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Abstract—The repeatability and efficiency of a corner detector determines how likely it is to be useful in a real-world application. The

repeatability is important because the same scene viewed from different positions should yield features which correspond to the same

real-world 3D locations [1]. The efficiency is important because this determines whether the detector combined with further processing

can operate at frame rate. Three advances are described in this paper. First, we present a new heuristic for feature detection and,

using machine learning, we derive a feature detector from this which can fully process live PAL video using less than 5 percent of the

available processing time. By comparison, most other detectors cannot even operate at frame rate (Harris detector 115 percent, SIFT

195 percent). Second, we generalize the detector, allowing it to be optimized for repeatability, with little loss of efficiency. Third, we

carry out a rigorous comparison of corner detectors based on the above repeatability criterion applied to 3D scenes. We show that,

despite being principally constructed for speed, on these stringent tests, our heuristic detector significantly outperforms existing feature

detectors. Finally, the comparison demonstrates that using machine learning produces significant improvements in repeatability,

yielding a detector that is both very fast and of very high quality.

Index Terms—Corner detection, feature detection.

Ç

1 INTRODUCTION

CORNER detection is used as the first step of many vision
tasks such as tracking, localization, simultaneous

localization and mapping (SLAM), and image matching
and recognition. This need has driven the development of a
large number of corner detectors. However, despite the
massive increase in computing power since the inception of
corner detectors, it is still true that, when processing live
video streams at full frame rate, existing feature detectors
leave little, if any time, for further processing.

In the applications described above, corners are typically

detected and matched into a database; thus, it is important

that the same real-world points are detected repeatedly

from multiple views [1]. The amount of variation in

viewpoint under which this condition should hold depends

on the application.

2 PREVIOUS WORK

2.1 Corner Detectors

Here, we review the literature to place our advances in

context. In the literature, the terms “point feature,”

“feature,” “interest point,” and “corner” refer to a small

point of interest with variation in two dimensions. Such

points often arise as the result of geometric discontinuities,

such as the corners of real-world objects, but they may also

arise from small patches of texture. Most algorithms are

capable of detecting both kinds of points of interest, though

the algorithms are often designed to detect one type or the

other. A number of detectors described below compute a

corner response C and define corners to be large local

maxima of C.

2.1.1 Edge-Based Corner Detectors

An edge (usually a step change in intensity) in an image

corresponds to the boundary between two regions. At

corners, this boundary changes direction rapidly.
Chained edge-based corner detectors. Many techniques

have been developed which involved detecting and chain-

ing edges with a view to analyzing the properties of the

edge, often taking points of high curvature to be corners.

Many early methods used chained curves, and since the

curves are highly quantized, the techniques concentrate on

methods for effectively and efficiently estimating the

curvature. A common approach has been to use a chord

for estimating the slope of a curve or a pair of chords to find

the angle of the curve at a point.
Early methods computed the smallest angle of the curve

over chords spanning different numbers of links. Corners

are defined as local minima of angle [2] after local averaging

[3]. Alternatively, corners can be defined as isolated

discontinuities in the mean slope, which can be computed

using a chord spanning a fixed set of links in the chain [4].

Averaging can be used to compute the slope and the length

of the curve used to determine if a point is isolated [5]. The

angle can be computed using a pair of chords with a central

gap, and peaks with certain widths (found by looking for

zero crossings of the angle) are defined as corners [6].
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Instead of using a fixed set of chord spans, some methods
compute a “region of support” which depends on local curve
properties. For instance, local maxima of chord lengths can
be used to define the region of support within which a corner
must have maximal curvature [7]. Corners can be defined as
the center of a region of support with high mean curvature,
where the support region is large and symmetric about its
center [8]. The region free from significant discontinuities
around the candidate point can be used with curvature being
computed as the slope change across the region [9] or the
angle to the region’s endpoints [10].

An alternative to using chords of the curves is to apply
smoothing to the points on the curve. Corners can be defined
as points with a high rate of change of slope [11] or points
where the curvature decreases rapidly to the nearest minima
and the angle to the neighboring maxima is small [12].

A fixed smoothing scale is not necessarily appropriate for
all curves, so corners can also be detected at high curvature
points which have stable positions under a range of
smoothing scales [13]. As smoothing is decreased, curvature
maxima bifurcate, forming a tree over scale. Branches of a
tree which are longer (in scale) than the parent branch are
considered as stable corner points [14]. Instead of Gaussian
smoothing, extrema of the wavelet transforms of the slope
[15] or wavelet transform modulus maximum of the angle
[16], [17] over multiple scales can be taken to be corners.

The smoothing scale can be chosen adaptively. The
Curvature Scale Space technique [18] uses a scale propor-
tional to the length and defines corners at maxima of
curvature where the maxima are significantly larger than
the closest minima. Locally adaptive smoothing using
anisotropic diffusion [19] or smoothing scaled by the local
variance of curvature [20] have also been proposed.

Instead of direct smoothing, edges can be parameterized
with cubic splines and corners detected at points of high
second derivative where the spline deviates a long way
from the control point [21], [22].

A different approach is to extend curves past the
endpoints by following saddle minima or ridge maxima
in the gradient image until a nearby edge is crossed, thereby
finding junctions [23]. Since the chain code number
corresponds roughly to slope, approximate curvature can
be found using finite differences, and corners can be found
by identifying specific patterns [24]. Histograms of the
chain code numbers on either side of the candidate point
can be compared using normalized cross correlation and
corners can be found at small local minima [25]. Also, a
measure of the slope can be computed using circularly
smoothed histograms of the chain code numbers [26].
Points can be classified as corners using fuzzy rules applied
to measures computed from the forward and backward arm
and the curve angle [27].

Edgel-based corner detectors. Chained edge techniques
rely on the method used to perform segmentation and edge
chaining, so many techniques find edge points (edgels) and
examine the local edgels or image to find corners.

For instance, each combination of presence or absence of
edgels in a 3� 3 window can be assigned a curvature and
corners found as maxima of curvature in a local window [28].
Corners can also be found by analyzing edge properties in

the window scanned along the edge [29]. A generalized
Hough transform [30] can be used, which replaces each
edgel with a line segment, and corners can be found where
lines intersect, i.e., at large maxima in Hough space [31]. In
a manner similar to chaining, a short line segment can be
fitted to the edgels, and the corner strength found by the
change in gradient direction along the line segment [32].
Edge detectors often fail at junctions, so corners can be
defined as points where several edges at different angles
end nearby [33]. By finding both edges and their directions,
a patch on an edge can be compared to patches on either
side in the direction of the contour to find points with low
self-similarity [34].

Rapid changes in the edge direction can be found by
measuring the derivative of the gradient direction along an
edge and multiplying by the magnitude of the gradient

CK ¼
gxxg

2
y þ gyyg2

x � 2gxygxgy

g2
xg

2
y

; ð1Þ

where, in general,

gx ¼
@g

@x
; gxx ¼

@2g

@x2
; etc:;

and g is either the image or a bivariate polynomial fitted
locally to the image [35]. CK can also be multiplied by the
change in edge direction along the edge [36].

Corner strength can also be computed as the rate of
change in gradient angle when a bicubic polynomial is
fitted to the local image surface [37], [38],

CZ ¼ �2
c2
xcy2 � cxcycxy þ c2

ycx2�
c2
x þ c2

y

�3
2

; ð2Þ

where, for example, cxy is the coefficient of xy in the fitted
polynomial. If edgels are only detected at the steepest part
of an edge, then a score computing total image curvature at
the edgels is given by

CW ¼ r2I � S rIj j2; ð3Þ

where rI is the image gradient [39].

2.1.2 Graylevel-Derivative-Based Detectors

The assumption that corners exist along edges is an
inadequate model for patches of texture and point-like
features, and is difficult to use at junctions. Therefore, a
large number of detectors operate directly on graylevel
images without requiring edge detection.

One of the earliest detectors [40] defines corners to be
local extrema in the determinant of the Hessian

CDET ¼ jH I½ �j ¼ IxxIyy � ðIxyÞ2: ð4Þ

This is frequently referred to as the DET operator. CDET

moves along a line as the scale changes. To counteract this,
DET extrema can be found in two scales and connected by a
line. Corners are then taken as maxima of the Laplacian
along the line [41].

Instead of DET maxima, corners can also be taken as the
gradient maxima on a line connecting two nearby points of
high Gaussian curvature of opposite sign where the
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gradient direction matches the sign change [42]. By
considering gradients as elementary currents, the magni-
tude of the corresponding magnetic vector potential can be
computed. The gradient of this is taken normal and
orthogonal to the local contour direction and the corner
strength is the multiple of the magnitude of these [43].

Local sum of squared differences (SSD) detectors.
Features can be defined as points with low self-similarity
in all directions. The self-similarity of an image patch can be
measured by taking the SSD between an image patch and a
shifted version of itself [44]. This is the basis for a large class
of detectors. Harris and Stephens [45] built on this by
computing an approximation to the second derivative of the
SSD with respect to the shift. This is both computationally
more efficient and can be made isotropic. The result is

H ¼
bI2
x

dIxIydIxIy bI2
y

" #
; ð5Þ

where b denotes averaging performed over the area of the
image patch. Because of the wording used in [45], it is often
mistakenly claimed that H is equal to the negative second
derivative of the autocorrelation. This is not the case
because the SSD is equal to the sum of the autocorrelation
and some additional terms [46].

The earlier Förstner [47] algorithm is easily explained in
terms of H. For a more recently proposed detector [48], it has
been shown [49] that, under affine motion, it is better to use
the smallest eigenvalue of H as the corner strength function.
A number of other suggestions [45], [50], [49], [51] have been
made for how to compute the corner strength from H, and
these have all been shown to be equivalent to various matrix
norms of H [52]. H can be generalized by generalizing the
number of channels and dimensionality of the image [53]
and it can also be shown that [47], [49], [54] are equivalent to
specific choices of the measure used in [51].

H can be explained in terms of the first fundamental
form of the image surface [55]. From analysis of the second
fundamental form, a new detector is proposed which
detects points where the probability of the surface being
hyperbolic is high.

Instead of local SSD, general template matching, given a
warp, appearance model, and pointwise comparison which
behaves similarly to the SSD for small differences can be
considered [56]. The stability with respect to the match
parameters is derived, and the result is a generalization of
H (where H is maximally stable for no appearance model,
linear translation, and SSD matching). This is used to derive
detectors which will give points maximally stable for
template matching, given similarity transforms, illumina-
tion models, and prefiltering.

Laplacian-based detectors. An alternative approach to the
problem of finding a scalar value which measures the amount
of second derivative is to take the Laplacian of the image.
Since second derivatives greatly amplify noise, the noise is
reduced by using the smoothed Laplacian, which is com-
puted by convolving the image with the Laplacian of a
Gaussian (LoG). Since the LoG kernel is symmetric, one can
interpret this as performing matched filtering for features
which are of the same shape as an LoG. As a result, the
variance of the Gaussian determines the size of features of

interest. It has been noted [57] that the locations of maxima of
the LoG over different scales are particularly stable.

Scale-invariant corners can be extracted by convolving
the image with a Difference of Gaussians (DoG) kernel at a
variety of scales (three per octave) and selecting local
maxima in space and scale [58]. DoG is a good approxima-
tion for LoG and is much faster to compute, especially as
the intermediate results are useful for further processing. To
reject edge-like features, the eigenvalues of the Hessian of
the image are computed and features are kept if the
eigenvalues are sufficiently similar (within a factor of 10).
This method can be contrasted with (3), where the
Laplacian is compared to the magnitude of the edge
response. If two scales per octave are satisfactory, then a
significant speed increase can be achieved by using
recursive filters to approximate Gaussian convolution [59].

Harris-Laplace [60] features are detected using a similar
approach. An image pyramid is built and features are
detected by computing CH at each layer of the pyramid.
Features are selected if they are a local maximum of CH in
the image plane and a local maxima of the LoG across scales.

Recently, scale invariance has been extended to consider
features which are invariant to affine transformations [57],
[61], [62], [63]. However, unlike the 3D scale space, the
6D affine space is too large to search, so all of these detectors
start from corners detected in scale space. These, in turn, rely
on 2D features selected in the layers of an image pyramid.

2.1.3 Direct Graylevel Detectors

Another major class of corner detectors work by examining
a small patch of an image to see if it “looks” like a corner.
The detectors described in this paper belong to this section.

Wedge model detectors. A number of techniques
assume that a corner has the general appearance of one or
more wedges of a uniform intensity on a background of a
different uniform intensity. For instance, a corner can be
modeled as a single [64] or a family [65] of blurred wedges
where the parameters are found by fitting a parametric
model. The model can include angle, orientation, contrast,
bluntness, and curvature of a single wedge [66]. In a
manner similar to [67], convolution masks can be derived
for various wedges which optimize signal-to-noise ratio and
localization error, under the assumption that the image is
corrupted by Gaussian noise [68].

It is more straightforward to detect wedges in binary
images, and to get useful results, local thresholding can be
used to binarize the image [69]. If a corner is a bilevel
wedge, then a response function based on local Zernike
moments can be used to detect corners [70]. A more direct
method for finding wedges is to find points where
concentric contiguous arcs of pixels are significantly
different from the center pixel [71]. According to the
wedge model, a corner will be the intersection of several
edges. An angle-only Hough transform [72] is performed
on edgels belonging to lines passing through a candidate
point to find their angles, and hence, detect corners [73].
Similar reasoning can be used to derive a response function
based on gradient moments to detect V, T, and X-shaped
corners [74]. The strength of the edgels, wedge angle, and
dissimilarity of the wedge regions has also been used to
find corners [75].
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Self-dissimilarity. The tip of a wedge is not self-similar,
so this can be generalized by defining corners as points
which are not self-similar. The proportion of pixels in a disk
around a center (or nucleus) which are similar to the center is
a measure of self similarity. This is the univalue segment
assimilating nucleus (USAN). Corners are defined as
smallest USAN (SUSAN, i.e., local minima) points which
also pass a set of rules to suppress qualitatively bad
features. In practice, a weighted sum of the number of
pixels inside a disk whose intensity is within some thresh-
old of the center value is used [76]. Crosses as Oriented Pair
(COP) [77] computes dominant directions using local
averages of USANs of a pair of oriented crosses, and
defines corners as points with multiple dominant directions.

Self-similarity can be measured using a circle instead of a
disk [78]. The SSD between the center pixel and the pixels at
either end of a diameter line is an oriented measure of self-
dissimilarity. If this is small in any orientation, then the
point is not a corner. This is computationally efficient since
the process can be stopped as soon as one small value is
encountered. This detector is also used by Lepetit and Fua
[79] with the additional step that the difference between the
center pixel and circle pixels is used to estimate the
Laplacian, and points are also required to be locally
maximal in the Laplacian.

Small regions with a large range in grayvalues can be used
as corners. To find these efficiently, the image can be
projected on to the x and y axes and large peaks found in
the second derivatives. Candidate corner locations are the
intersections of these maxima projected back into the image
[80]. Paler et al. [81] proposes self-similarity can be measured
by comparing the center pixel of a window to the median
value of pixels in the window. In practice, several percentile
values (as opposed to just the 50th) are used.

Self-dissimilar patches will have a high energy content.
Composing two orthogonal quadrature pair Gabor filters
gives oriented energy. Corners are maxima of total energy
(the sum of oriented energy over a number of directions) [82].

A fast radial symmetry transform is developed in [83] to
detect points. Points have a high score when the gradient is
both radially symmetric, strong, and of a uniform sign
along the radius. The detected points have some resem-
blance to DoG features.

Machine learning-based detectors. All of the detectors
described above define corners using a model or algorithm
and apply that algorithm directly to the image. An alternative
is to train a classifier on the model and then apply the
classifier to the image. For instance, a multilayer perception
can be trained on example corners from some model and
applied to the image after some processing [84], [85].

Human perception can be used instead of a model [86]:
Images are shown to a number of test subjects. Image
locations which are consistently fixated on (as measured by
an eye tracking system) are taken to be interesting, and a
support vector machine is trained to recognize these points.

If a classifier is used, then it can be trained according to
how a corner should behave, i.e., that its performance in a
system for evaluating detectors should be maximized.
Trujillo and Olague [87] state that detected points should
have a high repeatability (as defined by [1]), be scattered

uniformly across the image, and that there should be at least
as many points detected as requested. A corner detector
function is optimized (using genetic programming) to
maximize the score based on these measures.

The FAST-n detector (described in Section 3) is related to
the wedge model style of detector evaluated using a circle
surrounding the candidate pixel. To optimize the detector
for speed, this model is used to train a decision tree classifier
and the classifier is applied to the image. The FAST-ER
detector (described in Section 5) is a generalization which
allows the detector to be optimized for repeatability.

2.2 Comparison of Feature Detectors

Considerably less work has been done on comparison and
evaluation of feature detectors than on inventing new
detectors. The tests fall into three broad categories.1

1. Corner detection as object recognition. Since there is no
good definition of exactly what a corner should look
like, algorithms can be compared using simplistic
test images where the performance is evaluated (in
terms of true positives, false positives, etc.) as the
image is altered using contrast reduction, warps,
and added noise. Since a synthetic image is used,
corners exist only at known locations, so the
existence of false negatives and false positives is
well defined. However, the method and results do
not generalize to natural images.

2. System performance. The performance of an applica-
tion (often tracking) is evaluated as the corner
detector is changed. The advantage is that it tests
the suitability of detected corners for further
processing. However, poor results would be ob-
tained from a detector ill matched to the down-
stream processing. Furthermore, the results do not
necessarily generalize well to other systems. To
counter this, sometimes part of a system is used,
though, in this case, the results do not necessarily
apply to any system.

3. Repeatability. This tests whether corners are detected
from multiple views. It is a low-level measure of
corner detector quality and provides an upper bound
on performance. Since it is independent of down-
stream processing, the results are widely applicable,
but it is possible that the detected features may not
be useful. Care must be used in this technique, since
the trivial detector which identifies every pixel as a
corner achieves 100 percent repeatability. Further-
more, the repeatability does not provide information
about the usefulness of the detected corners for
further processing. For instance, the brightest pixels
in the image are likely to be repeatable but not
especially useful.

In the first category, Rajan and Davidson [88] produce a
number of elementary test images with a very small number
of corners (one to four) to test the performance of detectors as
various parameters are varied. The parameters are corner
angle, corner arm length, corner adjacency, corner sharpness,

108 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 1, JANUARY 2010

1. Tests for the localization accuracy are not considered here since, for
most applications, the presence or absence of useful corners is the limiting
factor.



contrast, and additive noise. The positions of detected
corners are tabulated against the actual corner positions as
the parameters are varied. Cooper et al. [34], [89] use a
synthetic test image consisting of regions of uniform intensity
arranged to create L, T, Y, and X-shaped corners. The pattern
is repeated several times with decreasing contrast. Finally,
the image is blurred and Gaussian noise is added. Chen and
Rockett [85] use a related method. A known test pattern is
subjected to a number of random affine warps and contrast
changes. They note that this is naive, but tractable. They also
provide an equivalent to the Receiver Operating Character-
istic (ROC) curve. Zhang et al. [90] generate random corners
according to their model and plot localization error, false
positive rate, and false negative rate against the detector and
generated corner parameters. Luo et al. [43] use an image of a
carefully constructed scene and plot the proportion of true
positives as the scale is varied and noise is added for various
corner angles.

Mohanna and Mokhtarian [91] evaluate performance
using several criteria. First, they define a consistent detector
as one where the number of detected corners does not vary
with various transforms such as addition of noise and affine
warping. This is measured by the “consistency of corner
numbers” (CCN),

CCN ¼ 100� 1:1�jnt�noj; ð6Þ

where nt is the number of features in the transformed image
and no is the number of features in the original image. This
test does not determine the quality of the detected corners
in any way, so they also propose measuring the accuracy
(ACU) as

ACU ¼ 100�
na
no
þ na

ng

2
; ð7Þ

where no is the number of detected corners, ng is the
number of so-called “ground truth” corners, and na is the
number of detected corners which are close to ground truth
corners. Since real images are used, there is no good
definition of ground truth, so a number of human test
subjects (e.g., 10) familiar with corner detection, in general,
but not the methods under test, label corners in the test
images. Corners which 70 percent of the test subjects agree
on are kept as ground truth corners. This method
unfortunately relies on subjective decisions.

Remarkably, of the systems above, only [85], [88], and
[86] provide ROC curves (or equivalent): Otherwise, only a
single point (without consistency on either axis of the ROC
graph) is measured.

In the second category, Trajkovi�c and Hedley [78] define
stability as the number of “strong” matches, matches
detected over three frames in their tracking algorithm,
divided by the total number of corners. Tissainayagam and
Suter [92] use a similar method: A corner in frame n is
stable if it has been successfully tracked from frame 1 to
frame n. Bae et al. [77] detect optical flow using cross
correlation to match corners between frames and compare
the number of matched corners in each frame to the number
of corners in the first frame.

To get more general results than provided by system
performance, the performance can be computed using only

one part of a system. For instance, Mikolajczyk and Schmid
[93] test a large number of interest point descriptors and a
small number of closely related detectors by computing
how accurately interest point matching can be performed.

Moreels and Perona [94] perform detection and matching
experiments across a variety of scene types under a variety
of lighting conditions. Their results illustrate the difficulties
in generalizing from system performance since the best
detector varies with both the choice of descriptor and
lighting conditions.

In the third category, Schmid et al. [1] propose that,
when measuring reliability, the important factor is whether
the same real-world features are detected from multiple
views. For an image pair, a feature is “detected” if it is
extracted in one image and appears in the second. It is
“repeated” if it is also detected nearby in the second. The
repeatability is the ratio of repeated features to detected
features. They perform the tests on images of planar scenes
so that the relationship between point positions is a
homography. Fiducial markers are projected onto the
planar scene using an overhead projector to allow accurate
computation of the homography. To measure the suitability
of interest points for further processing, the information

content of descriptors of patches surrounding detected
points is also computed.

3 HIGH-SPEED CORNER DETECTION

3.1 FAST: Features from Accelerated Segment Test

The segment test criterion operates by considering a circle
of 16 pixels around the corner candidate p. The original
detector [95], [96] classifies p as a corner if there exists a set
of n contiguous pixels in the circle which are all brighter
than the intensity of the candidate pixel Ip plus a threshold t
or all darker than Ip � t, as illustrated in Fig. 1. n was
originally chosen to be 12 because it admits a high-speed
test which can be used to exclude a very large number of
noncorners. The high-speed test examines pixels 1 and 9. If
both of these are within t of Ip, then p cannot be a corner. If p
can still be a corner, pixels 5 and 13 are examined. If p is a
corner, then at least three of these must all be brighter than
Ip þ t or darker than Ip � t. If neither of these is the case,
then p cannot be a corner. The full segment test criterion can
then be applied to the remaining candidates by examining

ROSTEN ET AL.: FASTER AND BETTER: A MACHINE LEARNING APPROACH TO CORNER DETECTION 109

Fig. 1. Twelve-point segment test corner detection in an image patch.
The highlighted squares are the pixels used in the corner detection. The
pixel at p is the center of a candidate corner. The arc is indicated by the
dashed line passing through 12 contiguous pixels which are brighter
than p by more than the threshold.



all pixels in the circle. This detector in itself exhibits high
performance, but there are several weaknesses.

1. This high-speed test does not reject as many
candidates for n < 12 since the point can be a corner
if only two out of the four pixels are both significantly
brighter or both significantly darker than p (assuming
the pixels are adjacent). Additional tests are also
required to find if the complete test needs to be
performed for a bright ring or a dark ring.

2. The efficiency of the detector will depend on the
ordering of the questions and the distribution of
corner appearances. It is unlikely that this choice of
pixels is optimal.

3. Multiple features are detected adjacent to one another.

3.2 Improving Generality and Speed with Machine
Learning

Here, we expand on the work first presented in [97] and
present an approach which uses machine learning to
address the first two points (the third is addressed in
Section 3.3). The process operates in two stages. First, to
build a corner detector for a given n, all of the 16 pixel rings
are extracted from a set of images (preferably from the
target application domain). These are labeled using a
straightforward implementation of the segment test criter-
ion for n and a convenient threshold.

For each location on the circle x 2 f1 . . . 16g, the pixel at
that position relative to p, denoted by p! x, can have one

of three states

Sp!x ¼
d; Ip!x � Ip � t ðdarkerÞ
s; Ip � t < Ip!x < Ip þ t ðsimilarÞ
b; Ip þ t � Ip!x ðbrighterÞ

8<: ð8Þ

Let P be the set of all pixels in all training images. Choosing

an x partitions P into three subsets, Pd, Ps, and Pb, where

Pb ¼ fp 2 P : Sp!x ¼ bg; ð9Þ

and Pd and Ps are defined similarly. In other words, a given
choice of x is used to partition the data into three sets. The
set Pd contains all points where pixel x is darker than the
center pixel by a threshold t, Pb contains points brighter
than the center pixel by t, and Ps contains the remaining
points where pixel x is similar to the center pixel.

Let Kp be a Boolean variable which is true if p is a corner
and false otherwise. Stage 2 employs the algorithm used in
ID3 [98] and begins by selecting the x which yields the most
information about whether the candidate pixel is a corner,
measured by the entropy of Kp.

The total entropy of K for an arbitrary set of corners Q is

HðQÞ ¼ ðcþ �cÞ log2ðcþ �cÞ � c log2 c� �c log2 �c; ð10Þ

where c ¼
��fi 2 Q : Ki is trueg

�� ðnumber of cornersÞ
and �c ¼

��fi 2 Q : Ki is falseg
�� ðnumber of noncornersÞ:

The choice of x then yields the information gain (Hg)

Hg ¼ HðP Þ �HðPdÞ �HðPsÞ �HðPbÞ: ð11Þ

Having selected the x which yields the most information,

the process is applied recursively on all three subsets, i.e., xb

is selected to partition Pb into Pb;d, Pb;s, Pb;b, xs is selected to
partition Ps into Ps;d, Ps;s, Ps;b, and so on, where each x is
chosen to yield maximum information about the set it is
applied to. The recursion process terminates when the
entropy of a subset is zero. This means that all p in this
subset have the same value of Kp, i.e., they are either all
corners or all noncorners. This is guaranteed to occur since
K is an exact function of the data. In summary, this
procedure creates a decision tree which can correctly
classify all corners seen in the training set, and therefore
(to a close approximation), correctly embodies the rules of
the chosen FAST corner detector.

In some cases, two of the three subtrees may be the same.
In this case, the Boolean test which separates them is
removed. This decision tree is then converted into C code,
creating a long string of nested if-else statements which is
compiled and used as a corner detector. For highest speed
operation, the code is compiled using profile-guided
optimizations which allow branch prediction and block
reordering optimizations.

For further optimization, we force xb, xd, and xs to be
equal. In this case, the second pixel tested is always the
same. Since this is the case, the test against the first and
second pixels can be performed in batch. This allows the
first two tests to be performed in parallel for a strip of pixels
using the vectorizing instructions present on many high-
performance microprocessors. Since most points are rejected
after two tests, this leads to a significant speed increase.

Note that, since the data contains incomplete coverage of
all possible corners, the learned detector is not precisely the
same as the segment test detector. In the case of the FAST-n
detectors, it is straightforward to include an instance of every
possible combination of pixels (there are 316 ¼ 43;046;721
combinations) with a low weight to ensure that the learned
detector exactly computes the segment test criterion.

3.3 Nonmaximal Suppression

Since the segment test does not compute a corner response
function, nonmaximal suppression cannot be applied
directly to the resulting features. For a given n, as t is
increased, the number of detected corners will decrease.
Since n ¼ 9 produces the best repeatability results (see
Section 6), variations in n will not be considered. The corner
strength is, therefore, defined to be the maximum value of t
for which a point is detected as a corner.

The decision tree classifier can efficiently determine the
class of a pixel for a given value of t. The class of a pixel (for
example, 1 for a corner, 0 for a noncorner) is a mono-
tonically decreasing function of t. Therefore, we can use
bisection to efficiently find the point where the function
changes from 1 to 0. This point gives us the largest value of t
for which the point is detected as a corner. Since t is
discrete, this is the binary search algorithm.

Alternatively, an iteration scheme can be used. A pixel
on the ring “passes” the segment test if it is not within t of
the center. If enough pixels fail, then the point will not be
classified as a corner. The detector is run and, of all the
pixels which pass the test, the amount by which they pass is
found. The threshold is then increased by the smallest of
these amounts, and the detector is rerun. This increases the
threshold just enough to ensure that a different path is
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taken through the tree. This process is then iterated until

detection fails.
Because the speed depends strongly on the learned tree

and the specific processor architecture, neither technique

has a definitive speed advantage over the other. Nonmax-

imal suppression is performed in a 3� 3 mask.

4 MEASURING DETECTOR REPEATABILITY

For an image pair, a feature is “useful” if it is extracted in

one image and can potentially appear in the second (i.e., it is

not occluded). It is “repeated” if it is also detected nearby

the same real-world point in the second. For the purposes of

measuring repeatability, this allows several features in the

first image to match a single feature in the second image.

The repeatability R is defined to be

R ¼ Nrepeated

Nuseful
; ð12Þ

where Nrepeated and Nuseful are summed over all image pairs

in an image sequence. This is equivalent to the weighted

average of the repeatabilities for each image pair, where the

weighting is the number of useful features. In this paper, we

generally compute the repeatability for a given number of
features per frame, varying between zero and 2,000 features
(for a 640� 480 image). This also allows us to compute the
area under the repeatability curve A as an aggregate score.

The repeatability measurement requires the location and
visibility of every pixel in the first image to be known in the
second image. In order to compute this, we use a 3D surface
model of the scene to compute if and where detected
features should appear in other views. This is illustrated in
Fig. 2. This allows the repeatability of the detectors to be
analyzed on features caused by geometry such as corners of
polyhedra, occlusions, and junctions. We also allow bas-
relief textures to be modeled with a flat plane so that the
repeatability can be tested under nonaffine warping.

The definition of “nearby” above must allow a small
margin of error (" pixels) because the alignment, the 3D
model, and the camera calibration (especially the radial
distortion) are not perfect. Furthermore, the detector may
find a maximum on a slightly different part of the corner.
This becomes more likely as the change in viewpoint, and
hence, change in shape of the corner become large.

Instead of using fiducial markers, the 3D model is
aligned to the scene by hand and this is then optimized
using a blend of simulated annealing and gradient descent
to minimize the SSD between all pairs of frames and
reprojections. To compute the SSD between frame i and
reprojected frame j, the position of all points in frame j are
found in frame i. The images are then bandpass filtered.
High frequencies are removed to reduce noise, while low
frequencies are removed to reduce the impact of lighting
changes. To improve the speed of the system, the SSD is
only computed using 1,000 random locations.

The data sets used are shown in Figs. 3, 4, and 5. With
these data sets, we have tried to capture a wide range of
geometric and textural corner types.

5 FAST-ER: ENHANCED REPEATABILITY

Since the segment test detector can be represented as a
ternary decision tree and we have defined repeatability, the
detector can be generalized by defining a feature detector to
be a ternary decision tree which detects points with high
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Fig. 2. Repeatability is tested by checking if the same real-world features

are detected in different views. A geometric model is used to compute

where the features reproject to.

Fig. 4. Maze data set: Photographs taken of a prop used in an augmented reality application. This set consists of textural features undergoing

projective warps as well as geometric features. There are also significant changes of scale.

Fig. 3. Box data set: Photographs taken of a test rig (consisting of photographs pasted to the inside of a cuboid) with strong changes of perspective,
changes in scale, and large amounts of radial distortion. This tests the corner detectors on planar texture.



repeatability. The repeatability of such a detector is a

nonconvex function of the configuration of the tree, so we

optimize the tree using simulated annealing. This results in

a multiobjective optimization. If every point is detected as a

feature, then the repeatability is trivially perfect. Also, if the

tree complexity is allowed to grow without bound, then the

optimization is quite capable of finding one single feature in

each image in the training set which happens to be

repeated. Neither of these are useful results. To account

for this, the cost function for the tree is defined to be

k ¼ 1þ wr
r

� �2
� �

1þ 1

N

XN
i¼1

di
wn

� �2
 !

1þ s

ws

� �2
 !

; ð13Þ

where r is the repeatability (as defined in (12)), di is the

number of detected corners in frame i, N is the number of

frames, and s is the size (number of nodes) of the decision

tree. The effect of these costs are controlled by wr, wn, and

ws. Note that, for efficiency, repeatability is computed at a

fixed threshold as opposed to a fixed number of features

per frame.
The corner detector should be invariant to rotation,

reflection, and intensity inversion of the image. To prevent

excessive burden on the optimization algorithm, each time

the tree is evaluated, it is applied 16 times: at four rotations,

90 degrees apart, with all combinations of reflection and

intensity inversion. The result is the logical OR of the

detector applications: A corner is detected if any one of the

16 applications of the tree classifies the point as a corner.
Each node of the tree has an offset relative to the center

pixel, x, with x 2 f0 . . . 47g, as defined in Fig. 6. Therefore,

x ¼ 0 refers to the offset ð�1; 4Þ. Each leaf has a class K,

with 0 for noncorners and 1 for corners. Apart from the root

node, each node is either on a b, d, or s branch of its parent,

depending on the test outcome which leads to that branch.

The tree is constrained so that each leaf on an s branch of its

direct parent has K ¼ 0. This ensures that the number of

corners generally decreases as the threshold is increased.

The simulated annealing optimizer makes random
modifications to the tree by first selecting a node at random,
and then, mutating it. If the selected node is:

. a leaf, then, with equal probability, either:

- Replace node with a random subtree of depth 1.
- Flip classification of node. This choice is not

available if the leaf class is constrained.
. a node, then, with equal probability, choose any

one of:

- Replace the offset with a random value in 0 . . . 47.
- Replace the node with a leaf with a random class

(subject to the constraint).
- Remove a randomly selected branch of the

node and replace it with a copy of another
randomly selected branch of that node. For
example, a b branch may be replaced with a
copy of an s branch.

The randomly grown subtree consists of a single decision
node (with a random offset in 0 . . . 47), and three leaf nodes.
With the exception of the constrained leaf, the leaves of this
random subtree have random classes. These modifications to
the tree allow growing, mutation, and mutation and shrink-
ing of the tree, respectively. The last modification of the tree is
motivated by our observations of the FAST-9 detector. In
FAST-9, a large number of nodes have the characteristic that
two out of the three subtrees are identical. Since FAST-9
exhibits high repeatability, we have included this modifica-
tion to allow FAST-ER to easily learn a similar structure.

The modifications are accepted according to the Boltz-
mann acceptance criterion, where the probability P of
accepting a change at iteration I is

P ¼ e
k̂I�1�kI

T ; ð14Þ

where k̂ is the cost after application of the acceptance
criterion and T is the temperature. The temperature follows
an exponential schedule

T ¼ �e�� I
Imax ; ð15Þ

where Imax is the number of iterations. The algorithm is
initialized with a randomly grown tree of depth 1, and the
algorithm uses a fixed threshold t. Instead of performing a
single optimization, the optimizer is rerun a number of
times using different random seeds.

Because the detector must be applied to the images every
iteration, each candidate tree in all 16 transformations is
compiled to machine code in memory and executed
directly. Since it is applied with 16 transformations, the
resulting detector is not especially efficient. So, for
efficiency, the detector is used to generate training data so
that a single tree can be generated using the method
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Fig. 6. Positions of offsets used in the FAST-ER detector.

Fig. 5. Bas-relief data set: The model is a flat plane, but there are many objects with significant relief. This causes the appearance of features to
change in a nonaffine way from different viewpoints.



described in Section 3.2. The resulting tree contains
approximately 30,000 nonleaf nodes.

5.1 Parameters and Justification

The parameters used for training are given in Table 1. The
entire optimization, which consists of 100 repeats of a
100,000 iteration optimization, requires about 200 hours on
a Pentium 4 at 3 GHz. Finding the optimal set of parameters
is essentially a high-dimensional optimization problem,
with many local optima. Furthermore, each evaluation of
the cost function is very expensive. Therefore, the values are
in no sense optimal, but they are a set of values which
produce good results. Refer to [99] for techniques for
choosing parameters of a simulated annealing-based opti-
mizer. Recall that the training set consists of only the first
three images from the “box” data set.

The weights determine the relative effects of good
repeatability, resistance to overfitting and corner density,
and therefore, will affect the performance of the resulting
corner detector. To demonstrate the sensitivity of the
detector with respect to wr, wn, and ws, a detector was
learned for three different values of each, wr 2 f0:5; 1; 2g,
wn 2 f1;750; 3;500; 7;000g, and ws 2 f5;000; 10;000; 20;000g,
resulting in a total of 27 parameter combinations. The
performance of the detectors is evaluated by computing the
mean area under the repeatability curve for the “box,”
“maze,” and “bas-relief” data sets. Since, in each of the
27 points, 100 runs of the optimization are performed, each
of the 27 points produces a distribution of scores. The results
of this are shown in Fig. 7. The variation in score with
respect to the parameters is quite low even though the
parameters all vary by a factor of four. Given that, the results
for the set of parameters in Table 1 are very close to the
results for the best tested set of parameters. This demon-
strates that the choices given in Table 1 are reasonable.

6 RESULTS

In this section, the FAST and FAST-ER detectors are
compared against a variety of other detectors both in terms
of repeatability and speed. In order to test the detectors

further, we have used the “Oxford” data set [100] in
addition to our own. This data set models the warp between
images using a homography and consists of eight sequences
of six images each. It tests detector repeatability under
viewpoint changes (for approximately planar scenes),
lighting changes, blur, and JPEG compression. Note that
the FAST-ER detector is trained on three images (six image
pairs) and is tested on a total of 85 images (688 image pairs).

The parameters used in the various detectors are given
in Table 2. In all cases (except SUSAN, which uses the
reference implementation in [101]), nonmaximal suppres-
sion is performed using a 3� 3 mask. The number of
features was controlled in a manner equivalent to thresh-
olding on the response. For the Harris-Laplace detector,
the Harris response was used, and for the SUSAN detector,
the “distance threshold” parameter was used. It should be
noted that some experimentation was performed on all the
detectors to find the best results on our data set. In the case
of FAST-ER, the best detector was selected. The parameters
were then used without modification on the “Oxford” data
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TABLE 1
Parameters Used to Optimize the Tree

Fig. 7. Distribution of scores for various parameters of ðwr; wn; wsÞ. The

parameters leading to the best result are ð2:0; 3;500; 5;000Þ and the

parameters for the worst point are ð0:5; 3;500; 5;000Þ. For comparison,

the distribution for all 27 runs and the median point (given in Table 1) are

given. The score given is the mean value of A computed over the “box,”

“maze,” and “bas-relief” data sets.

TABLE 2
Parameters Used for Testing Corner Detectors



set. The timing results were obtained with the same

parameters used in the repeatability experiment.

6.1 Repeatability

The repeatability is computed as the number of corners per

frame is varied. For comparison, we also include a scattering

of random points as a baseline measure, since in the limit if

every pixel is detected as a corner, then the repeatability is

100 percent. To test robustness to image noise, increasing

amounts of Gaussian noise were added to the bas-relief data

set, in addition to the significant amounts of camera noise

already present. Aggregate results taken over all data sets

are given in Table 3. It can be seen from this that, on average,

FAST-ER outperforms all the other tested detectors.
More details are shown in Figs. 8, 9, 10, and 11. As shown

in Fig. 8, FAST-9 performs best (FAST-8 and below are edge

detectors), so only FAST-9 and FAST-12 (the original FAST

detector) are given.
The FAST-9 feature detector, despite being designed only

for speed, generally outperforms all but FAST-ER on these

images. FAST-n, however, is not very robust to the presence
of noise. This is to be expected. High speed is achieved by
analyzing the fewest pixels possible, so the detector’s ability
to average out noise is reduced.

The best repeatability results are achieved by FAST-ER.
FAST-ER easily outperforms FAST-9 in all but Figs. 10a, 11b,
11c, and 11e. These results are slightly more mixed, but
FAST-ER still performs very well for higher corner densities.
FAST-ER greatly outperforms FAST-9 on the noise test (and
outperforms all other detectors for � < 7). This is because
the training parameters bias the detector toward detecting
more corners for a given threshold than FAST-9. Conse-
quently, for a given number of features per frame, the
threshold is higher, so the effect of noise will be reduced.

As the number of corners per frame is increased, all of
the detectors, at some point, suffer from decreasing
repeatability. This effect is least pronounced with the
FAST-ER detector. Therefore, with FAST-ER, the corner
density does not need to be as carefully chosen as with the
other detectors. This falloff is particularly strong in the
Harris and Shi-Tomasi detectors. Shi and Tomasi, derive
their result for better feature detection on the assumption
that the deformation of the features is affine. Their detector
performs slightly better overall, and especially, in the cases
where the deformations are largely affine. For instance, in
the bas-relief data set (Fig. 10c), this assumption does not
hold, and interestingly, the Harris detector outperforms Shi
and Tomasi detector in this case. Both of these detectors
tend to outperform all others on repeatability for very low
corner densities (less than 100 corners per frame).

The Harris-Laplace is a detector that was originally
evaluated using planar scenes [60], [102]. The results show
that Harris-Laplace points outperform both DoG points and
Harris points in repeatability. For the box data set, our
results verify that this is correct for up to about 1,000 points
per frame (typical numbers, probably commonly used); the
results are somewhat less convincing in the other data sets,
where points undergo nonprojective changes.

In the sample implementation of SIFT [103], approxi-
mately 1,000 points are generated on the images from the
test sets. We concur that this a good choice for the number
of features since this appears to be roughly where the
repeatability curve for DoG features starts to flatten off.
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Fig. 8. A comparison of the FAST-n detectors on the “bas-relief” shows
that n ¼ 9 is the most repeatable. For n � 8, the detector starts to
respond strongly to edges.

TABLE 3
Area under Repeatability Curves for 0-2,000 Corners

per Frame Averaged over All the Evaluation Data Sets
(Except the Additive Noise)

Fig. 9. Repeatability results for the bas-relief data set (at 500 features

per frame) as the amount of Gaussian noise added to the images is

varied. See Fig. 10 for the key.



Smith and Brady [76] claim that the SUSAN corner

detector performs well in the presence of noise since it does

not compute image derivatives, and hence, does not

amplify noise. We support this claim. Although the noise

results show that the performance drops quite rapidly with

increasing noise to start with, it soon levels off and

outperforms all but the DoG detector. The DoG detector is

remarkably robust to the presence of noise. Convolution is

linear, so the computation of DoG is equivalent to

convolution with a DoG kernel. Since this kernel is

symmetric, the convolution is equivalent to matched

filtering for objects with that shape. The robustness is

achieved because matched filtering is optimal in the

presence of additive Gaussian noise [104].

6.2 Speed

Timing tests were performed on a 3.0 GHz Pentium 4D which

is representative of a modern desktop computer. The timing

tests are performed on two data sets: the test set and the

training set. The training set consists of 101 monochrome

fields from a high-definition video source with a resolution of

992� 668 pixels. This video source is used to train the high-

speed FAST detectors and for profile-guided optimizations

for all the detectors. The test set consists of 4,968 frames of

monochrome 352� 288 (quarter-PAL) video.

The learned FAST-ER, FAST-9, and FAST-12 detectors

have been compared to the original FAST-12 detector, to

our implementation of the Harris and DoG (the detector

used by SIFT), and to the reference implementation of

SUSAN [101]. The FAST-9, Harris, and DoG detectors use

the SSE-2 vectorizing instructions to speed up the

processing. The learned FAST-12 does not since using

SSE-2 does not yield a speed increase.
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Fig. 10. (a), (b), (c) Repeatability results for the repeatability data set as the number of features per frame is varied. (d) Key for this figure, Figs. 11

and 9. For FAST and SUSAN, the number of features cannot be chosen arbitrarily; the closest approximation to 500 features in each frame is used.

(a) Box data set. (b) Maze data set. (c) Bas-relief data set.

TABLE 4
Timing Results for a Selection of Feature Detectors

Run on Frames of Two Video Sequences

The percentage of the processing budget for 640� 480 video is given for
comparison. Note that, since PAL, NTSC, DV, and 30 Hz VGA (common
for webcams) video have approximately the same pixel rate, the
percentages are widely applicable. The feature density is equivalent to
approximately 500 features per 640� 480 frame. The results shown
include the time taken for nonmaximal suppression.



As can be seen in Table 4, FAST, in general, is much faster

than the other tested feature detectors, and the learned FAST

is roughly twice as fast as the handwritten version. In

addition, it is also able to generate an efficient detector for

FAST-9, which is the most reliable of the FAST-n detectors.

Furthermore, it is able to generate a very efficient detector for

FAST-ER. Despite the increased complexity of this detector, it

is still much faster than all but FAST-n. On modern hardware,
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Fig. 11. (a), (b), (c), (d), (e), (f), (g) Repeatability results for the “Oxford” data set as the number of features per frame is varied. See Fig. 10 for the

key. (a) Bark data set. (b) Bikes data set. (c) Boat data set. (d) Graffiti data set. (e) Leuven data set. (f) Trees data set. (g) UBC data set. (h) Wall data

set.



FAST and FAST-ER consume only a fraction of the time

available during video processing, and on low-power hard-

ware, it is the only one of the detectors tested which is capable

of video rate processing at all.

7 CONCLUSIONS

In this paper, we have presented the FAST family of

detectors. Using machine learning, we turned the simple

and very repeatable segment test heuristic into the FAST-9

detector which has unmatched processing speed. Despite

the design for speed, the resulting detector has excellent

repeatability. By generalizing the detector and removing

preconceived ideas about how a corner should appear, we

were able to optimize a detector directly to improve its

repeatability, creating the FAST-ER detector. While still

being very efficient, FAST-ER has dramatic improvements

in repeatability over FAST-9 (especially in noisy images).

The result is a detector which is not only computationally

efficient, but has better repeatability results and is more

consistent with variation in corner density than any other

tested detector.
These results raise an interesting point about corner

detection techniques: Too much reliance on intuition can be

misleading. Here, rather than concentrating on how the

algorithm should do its job, we focus our attention on what

performance measure we want to optimize and this yields

very good results. The result is a detector which compares

favorably to existing detectors.

In the interests of science, we will be making all parts of

the experiment freely available as supplemental material,2

which can be found on the Computer Society Digital

Library at http://doi.ieeecomputersociety.org/10.1109/

TPAMI.2008.275, including the data sets, the FAST-ER

learning code, and the resulting trees.
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