MavemoTtiuio KpAtng, Tunua Emotiung Y1oAoyiotwyv
Avoign 2008

HY463 - ZuotuaTta Avaktnong MNAnpogopiwv
Information Retrieval (IR) Systems

Eupetnpiaon, AmoBnkeuan kai Opydvwan Apxeiwv
(Indexing, Storage and File Organization)

Mavvng Titdikag

AidAen @ 6
Huepopnvia :

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

Aopég Eupetnpiou: AiapBpwon AidAegng

Eicaywyn - kivntpo

» Aveotpappéva Apxeia (Inverted files)

« Aévdpa KataAngewv (Suffix trees)

» Apxeia Ymroypaguwyv (Signature files)

« 2cgipiakn Avadntnon oe Keipevo (Sequential Text Searching)

* Amavinon Emepwtriocwy “Taipidopatog MNMpoTtutrou” (Answering
Pattern-Matching Queries)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

Eupetnpiaocpocg Kelyévou:Eicaywyn

¢ 2KOTTOG

— ZXEOIOOMOG SOPWYV OEDONEVWYV TTOU ETTITPETTOUV TNV
a1rodOTIKI) UAOTTOIiNON TNG YAWOOOG ETTEPWTNONG

« ATtAoikn TTpocéyyion: osipiakh avalntnon (online sequential search)
— IkavoTroINTIKA JOVO av N CUANOYH TwV KEIMEVWV Eival MIKPR
— Eival n pévn emiAoyn av n cuAloyn KeIpévwy gival EUPETABANTN

« Edw

— OXEOIAONOG SOpWYV dEdONEVWYV, TTOU OVOUALOVTal EUPETAPIA
(called indices), yia gmTdYUuvon Tng avalnTnong

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

Avaykec N\woowyv Etrepwtnong
(KAl JOVTEAWV AVAKTNONG YEVIKOTEPQ)

* ATTAEg

— Bpeg Eyypaga TTou TrEPIEXOUV MIa Aégn t

— Bpec woOoEG PopEg eppavileTal N AEgn t o€ Eva £yypago

— Bpeg TIC B€oEIg TwV epPavioewy TNG AéENg t oTo £yypago
* [Tio ouvbeTEC

— AoyIkég (Boolean) erepwTtioEIg

— ETTEPWTNOEIC eyyUTNTAG (phrase/proximity queries)

— TaIpIAoPATOG TIPOTUTIOU (pattern matching)

— KQVOVIKEG eKppdoelg (regular expressions)

— OOouIKEG TTEPWTAOEIG (structure-based queries)

2 X€0IACOUNE TO EUPETHPIO avAAoya PE TO JOVTEAO avAKTNONG
Kal TN YAWOOO ETTEPWTNONG

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

["evikn (AOyIKN) HopPpn EVOC EUupETNPIOU

Indexing Items

S Kk k, ..k Kk
o dl Ciq Coq Ca Ciq Ca Ci1 Cjj: To KeAi TTOU aVTIOTOIXE
c ' ' ’ ' oTto éyypago di kal oTov
u d2 Cl,2 C2,2 s Ci,2 et Ct,2 0po kj, To otroio pTropei va
m TIEPIEXEL:
e * VO w;; TTOU va dnAWVEl
di Cl,j C2,j C e @ .. Ct,j TNV TTapoucia A atroucia
n Tou kj aTo di (™™
t e e otroudaidTnTa TOou Kj GTO
S di
dy Ctn Con oo+ CGin eee Gy |9 ,
* TIG B£0EIC OTIG OTTOIEG O
6pog kj epgavicetal oo di
(av Tpaypat epeavicera)
Epwthuara:
Ti TTPETTEl VO £XEI TO KAOE Cjj
Mwg va uhotroinooupe auth TN Aoyikf OOWr WOTE va £XOUNE ATTOdOO0N;
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

TexvikEG EupeTnplacpuou (Indexing Techniques)

» AveoTpaupéva Apxeia (Inverted files)
— n Mo d1adedopévn TEXVIKN

« Aévdpa kal MNMivakeg KataAfgewv (Suffix trees and arrays)

— YPNYOpPEG yia “phrase queries” aAAd n KOTAOKEUR KAl N ouvTHPnor Toug
gival BUOKOAOTEPN Kal akpIBOTeEPN

» Apyxeia Ymroypaguwv (Signature files)
— XpnoiuoTtroinénkav oAU Tn dekaeTia Tou 80. ZTTavioTEPa oruEPA.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

AveaTpappueva Apxeia (Inverted Files)

AveoTpappévo Apxeio
Noyikil Mopon EupeTtnpiou Mopor AveoTpaupévou Eupetnpiou
Cj,1
Index terms
——| | |

dy ¢y 21 Ci1 m

% G2 G e [e\ T T]

dy Cin CoN Cin "t

] e
\w / T]

Postings lists

Apa dev OECUEUOUHE XWPO VIO TA .. «INOEVIKA KEAIG»
TNG AOYIKAG HOPPNG TOU EUPETNPIOU

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

Inverted Files (AveoTpauuéva apxeia)

Inverted file = a word-oriented mechanism for indexing a text
collection in order to speed up the searching task.

* An inverted file consists of:
— Vocabulary: is the set of all distinct words in the text

— Occurrences: lists containing all information necessary for each
word of the vocabulary (documents where the word appears,
frequency, text position, etc.)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 9

AVEOTPAUMEVO QPXEIO YIa Eva JOVO £yypago Kal
atroBnikeuon BEoewyv ePAvIonG KABe AEENG

Keipevo
That house has a garden. The garden has many flowers. The flowers are beautiful
1 6 12 1618 25 29 36 40 45 54 58 66 70
Inverted File:
Vocabulary Occurrences
beautiful 70
flowers 45, 58
garden 18, 29
house 6

Ti dAAo Ba kdvare (kparouoare) av gixaue TOAAG Eypapa Kkai 6éAaue
va uAormroiooupe 1o Aiavuouariké Movrédo;

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 10

AveOTpaPMNEVO apXEio yia TTOAAG £yypaga,
Kal Bapuvaon tf-idf

To df (document frequency, TTou pag xpeiadeTal

To Bé tf (t fi
yia 1o IDF) apkei va atrofnkeuTei pia opd 0 Bdpog tf (term frequency)

Vocabulary Edw Ba ytropoucape
Di, tfi [«—— va £XOUYE Kal TIG BECEIG EuPAvIoNG

Index terms df NG AéEng computer oT0 £yypago Dj
computer 3———[D, 4 |
database o—— D, 3 | |

[N J
science 4 *| Do 4
osen | 1 4—{b.2 |

Vocabulary file

CS463 - Information Retrieval Systems

Postings lists

Yannis Tzitzikas, U. of Crete 11

[Mapadelyua avESTPANUEVOU OPXEIOU OTTOU YIa KABE AEEN |
Kal €yypago j kpatape povo To freq;

Doc Text
1 | Pease porridge hot
2 | Pease porridge cold
3 | Pease porridge in the pot
Document COI’pUS 4 | Pease porridge hot, pease porridge not cold
5 | Pease porridge cold, pease porridge not hot
6 | Pease porridge hot in the pot
Vocabulary Inverted
cold — <2.1> | <4.1> | <5,1§'9f’[S
hot <115 l<a1><51>1<61> |
in <31>1<61>
not —1<41> | <51> |
Inverted File pease <1,1> | <21> | <31> | <4.2> | <52> | <6,1> |
porridge [<1.1> | <2.1> | <3.1> | <4 2> | <52> | <6.1> |
pot <3.1> | <61>
the <3.1> | <61>

CS463 - Information Retrieval Systems

annis Tzitzikas, U. of Crete 12

Another example

term df document ids
1 Algorithms 3 3 5 7
2 Ipplicaticon 2 3 17
3 Delay 2 11 12
4 Differential 2 4 & 1o 11 12 13 14 15
5 Boguations 10 1 2 4 B 0o 11 12 12 14 15
& Implemsentation 2 3 7
7 Integral 2 le 17
8 Introduction 2 5 &
9 Methods 2
10 Nonlinear 2 g 13
11 oOrdinary 2 & 10
12 oOscillation 2 11 1=
13 Partial 2 4 13
14 Prchlsm 2 & 7
15 Systems 3 3 = 9
lé Theory 4 3 11 12 17
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 13
Physical Organization of Inverted Files
Access Index file Posting file
structure Key, #Docs, Pos Doc# Document file
k1 f1 pl * Di D1 abcedefghijkl
k2 f2 p2 D] D2 abedefghijkl
: \ : D3 abedefghijkl
. Di abedefghijkl
km fm pm .
access structure to one entry for . Dj abcdefghijkl .
the vocabulary can be each term of
B+-Tree, Hashing the vocabulary '
or Sorted Array ; K : bedefahiikl
space requirement space requirement O(n’) D Dn abcdefghij
n
O() 0. 4{‘6:’0' é occurrences of words are documents stored
(Heap's faw) stored ordered lexicographically in a contiguous file
. ~ . space requirement) space requirement COfn)
main memery — — —
£2007/8, Karl Aberer, EPFL-IC, Laboratoire de systémes d'informations répartis =¢¢°ﬂdﬂ.r‘y éq_rggat.gnem-mﬂal -6
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 14

(cont)

LAlgorithms
Epplication
Delay
Differential

[T O T S T

[S S ST T T R o B R

| E .|

=

[

b e e
YT S

CS463 - Information Retrieval Systems

Bl A Course on Integral Equations

B2 Attractors for Semigroups and Evolution
Equations

B3 Automatic Differentiation of Algorithms:
Theory, Implementation, and Application

B4 Geometrical Aspects of Partial Differential
Equations

B5 Ideals, Varieties, and Algorithms: An

Introduction to Computational Algebraic
Eeometry and Commutative Algebra

B& Introduction to Hamiltonian Dynamical Systems
and the N-Body Problem

B7 Knapsack Problems: Algorithms and Computer
Implementations

B8 Methods of Saolving 5ingular' Systems of
Ordinary Differential Equations

B2 Monlinear Systems
B10 Ordinary Differential Equations

B11 Oscillation Theory for Neutral Differential
Equations with Delay

Yannis Tzitzikas, U. of Crete

15

AvaoTpapuévo Apxeio: Karaokeun kai Avalntnon

Y1ropabpo/ETravainyn: Tries

Tries
» multiway trees for stroring strings

» able to retrieve any string in time proportional to its length (independent from the
number of all stored strings)

Description
— every edge is labeled with a letter
— searching a string s

« start from root and for each character of s follow the edge that is labeled with the
same letter.

+ continue, until a leaf is found (which means that s is found)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 17

Tries: Napadelyua

1 6 911 1719 24 28 33 40 46 50 55 60
Thisis a text. Atexthas many words. Words are made from letters.

Vocabulary | | Vocabulary (ordered) Vocabulary trie
text (11) letters (60)
text (19) made (50)
many (28) | | many (28)
words (33) | | text (11,19)

words (40) | | words (33,40) words:33,40
made (50) —

letters (60)

letters:60

made:50

many:28

text:11,19

Epwrtnon: ©a umropouoe éva trie va fonbnaoel 1n oTeAEXwaon Keluévou
Bdoel NS TexvIKNG Successor variery?

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 18

Mapddeiyua auenTikAc dnuioupyiag evog trie

1 6 12 16 I8 s 20 36 40 45 54 58 86 70
the house has a garden. the garden has many flowers. the flowers are beautiful
{each word = one document, position = document identifier)

L]

the: 1

house: & the: 1

a: 16 garden: 18 the: 1
a

has: 12 house: & has: 12 house: &

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 19

AveoTtpauuéva Apxeia: ATTaiTioeic Xwpou

HIKPEC MEYAAEG
N
k1]
k2 —7
N Kt 7

\/ Postings lists

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 20

AveoTpaupéva Apxeia: ATTaitioeic Xwpou

Notations

n: the size of the text (of all documents in the collection)

V: the size of the vocabulary

For the Vocabulary:

Rather small.

According to Heaps’ law (fo be described in a subsequent lecture) the
vocabulary grows as O(nf), where Sis a constant between 0.4 and 0.6 in
practice. So V ~ sqrt(n) // apa avahoyo Tng TeTpaywvIkAg pifag Tou uey£Boug TNG GUAOYAS)

For Occurrences:

Much more space.

Since each word appearing in the text is referenced once in that structure (i.e.
we keep a pointer), the extra space is O(n)

To reduce space requirements, a technique called block addressing is used

how?

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 21

& Block Addressing

The text is divided in blocks
The occurrences point to the blocks where the word appears

Advantages:
— the number of pointers is smaller than positions
— all the occurrences of a word inside a single block are collapsed to one reference

— (indices of only 5% overhead over the text size can be obtained with this
technique. Of course this depends on the block size).

* In many cases instead of defining the block size, we define the number of blocks
(in this way we know how many bits we need per pointer)

Disadvantages:
— online sequential search over the qualifying blocks if exact positions are required

+ e.g. for finding the sentence where the word occurs
+ e.g. for evaluating a context (phrasal or proximity) query

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 22

Block Addressing: Example

That house has a garden. The garden has many flowers. The flowers are beautiful

1 6 12 1618 25 29 36 40 45 54 58 66 70
beautiful 70
Vocabulary | flowers Occurrences | 42 98
garden 18, 29
house 6
Block 1 Block 2 Block 3 Block 4
That house has a|garden. The garden has |many flowers. The flowers |are beautiful
beautiful 4
Vocabulary | flowers Occurrences | °
garden 2
house 1
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 23

Size of Inverted Files as percentage of the size of
the whole collection

45% of all words are stopwods

Index Small collection Medium collection Large collection
(1Mb) (200Mb) (2Gb)
Addressing words 45% 73% 36% 64% 35% 63%
Addressing 64K blocks 27% 41% 18% 32% 5% 9%
Addressing 256 blocks 18% 25% 1.7% 2.4% 0.5% 0.7%
Without All words ~ Without All words Without All words
stopwords stopwords stopwords

Addressing words: 4 bytes per pointer (232 ~ giga)
Addressing 64K blocks: 2 bytes per pointer
Addressing 256 blocks: 1 byte per pointer

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 24

Searching an inverted index

Searching an inverted index

General Steps:

1/ Vocabulary search:
— the words present in the query are searched in the vocabulary

2/Retrieval occurrences:
— the lists of the occurrences of all words found are retrieved

3/Manipulation of occurrences:
— The occurrences are processed to solve the query

— If block addressing is used we have to search the text of the blocks in order to
get the exact positions and number of occurences

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

26

1/ Vocabulary search

As Searching task on an inverted file always starts in the vocabulary, it is
better to store the vocabulary in a separate file
— this file is not so big so it is possible keep it at main memory at search time

Suppose we want to search for a word of length m.

Options:

» Cost of searching a sequential file: O(V)

» Cost of searching assuming hashing: O(m)

» Cost of searching assuming tries: O(m)

» Cost of searching assuming the file is ordered (lexicographically): O(log V)
— this option is cheaper in space and very competitive

The structures most used to store the vocabulary are hashing, tries or B-
trees.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

27

1/ Vocabulary Search (ll)

Remarks

« prefix and range queries
— can also be solved with binary search, tries or B-trees buts not with hashing

* context queries
— are more difficult to solve with inverted indices
* 1. each element must be searched separately and
« 2. alist (in increasing positional order) is generated for each one

» 3. The lists of all elements are traversed in synchorization to find places
where all the words appear in sequence (for a phrase) or appear close
enough (for proximity).

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

28

Inverted Index: A general remark

Experiments show that both the space requirements and the amount
of text traversed can be close to O(n™0.85). Hence, inverted
indices allow us to have sublinear search time and sublinear space
requirements. This is not possible on other indices.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

29

Constructing an Inverted File

Constructing an Inverted File

» All the vocabulary is kept in a suitable data structure storing for each
word a list of its occurrences

— e.g.in a trie data structure

« Each word of the text is read and searched in the vocabulary

— if a trie data structure is used then this search costs O(m) where m the
size of the word

» Ifitis not found, it is added to the vocabulary with a empty list of
occurrences and the new position is added to the end of its list of
occurrences

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

31

Constructing an Inverted File (Il)

* Once the text is exhausted the vocabulary is written to disk with
the list of occurrences. Two files are created:
— in the first file, the list of occurrences are stored contiguously

— in the second file, the vocabulary is stored in lexicographical order and, for
each word, a pointer to its list in the first file is also included.

* The overall process is O(n) time

2nd file 1stfile

Rlgorithms
ae]

B1 A Course on Integrol Equations
™, |82 .lr!tm(rofs for Semigroups and Evolution
9

Trie: O(1) per text character

Since positions are appended (in the postings
file) O(1) time

P A It follows that the overall process is O(n)
quations witl oy
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

32

Example of constructing an inverted file
(in our example we assume that:

each word = one document, position = document identifier)

1] 12 16 18 25 29 36 40 45 54 58 ¢ 7O

the house has a garden. the garden has many flowers. the flowers are beautiful

-
__g__,_.--""'_'-'--b " R
a: 16 .) *

beautiful: 70 garden: 18, 29 many: 40 the: 1, 25, 54

r flowers: 45, 58

[]

are: 66 has: 12, 36 house: &

a: 16
are: 66
beautiful: 70

flowers: 45, 58
garden: 18, 29
has: 12, 3&
house: &

many: 40

the: 1. 25, 54

inverted file I 16, 68, 70, 45, 58, 18, 29, 12, 36, 6, 40

postings file

Once the complete trie
structure is constructed
the inverted file can be

derived from it. For
doing this the trie is
traversed top-down
and left-toright.
Whenever an index
term is encountered it
is added to the end of
the inverted file. Note
that if a term is prefix
of another term (such
as "a" is prefix of "are")
index terms can occur
on internal nodes of
the trie.

Analogously to the
construction of the
inverted file also the
posting file can be
derived.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 33
Example (cont)

» The trie structure constructed is a possible access structure to the index file in
main memory. Thus the entries of the index files occur as leaves (or internal
nodes) of the trie. Each entry has a reference to the position of the postings file
that is held in secondary storage.

1 L] 12 16 18 25 29 36 40 45 54 BB g 7O
the house has a garden. the garden has many flowers. the flowers are beautiful
—1
)
The@
"N@ has: 8 house: 10
—— R —
16, 66, 70, 45, 58, 18, 29, 12, 36, 6, 40, 1, 25, 54
postings file
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 34

What if the Inverted Index does not fit in main memory ?

A technique based on partial Indexes:
— Use the previous algorithm until the main memory is exhausted.

— When no more memory is available, write to disk the partial index I,
obtained up to now, and erase it from main memory

— Continue with the rest of the text

* Once the text is exhausted, a number of partial indices I; exist on
disk

» The partial indices are merged to obtain the final index

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

35

Merging two partial indices 11 and 12

* Merge the sorted vocabularies and whenever the same word
appears in both indices, merge both list of occurences

« By construction, the occurences of the smaller-numbered index
are before those at the larger-numbered index, therefore the lists
are just concatenated

« Complexity: O(n1+n2) where n1 and n2 the sizes of the indices

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

36

Merging partial indices to obtain the final

| . final index
*
eve 3
I 1.4 I 5..8
level 2
I 1.2 I 3.4 I 5..6 I 7.8
I, I, I, I, I 5 I s I, I | initial dumps
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 37

Example of two partial indices and their merging

1 L)

the house has a garden. the garden has

inverted

file Il

12 & I8 25

a: 1é

garden: 18, 29
has: 12, 38
house: &

the: 1, 25

1, 25 + 54 -» 1, 25, 54

concatenate inverted lists

CS463 - Information Retrieval Systems

]} 40

a: 1&

are: 66
beautiful: 70
flowers: 45, 58
garden: 18, 29
has: 12, 36
house: &

many: 40

the: 1, 25, 54

45 54 GSB &6 70

many flowers. the flowers are beautiful

are: &6&

beautiful: 70 inverted
flowers: 45, 58 fjle T2
many: 40

the: 54

total cost: O log.(n/Mm))
M size of memory

Yannis Tzitzikas, U. of Crete 38

Merging all partial indices: Time Complexity

Notations

* n: the size of the text

* V: the size of the vocabulary

* M: the amount of main memory available

» The total time to generate partial indices is O(n)

* The number of partial indices is O(n/M)

» To merge the O(n/M) partial indices are necessary log,(n/M) merging levels
* The total cost of this algorithm is O(n log(n/M))

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

39

Maintaining the Inverted File

+ Addition of a new doc
— build its index and merge it with the final index (as done with partial indexes)

* Delete a doc of the collection

— scan index and delete those occurrences that point into the deleted file
(complexity: O(n) : extremely expensive!)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

40

Evaluating Phrasal and Proximity Queries with
Inverted Indices

 Phrasal Queries

— Must have an inverted index that also stores positions of each keyword in a
document.

— Retrieve documents and positions for each individual word, intersect
documents, and then finally check for ordered contiguity of keyword
positions.

— Best to start contiguity check with the least common word in the phrase.

* Proximity Queries

— Use approach similar to phrasal search to find documents in which all
keywords are found in a context that satisfies the proximity constraints.

— During binary search for positions of remaining keywords, find closest
position of k; to p and check that it is within maximum allowed distance.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

41

ATtrotiunon Boolean eTepwTACEWY PJE XPAON
QAVECTPAMMPEVWYV OPXEIWV

ATTOTINNON PE XPAON AVECTPANMEVWYV OPXEIWV
— Primitive keyword: Retrieve containing documents using the inverted index.
— OR: Recursively retrieve e, and e, and take union of results.
— AND: Recursively retrieve e, and e, and take intersection of results.
— BUT: Recursively retrieve e, and e, and take set difference of results.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

42

Inverted Index: KaTtakAcida

Is probably the most adequate indexing technique

Appropriate when the text collection is large and semi-static

If the text collection is volatile online searching is the only option
Some techniques combine online and indexed searching

Eidaue TpOTTOUG VIO va HEIWOOUHE TO MEYEBOG EVOG QVECTPANUEVOU EUPETNPIOU
(Aé€eig atTokAgIopOU, block addressing). @a doupe kal GAAOUG TPOTTOUG OTO
MaBnua TTepi cupTTieong

(ouykekpipéva TPOTTOUG WEIWONG TOU XWPEOU TTOU KATaAAUBAvVOUV o1 AiOTEG EJPAVIoEWV)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 43

Aévopa kai lMNivakeg KataAngewv
(Suffix Trees and Suffix Arrays)

Aévopa kai lNivakeg KataAngewy
(Suffix Trees and Arrays)

* Kivntpo
— IpAyopn atroTiynon Twv phrase queries
— H évvoia 1ng Aé&ng (oTnv otroia Bacifovtal Ta inverted files) dev uttdpxel o€
GAAEG EQAPMOYEG (TT.X. OTIG YEVETIKEG PACEIC DEBOUEVWV), Apa UTTAPXEI
avaykn yia d10QOPETIKEG OOPEG DEDOPEVWIV.

Mia aAucida DNA eivail pia akoAouBia atrod diatetayuéva (euydpia BATEwWV.

Yméapyouv 4 Bdocig: n adevivn (A), n youavivn (G), n kutoaivn (C) kai n Buyivn (T).

KdaBe Ceuydpl Baocwv Tou DNA atroTeAeital atmo dIa@opeTIKEG BATEIG.

Zuykekpipéva, n adevivn (A) ytropei va ouvdéetal yovo pe tn Bupivn (T), evw n youavivn (G) pmropei
va ouvoéeTal Jovo e Tnv kutoaivn (C). 'Eva mapddeiypa ammoordopatog aAucidag DNA
akoAouBki:

AGGCTACCCTTA
TCCGATGGGAAT

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

45

Aévopa kai lMNivakeg KataAngewyv
(Suffix Trees and Arrays)

["evIKn 10
— BA&mmoupe 6Ao 1O Keipevo WG pia pakpid oupBoAlooeipda (long string)
— Otwpoupe KGBe BEoN Tou KeINévou WG KAaTdAngn keipévou (text suffix)
— AUo KataAAEeIg TTou eKKIVOUV atTo dIOQOPETIKES BETEIS eival Ae§ikoypa@ikd
OIOQPOPETIKES

e dpa KABe KaTdAnéNn TTpoadiopileTal povadikd atrd TN B€on TNC APXAC TNC

— EmAoyég
» Eupetnpidloupue OAeG TIG BEOEIC TOU KEIPNEVOU
» Eupetnpidloupe katroleg BE0EIG TOU KeINEVOU (TT.X. MOVO TIG APXEG
AECEwV
— Apa €dw £XOUNE TNV €vvola TOU ONUEiou eupeTnpiou (index point)
— Ta onueia 1Tou d¢ev gival onueia eupeTnpiou dev gival TTapPaddoIUa
(deliverable)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

46

Mapdadeypa KataAncewyv
(BewpwvTag we onueia eupeTnpiou (index points) TIC ApXES TwV AEEEWV)

This is a text. A text has many words. Words are made from letters.

A A A T

letters.

made from letters.

Words are made from letters.

words. Words are made from letters.

many words. Words are made from letters.

text has many words. Words are made from letters.

text. A text has many words. Words are made from letters.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 47

Aévdpa KataAnéewyv (Suffix Trees)

A£vOpo KaTtaAn&swyv:

— To 8évdpo KATAARSEWV £VOG KEIPEVOU gival Eva trie TTAvw 0€ OAEC TIG
KATAAAEEIC TOU KEIPEVOU.

» Suffix tree = trie built over all the suffixes of the text
— Ol d¢eikTEG TTPOG TO KEIMEVO aTTOBNKEUOVTAI OTA QUAAA TOU OEVOPOU.

[Na peiwon Tou Xwpou, To trie CUPTTUKVWVETAI we Eva Patricia tree

— Patricia = Practical Algorithm To Retrieve Information Coded in
Alphanumerical

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 48

Suffix Trie yia 1N AéEn "cacao”
(BewpwvTtag KABE BEoN WC onuEio eupeTnPiIo)

KaTtaAngeig: Trie KataAAgewy
0

0
20 9. @

cao
@ ©

acao ¢

cacao . Q. o

(0]
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 49
e M
KataAAqgeig: ©o
a
0 ‘® @
ao

cao ca @ @ « ® .

acao cac ‘ M cao

cacao
caca '

cacao

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

50

Mapddelypa KaTtaAngewy

kal Tou avrtioToiyou Suffix Trie
1 6 911 1719 24 28 33

40 46 50 55 60
This is a text. A text has many words. Words are made from Ietters

letters.

aéi 11‘rom etters.
Words are made from letters.
words. Words are made rom letters.

wor S. Wor s are made pom etters.
text has man Wor

(f V\? are ma tters.
text. A text has manly words. Words are made from letters.

I 60

50

Suffix Trie

40

33

CS463 - Information Retrieval Systems

Yannis Tzitzikas, U. of Crete 51

Suffix tree

= Suffix trie compacted into a Patricia tree

This involves compressing unary paths, 1.e. paths where each node has just
one child.

If unary paths are not present, the tree has O(n) nodes instead of the worst-
case O(n?) of the trie.

Suffix Trie

Suffix Tree

50

50

e

11
40

40

33

b ' 33

CS463 - Information Retrieval Systems

Yannis | Ti eivar autoi o1 apiBuoi; ‘ 52

[Mivakeg KataAngewv (Suffix arrays)

[livakeg KataAncewv (Suffix arrays)
(Space efficient implementation of suffix trees)

» Suffix trees have a space overhead of 120%-240% over the text
size (assuming that index points = word beginnings)
— assuming node size of 12 or 24 bytes

* Now we will present a data structure with space requirements like
those of the inverted file (~40% overhead over the text size)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 54

[livakeg KataAncewv (Suffix arrays)
(Space efficient implementation of suffix trees)

[Mivakag KataAnZewv:
» [livakag pe BeiKTEG TTPOG OAEG TIG «KATAAALEICH O€ Ae€IKOypA®IKA TEIPA
« [a va tov dnpioupyriooupe apkei pia depth-fist-search didoyion Tou suffix tree.

1 6 911 1719 24 28 33 40 46 50 55 60

This is a text. A text has many words. Words are made from letters.
50 .
Suffix Array

19 Il m m t t w w

11 mm) |60(50|28|19| 11|40 33

40
Suffix Tree 33
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 55

[Mlivakeg KataAncewv(ll)

1 6 911 1719 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.

Suffix Array
Suffix Tree

50

I m m t t w w

—> 60 [50|28|19|11 (40|33

19 OéNn:
11 * Meciwon xwpou
— Kpatdape 1 deiktn ava kataAnén (7 kataAngeig,
40 TivVakKag 7 KEAIWV)
— (space overhead ~ that of inverted files)
33 * Auvardétnta binary search

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 56

[MTivakeg KataAncewv(lll)

1 6 911 1719 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.

Suffix Array
Suffix Tree

60 50 [m m t t W W

—> 60 [50(28|19|11 (40|33

Avalntnon Baocel Suffix Array

MNa va douue av UTTApXEl Mia KaTdAngn oTo
Keipevo kavoupue duadikni avalntnon (binary
search) oTo TTEPIEXOUEVO TWV DEIKTWV

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 57

[livakec KataAngewv (V)

Avalitnon Baocel Suffix Array

lMNa va douue av UTTapxEl JIa KATAANEn oTo KeipeVo KAvoupe duadikr avalnitnon
(binary search) 010 TTEQIEXOUEVO TWV OEIKTWV

\ Mrtropei va odnynoel o€ ToAAG disk accesses

Therefore if vocabulary is big (and the suffix array does not fit in main
memory), supra indices are employed
— they store the first | characters for each of every b entries of the suffix array

Supra-Index lett textl‘ word | =4, b=3

Suffix Array 605028 19|11 |40| 33

I m m t t w w

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 58

[Mivakeg KataAngewv (Pe supra-index) Evavri
AVECTPAPMEVWV ApXEiwV

» For word-indexing suffix array it has been suggested that a new
sample could be taken each time the first word of the suffix
changes, and to store the word instead of | characters

* This is exactly as having a vocabulary of the text plus pointers to
the array

* The only important difference between this structure and an
inverted index is that the occurences of each work in an inverted
index are stored by text position, while in a suffix array they are
stored lexicographically by the text following the word.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 59

Aévdpa kal MNivakeg KataAngewv
KooTtog AtroTipnong ETrepwtioswy

« KooTog avalntnong Yiag cUPBOA0CEIPAG IAKOUG M XAPOKTAPWY
— O(m) otnv TTePITTTWON TWV BEVOPWY KaTaAngewv (suffix tree)
— O(log n) oTnv TTEPITITWON TWV TMIVAKWY KaTaARgewv (suffix array)
* BuunBeite ot K&GBE oneio Tou Kelpévou TTPoadlopilel pia KAaTdANgN

» ATrotipnon phrase queries
— H @pdon avadnteital wodv va Atav Pia cupBoloceipd

» Atrotignon proximity queries
— proximity queries have to be resolved element wise

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 60

