the Potts term when the latter

uses a 3× 3 neighborhood; empirically, we find this scheme

obtains good results even if it uses a larger neighborhood

(despite the violation of conditional independence).

Changing K via Splits and Merges. At the core of

the algorithm from [8], for each cluster one maintains a

pair of sub-clusters, symbolically denoted l and r (“left”

and “right”). In other words, for each Gaussian j with

parameters θj = (µj ,Σj) and weight πj , one also main-

tains two Gaussians, with parameters θjl = (µjl,Σjl) and

θjr = (µjr,Σjr), and weights (πjl, πjr). During inference

the corresponding sufficient statistics are computed as they

are computed for their parent Gaussian. In [8], splits and

merges were proposed using draws from proposal distribu-

tions and then were accepted or rejected according to the

corresponding Hastings ratio. The expressions for Hastings

ratios (derived in [8]), for splits and merges, denoted by

Hsplit and Hmerge, are too lengthy to be included here but

appear in our Sup. Mat. The take-home message is that a

higher value of α encourages more splits and less merges and

vice versa. Our connectivity-aware parallel splits and merges

algorithms are summarized in Alg. 2 and Alg. 3. First, we

discuss splits. For each suprpixel we run a Breadth-First

Search (BFS) starting from two pixels, called roots, near its

centroid. This gives graph distances from all the superpixel’s

pixels to the roots. We set the subcluster label of each pixel

to the root closer to it. By construction, each subcluster

remains (simply-) connected. As in [8], the split proposals

are parallelizable. Once a split is proposed (deterministi-

cally), we accept it (again, deterministically) if and only if

its Hastings ratio, Hsplit, exceeds 1. For merges, we consider

only pairs of adjacent superpixels (to maintain connectivity),

proposing them in a deterministic order. To enable paral-

lel merges, one must ensure no 3 or more superpixels are

merged together. Here our situation scales better than [8]:

since every superpixel has only few adjacent superpixels,

this check is fast. A legit merge is accepted according to its

Hastings ratio, Hmerges. While we disallow breaking simple-
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Figure 5: Face-detection examples. Rows, top to bottom:

reSEEDS [43]; ETPS [52]; TSP [9]; FSCSP [17]; BASS. All

methods were initialized, and ended with, K ≈ 1050. See

text for details. Detected faces are shown in a green. Please

see our Sup. Mat. for examples in a higher resolution.

connectivity during label updates, we allow it during merges

(while still disallowing breaking regular connectivity).

Hyperparamters and Initialization. There are 2 impor-

tant user-defined parameters, α (the most important one) and

β; the others are fixed as explained below. Let K0 be the

initial number of superpixels and let Kfinal be their final num-

ber. A high α encourages splits and discourages merges and

vice versa. Part of BASS’ elegance is that K0 hardly affects

Kfinal; for a fixed α, initializing with different K0’s (e.g.,

Table 2: Success rates of a face detector applied to superpix-

els of different methods. See text for more details.

Method

SP#
550 1100

SLIC [1] 10.543% 16.298%

reSEEDS [43] 17.102% 25.733%

ETPS [52] 11.390% 22.553%

TSP [9] 5.210% 9.817%

FSCSP [17] 14.209% 10.854%

BASS 32.123% 45.469%

ranging between 200 and 800) on the same image produce

similar Kfinal’s. As for β, a high β encourages shorter inter-

superpixel boundaries. The K0 superpixels are initialized as

squares in a regular grid. Let A0 = N/K0 denote their aver-

age size. For every j, we set νj,l = ηA0 where η = 50 in all

our experiments. All the Λj,l’s are initially set to A2
0I2×2.

The higher η is (and thus νj,l), the more likely the inferred

(and usually anisotropic) Σj,l is to be isotropic (circular).

The value of η has little impact on the segmentation’s qual-

ity: if it is, e.g., too high, then BASS, instead of trying to

fit a circle-like supeprixel to an elongated shape, will sim-

ply split the superpixel. Let Lj = #splits − #merges of

superpixel j. To encourage superpixels of the same L to

have similar sizes, we adjust the prior on the fly by setting

Aj,L = N

2LjK
, Λj,l = A2

j,LI2×2, and νj,l = ηAj,L. The

other hyperparameters are set as follows. To make the Nor-

mal parts of the NIW and NIG almost uniform, we set κj,l

and κj,c to a small number close to zero (e.g., 0.001). As for

the Inverse-Gamma, since E(σ2
j,l) = (bj,c/(aj,c − 1)) and

VAR(σ2
j,l) = b2j,c/((aj,c− 1)2(aj,c− 2)), we set aj,c to be

very large, and then set (bj,c/(aj,c − 1)) ≈ 10. The effect

is that p(σ2
j,c) is concentrated near 10.

Convergence and Implementation. Theoretical conver-

gence analysis is hard; empirically, the greedy algorithm

converges fast. Our current GPU implementation was writ-

ten in PyTorch; for K0 = 1000 and a 481-by-321 image,

it runs in ∼2 [sec] on a good graphics card. Profiling sug-

gests that the implementation suffers from some significant

overhead (due to certain deep-learning-related functionali-

ties that are unneeded here); we speculate that a pure CUDA

implementation (as was done in [17]) will be much faster.

5. Experiments and Results

The Competing Methods. We compared BASS with

ETPS [52] and reSEEDS [43] that represent the state-of-the-

art (e.g. [44]), with the popular SLIC [1], and with TSP [9]

and FSCSP [17] that share some similarities with BASS.

For SLIC/ETPS/reSEEDs, we used the optimal parameters

reported in [44]; for TSP/FSCSP we used the defaults. For

BASS, in all the experiments below we set β = 1.4, and
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Figure 6: Object segmentation using DeepLab [10]+BI [19]

using superpixels. Left: Original images. Middle: results

using SLIC. Right: results using BASS.

then tuned only α (using the same nominal value of α in

all the experiments). All methods were initialized to the

same K0. For a fair comparison, we made BASS, after some

iterations, converge back to Kfinal ≈ K0 by automatically

increasing/decreasing α as needed. TSP [9] performed only

few splits/merges and thus usually had Kfinal ≈ K0.

Quantitative Evaluation. We evaluated the methods on

two standard benchmarks, BSD [23] and SBD [4], using the

evaluation framework proposed in [44]. The SBD dataset

is considered more difficult than BSD. We used 3 standard

evaluation metrics: Boundary Recall (Rec), Undersegmen-

tation Error (UE) and Expected Variance (EV). The first

two, Rec and UE, rely on ground-truth segmentation to mea-

sure boundary adherence. The latter, EV, is independent of

ground truth and quantifies the amount of image variance

explained by the model. There is a trade-off between Rec

and compactness: segmentations with a high Rec tend to

have lower compactness [44]. The results are summarized

in Fig. 3. On BSD: BASS outperforms the others in the EV

metric; in the UE metric, BASS is close to the state of the art;

in the Rec metric, BASS is second only to reSEEDS. Note

that, unlike reSEEDs, BASS’ high Rec does not come at the

expense of preserving regular shape (Fig. 4). Interestingly,

on the more complicated SBD dataset, BASS performs even

better, and almost uniformly dominates in all metrics.

Face Detection. We took group images from [51]. For

each image, we counted the number of faces detected by a

state-of-the-art face detector [53] when run on the original

image. Next, for each superpixel method, we created a mean-

color image, by coloring each superpixel with its mean color;

see Fig. 5 for examples. Then we computed the Success Rate

(SR) of a method, per image, by dividing the number of faces

detected on the mean-color images by the number found

on the original images. Table 2 shows BASS outperforms

the others dramatically. In fact, for both K = 550 and

Table 3: Ablation study – results on the BSD dataset. (a)

no Potts’ term; (b) no splits/merges; (c) no Potts & no

splits/merges; (d) DPGMM (i.e., i.i.d. labels: no connec-

tivity & no Potts); (e) BASS.

SP # (a) (b) (c) (d) (e)

950 Rec 0.858 0.843 0.874 0.682 0.849

1-UE 0.905 0.902 0.902 0.746 0.908

EV 0.926 0.916 0.919 0.764 0.931

600 Rec 0.766 0.814 0.887 0.574 0.817

1-UE 0.878 0.887 0.887 0.599 0.890

EV 0.906 0.906 0.909 0.685 0.923

350 Rec 0.740 0.764 0.810 0.454 0.782

1-UE 0.856 0.852 0.858 0.430 0.861

EV 0.896 0.884 0.892 0.545 0.910

K = 1100, the median SR for all other methods was zero;

i.e., in most images they missed all the faces. In contrast,

BASS scored median values of 18.182% and 41.667%.

Object Segmentation. As another example of the ap-

plications of BASS, we considered the downstream task of

object segmentation. We used the pre-trained deep nets of

DeepLab [10] and the Bilateral Inception (BI) model [19],

but during test, replaced the input superpixel segmentation

from the popular SLIC [36] to BASS and evaluated the re-

sults on the Pascal-VOC2012 [13] test set. The baseline

net (i.e., no superpixels, hence no BI), DeepLab, scored

a mean IoU of 68.9. DeepLab+BI+SLIC scored 74.42.

DeepLab+BI+BASS (set to have a similar K to SLIC) scored

74.68. For typical results, see Fig. 6.

Ablation study. This experiment studies the contribu-

tion of each part of the model. It also highlights how much

BASS differs from a DPGMM. As Table 3 shows, drop-

ping either Potts’ term or the splits/merges usually hurts

performance. Dropping both hurts two indices and improves

only the boundary recall (but then boundaries become too

irregular). Dropping Potts’ term and connectivity gives back

DPGMM, whose results are by far the worst. In other words,

the proposed modifications to the generic DPGMM were

critical in order to create a variant suitable for superpixels.

6. Conclusion

BASS yields state-of-the-art superpixels while adapting

to image content, as we showed in our experiments. The

face-detection experiment provides a quantitative support to

our qualitative claim that BASS preserves details better than

other methods. Finally, unsupervised and task-independent

compact intermediate image representations, such as the

superpixels presented in this paper, are complementary to

supervised and task-dependent methods such as most deep-

learning (DL) methods. In fact, superpixels can even im-

prove the latter. For example, precomputed superpixels can

improve DL-based segmentation (as we showed here) or

to drastically speed up DL computations (e.g., by treating

superpixels as nodes on a small graph).
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