MavemoTtiuio KpAtng, Tunua Emotiung Y1oAoyiotwyv
Avoign 2007

HY463 - ZuotuaTta Avaktnong MNAnpogopiwv
Information Retrieval (IR) Systems

Web Searching

I: History and Basic Notions, Crawling
IT: Link Analysis Techniques
ITI: Web Spam Page Idenftification

Mavvng Titdikag

AidheEn : 8
Huepopnvia : 20/ 4 / 2007

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

A1apBpwon AlGAeEnc |

* loTopiki Avadpoun
* Avakrtnon NMAnpogopiwv atrd tov 1oTo: MPokANoEIS Kal ATTAITACEIG
* O vouog Tou Zipf kai o lotdg
* H dopn Tou ypdeou Tou loTou
» KartdAoyol (Yahoo/ODP) évavti Mnxavwyv Avalntnong
— Automatic Document Classification
— Automatic Document Hierarchies
« ‘Eptreiv (Crawling/Spidering)
Aidoyion (spidering/crawling)
Depth/Breadth and Technical Details
Directed (Topic/Link/...) Spidering
— Multi-Threaded Spidering
* ATtoBrkeuon kal Eupetnpiaon ZeAidwv

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

[1poicTopia

+ 1965:

— O Ted Nelson cuvéAaBe kal aveTTTuEE
TNV 10€a Tou uTrEpKEIpévou (hypertext

* T€An dekaeTiag 60:

— O Doug Engelbart €1mivonoe 10 TroVTiKI
KAl TTPWTOG UAOTTOINOE TO UTTEPKEIUEVO.

« 1970’s:
— Avdarrtugn Tou ARPANET

Apa ol 10ée¢ Kal N Bacikn Texvoloyia utripxe atro 1o 70.
‘Etmrpette va €pBel n etoxn Twv PC kal Tng eupgiag aAAnAoouvdeong yia va
EUTTVEUOTOUNE Kal va @TIGEouuE Tov MNMaykdopio 1oTo.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

To NMaykéouiog lotog (the World Wide Web)

et iy g]
1990: AvaTtrtuxenke atrd Tov Tim Berners-Lee (oto CERN) yia Tnv opydvwon Twv
EPEUVNTIKWYV eyYpApwyV TTou fTav diaBéoipa oto AladikTuo

— Avéttuge 10 TTpwWTOKOAO HTTP, 6pioe Ta URLs kai Tn yAwooa HTML, kai uhotroinoe
Tov TTpwTOo “web server.”

— 2ZUuvOUAaOoMOG 2 10EWV:
— 'Eyypaowv diaBéoiywy ue FTP
— Alaouvdeon eyypaQwy (UTTEPKEIUEVO)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

H lotopia twv MAonyntwyv (Web Browsers)

» Early browsers were developed in 1992
— Erwise, ViolaWWW

* 1n 1993, Marc Andreessen and Eric Bina at UIUC NCSA
developed the Mosaic browser and distributed it widely.

NCEA Masskc “I"“"
e

e]

* 1994: Andreessen joined with James Clark (Stanford Prof. A . NETSCAPE® [N]
and Silicon Graphics founder) to form Mosaic ‘CRR’,‘&?HH{E&TEQR
Communications Inc. (which became Netscape to avoid Navigator Compaser

Muessenger Collabra
Calendar Netcaster
Conference AutoAdmin
1BM Host On-Demand

conflict with UIUC).

* 1995: Microsoft licensed the original Mosaic from UIUC
and used it to build Internet Explorer.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

H loTtopia Twv Mnxavwyv AvalRTnong
Search Engine Early History: FTP, Archie

» By late 1980’s many files were available by anonymous FTP.

* In 1990, Alan Emtage of McGill Univ. developed Archie (short for
“archives”)

— Assembled lists of files available on many FTP servers.
— Allowed regex search of these filenames.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

Archie Client

= WinSock Archie Client ¥
File Options Help

Search for |P9P | | Search I | AEuad I

Archie Server |archie.doc.ic.ac.uk‘ United Kingdom |£| @ Substring
- | | O Substring [case sensitive])

Domain) Exact

) Begex

O Exact first
Hosts Directonies Files

| [fpub T feee
coombs._anu_edu.au I
ftp.comp.vuw.ac.nz
ftp.cs.uit.no
ftp.cz.umn.edu
ftp.czua.berkeley. edu
ftp.edvz.uni-linz_ac. at
ftp.forthnet.ar

ftp_huji.ac.il
ftp.iastate.edu
ftp.ibp.fr +
File Mame [FILE: pgp
Size 3 bytes
Mode -TWRTWXT-H
D ate 03-Jul-1995 17:19:00
Archie Date 02-Aug-1995 03:08:54

Host Address [18.72.0.3

CS463 - Infc

archie.docic.acuk-7s |Packetd6 of 46 [Queue 1 Time bs

Archie via WWW gateway

= Netscape - [ArchiePlex Results] n o
File Edit ¥Yiew Go Bookmarks Options Directory Help

EE RN EEEE

Location: |http:ﬂ'src.duc.ic.ac.uk.l'archiepIexfurm?query=pgp&type=Case+|nsensitive+3u |

L&

ArchiePlex Results -

Fesults for query 'pep’

Host sunsite.doc.ic.ac.uk

In Directory fcomputingfoperating-systemsfuntzFreeB 2T FreeR 2D - currentsrefuse bindfile/Mlagdir
File pep 548 Sep 2 1994

In Directory fcomputing/operating-systernsfuntgFreeBEDiports- 2. (Wutils
Directoty pgp 512 Feb 12 01:.08

In Directory fpackages
File pgp 25 Sep 29 1992

|

] 5
gl | I
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

H loTtopia Twv Mnxavwyv AvalRTnong
Search Engine Early History: Gopher

* In 1993, Veronica and Jughead were developed to search names of

text files available through Gopher servers.

» Gopheris a menu-driven Internet browser

* Presents users with a hierarchy of items and directories much like
a file system.

— The Gopher interface resembles a file system since a file system is a good
model for organizing documents and services;

— the user sees what amounts to one big networked information system
containing primarily document items, directory items, and search items
(the latter allowing searches for documents across subsets of the information
base).

» Servers return either directory lists or documents.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

H loTtopia Twv Mnxavwyv AvalRTnong
Search Engine Early History: Gopher (ll)

« Each item in a directory is identified by
— a type (the kind of object the item is),
— user-visible name (used to browse and select from listings),

— an opaque selector string (typically containing a pathname used by the
destination host to locate the desired object),

— a host name (which host to contact to obtain this item), and
— an IP port number (the port at which the server process listens for
connections).
» The user only sees the user-visible name. The client software can
locate and retrieve any item by the trio of selector, hosthame, and
port.

» To use a search item, the client submits a query to a special kind of
Gopher server: a search server. In this case, the client sends the
selector string (if any) and the list of words to be matched. The
response Yyields "virtual directory listings" that contain items
matching the search criteria.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

10

Gopher (lll)

* Veronica has three phases that are performed
periodically:

— Harvesting. Collects all the menu entries and file names for all
items in Gopherspace and extracts all the keywords.
Indexing. Creates a searchable index with the keywords
"harvested".

Searching. When you enter a specific keyword, veronica
searches its harvested index and prints out (displays) all the
matching entries and their addresses, thereby providing a list
that you can then search.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 11

&3 Gopher via WWW gateway

BB L Metscape: 0o x
File Edil View Go Communicidor Holp |
T4 € 3 & » @ < & 6 0
|| Dack Forward Relpad Home Search Meticape Print Security Shop Shop

| ™ Bookmarks & Location: !jgoyher ffgophes, te, v edu. 70,11 " 7 @0 What's Related
& Webhall g Radio g People o Vellow Pages o Download o Calendar _§ Channets

Gopher Menu

(] &11 the Gopher Servers in the World
Lﬁ_&e_unh_bu_the_@.nh.e_n_&e_mm_m_thﬂnm
(3 search titles in Gopherzpace uging veronica
() africa

() _Eurcpe

(O International Organizations

(1 Middle East

O pacific

C_Ruzsia

(3 south America

[|_Terminal Based Information

() wals Baged Information

[1_Gopher Server Registraticn

=l] P @ 2|

Try: http://gopher.quux.org:70/Software/Gopher

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 12

H lotopia Twv Mnxavwyv AvaliATnong Tou IoTou

1993: early web robots (else called spiders or robots) were built to
collect URL'’s:

— Wanderer, ALIWEB (Archie-Like Index of the WEB), WWW Worm (indexed
URL’s and titles for regex search)

1994a: Stanford grad students David Filo and Jerry Yang started
manually collecting popular web sites into a topical hierarchy called
Yahoo.

1994b: Brian Pinkerton developed WebCrawler as a class project at U
Wash. (eventually became part of Excite and AOL).

1994c: Fuzzy Maudlin, a grad student at CMU developed Lycos. First
to use a standard IR system as developed for the DARPA Tipster
project. First to index a large set of pages.

1995: DEC developed Altavista. Used a large farm of Alpha machines
to quickly process large numbers of queries. Supported boolean
operators, phrases, and “reverse pointer” queries.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

YaHoO!

altavista'

13

H loTtopia Twv Mnxavwyv Avalitnong Tou loTou

* In 1998, Larry Page and Sergey Brin, Ph.D. students at Stanford,
started Google. Main advance is use of link analysis to rank

results partially based on authority.

Google

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

14

Avaktnon NMAnpo@opiwv atrod Tov loTo:
MpokAnoeig

« Distributed Data: Documents spread over millions of different web
servers.

» Volatile Data: Many documents change or disappear rapidly (e.g.
dead links).
— 23% of pages change daily

— .com pages: 40% change daily, half-life=10 days (in 10 days half of the pages
are gone)

» Large Volume: Billions of separate documents.

» Unstructured and Redundant Data: No uniform structure, HTML
errors, up to 30% (near) duplicate documents.

* Quality of Data: No editorial control, false information, poor quality
writing, typos, spam, etc.

» Heterogeneous Data: Multiple media types (images, video, VRML),
languages, character sets, etc.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 15

Avaktnon lNAnpo@opiwv atro Tov |oTo:
MpokANCEIg Kal ATTAITHOEIG

» Gathering techniques
« Scalable Index Structures efficiently updatable
* Improve the discrimination ability

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 16

Number of Web sites

Total Sites Across All Domains August 1995 - April 2007

114000000 — Hoztnames
102600000 Rt
91200000
79800000
£5400000
57000000

A4TE0000

In February 2007, the
Netcraft Web Server
Survey found
108,810,358 distinct
web sites.

200000
2280000
LA ACacaacpcy

Q

Source: http://news.netcraft.com/archives/web_server_survey.html

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 17

=% Number of Web Pages

The growth of the Web

(in Million pages)

Web pages in the world, February 2007:

« multiplying our estimate of the number of web pages per web site
by Netcraft's February 2007 count of web sites, we arrive at 29.7
billion pages on the World Wide Web as of February 2007.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 18

Number of Web Pages Indexed

Millions of Web Pages Indexed

1,500 —1387

1,250 H

1,000 1000

730 M]

550 50
500 H — — 220 50—

20 |] | o [| B

| =
= o % E & =
[

SearchEngineWatch, Aug. 15, 2001

Assuming about 20KB per page,
1 billion pages is about 20 terabytes of data.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 19
Growth of Web Pages Indexed
Search Engine Sizes
(rmillions of web pages)
1100
1000
o0
200 /
Fon
600 =
00
400 _i'
300 f | 1
200 =] '/‘f'
100 ———— ——
[== ||] | |
SSSSEEEEIS5EE888E8888Es
—_—G FAST —_—AV
— K EX ML
SearchEngineWatch, Aug. 15, 2001
Google lists current number of pages searched.
May 2005: 8 billion pages
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 20

O vopuocg Tou Ziph otov lNaykoouio 1oT1o

O Nouog Tou Ziph yia Ta Keipeva:

* H ouyvornra 1nc i-th mo cuyva sueavilousvnc Aéénc givair 1/i
QOPEC N ouxvoTnNIa 1NC 1TI0 OUXVNAC.
— IMo akpiBég: 1/ érou 6 ueralu 1.5 kai 2

O Nouog Tou Ziph otov lNaykoouio lo1é:

* Number of in-links/out-links to/from a page has a Zipfian
distribution.

— the probability that a node has in-degree i is proportional to 1/i*x, for
some x > 1.

» Length of web pages has a Zipfian distribution.
* Number of hits to a web page has a Zipfian distribution.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

21

Graph structure in the Web (l)

Most (over 90%) of nodes form a single connected component if
links are treated as undirected edges.

This connected web breaks naturally into four pieces.

— (1) The first piece is a central core, all of whose pages can reach one
another along directed links -- this "giant strongly connected component"
(SCC) is at the heart of the web.

— (2) IN consists of pages that can reach the SCC, but cannot be reached from
it

» - possibly new sites that people have not yet discovered and linked to.

— (3) OUT consists of pages that are accessible from the SCC, but do not link
back to it,

* such as corporate websites that contain only internal links.
— (4) TENDRILS contain pages that cannot reach the SCC, and cannot be
reached from the SCC.
Each of the other three sets contain about 44 million pages -- thus,
all four sets have roughly the same size.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

22

Graph Structure of the Web (II)

Central core
56 million pages

http://www?9.org/w9cdrom/160/160.html
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 23

Graph Structure in the Web (lll)

» The diameter of the central core (SCC) is at least 28
« The diameter of the graph as a whole is over 500

+ For randomly chosen source and destination pages, the probability that any path
exists from the source to the destination is only 24%.

« If a directed path exists, its average length will be about 16.

» If an undirected path exists (i.e., links can be followed forwards or backwards),
its average length will be about 6.

* In a sense the web is much like a complicated organism, in which the local
structure at a microscopic scale looks very regular like a biological cell, but the
global structure exhibits interesting morphological structure (body and limbs)
that are not obviously evident in the local structure. Therefore, while it might be
tempting to draw conclusions about the structure of the web graph from a local
picture of it, such conclusions may be misleading.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 24

EUpeon TAnpogopiag atov lNaykoéopuio lo1o

Xeipotrointeg Tacivopieg loTou
(Manual Hierarchical Web Taxonomies)

* Yahoo approach of using human editors to assemble a large
hierarchically structured directory of web pages.
— http://www.yahoo.com/

* Open Directory Project is a similar approach based on the
distributed labor of volunteer editors (“net-citizens provide the
collective brain”). Used by most other search engines. Started by
Netscape.

— http://www.dmoz.org/

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 26

Autopartn Tagivounon 2eAidwv
(Automatic Document Classification)

« Manual classification into a given hierarchy is labor intensive,
subjective, and error-prone.

* Text categorization methods provide a way to automatically
classify documents.

» Best methods based on training a machine learning (pattern
recognition) system on a labeled set of examples (supervised
learning).

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

27

Autouarecg lepapxiec Eyypagpwy
(Automatic Document Hierarchies)

« Manual hierarchy development is labor intensive, subjective, and
error-prone.

* It would nice to automatically construct a meaningful hierarchical
taxonomy from a corpus of documents.

» This is possible with hierarchical text clustering (unsupervised
learning).
— Hierarchical Agglomerative Clustering (HAC)
— Oa uiAnjoouue yia Ouadomoinon (Clustering) os erousvo uabnua

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

28

AvakTtnon lNAnpo@opiwyv otov loTd

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 29
["eviKi Jop@r) evOg EupeTnpiou yia avakTnon TTANPOQOoPIWY aTTd TOV
loTo

» Crawling («épTreIvy)

/ Hyperlinks

: Indexing ltems
W K Ky kj ce Kq From| To
e| d; Cii Coa Ci1 e Gy 42 43
b | d, Cio Co2 Ci2 e Gy
o . d2 |d4
al dif[] Cy Cij “ d4 |d1
e
. dy Cin Con Cin Cen d10 |d20

* Eupernpiaon (Indexing)
Yannis Tzitzikas, U. of Crete, Spring 2007 30

CS463 - Information Retrieval Systems

Tutrol Eupetnpiwy

Tutrol Eupetnpiwv
* Eupempio Kelpévwyv

— M.x. Aveorpaupéva Apxeia (Inverted files), Apxeia KataAAgewv, Apxeia

YT1roypa@uwy (yevika 6,11 €idape oTa TTponyoUuueva YabAuaTa)
» Eupempio Zuvdéopwyv (Link Index)
— connectivity graph of the Web (nodes: pages, edges: links)
— common tasks (find pages that point to page p, find pages pointed by p)
— billion nodes => efficient data structure
» Eupethpio Xpnoipdétntag (Utility Index)
* e.g. Site -> page index, PageRank index, etc
* .(6a piAnooupe yia auté o€ eTOuEVO Uadnua)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

31

Eupetnpiaon lotooeAidwv> Anchor Text Indexing

Mia dla@opd oc oXEon ME QUTA TTOU €XOUME OEl MEXPI TwPA

p1 p2

vector(p2) = <Greek, ... , >

y

» Extract anchor text (between <a> and) of each link followed.
» Anchor text is usually descriptive of the document to which it points.

« Add anchor text to the content of the destination page to provide additional
relevant keyword indices.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

32

Eupetnpiaon lotooeAidwv> Anchor Text Indexing

* Good Examples
— IR Course in Greek
— IBM
* Many times anchor text is not useful:
— E.g. “click here”
— Evil Empire

* Increases content more for popular pages with many in-coming links, increasing
recall of these pages.

* May even give higher weights to tokens from anchor text.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

33

Aiya Aoyia yia to HTTP

HTTP: HyperText Transfer Protocol

HTTP: Hypertext Transfer Protocol

It is an application-level protocol with the lightness and speed necessary for
distributed, collaborative, hypermedia information systems (is has been in use
by the World-Wide Web global information initiative since 1990).

HTTP allows an open-ended set of methods to be used to indicate the purpose
of a request. It builds on the discipline of reference provided by the Uniform
Resource Identifier (URI), as a location (URL) or name (URN), for indicating the
resource on which a method is to be applied. Messages are passed in a format
similar to that used by Internet Mail and the Multipurpose Internet Mail
Extensions (MIME).

HTTP is also used as a generic protocol for communication between user
agents and proxies/gateways to other Internet protocols, such as SMTP, NNTP,
FTP, Gopher, and WAIS, allowing basic hypermedia access to resources
available from diverse applications and simplifying the implementation of user
agents.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 35

HTTP: A request/response protocol

The HTTP protocol is a request/response protocol. A client sends a request to
the server in the form of a request method, URI, and protocol version, followed
by a MIME-like message containing request modifiers, client information, and
possible body content over a connection with a server. The server responds with
a status line, including the message's protocol version and a success or error
code, followed by a MIME-like message containing server information, entity
meta information, and possible entity-body content.

HTTP/0.9: it was a simple protocol for raw data transfer across the Internet (this
was the first version of HTTP)

HTTP/1.0: (as defined by RFC 1945), improved the protocol by allowing
messages to be in the format of MIME-like messages, containing meta
information about the data transferred and modifiers on the request/response
semantics. However, HTTP/1.0 does not sufficiently take into consideration the
effects of hierarchical proxies, caching, the need for persistent connections, or
virtual hosts.

HTTP/1.1: includes more stringent requirements than HTTP/1.0 in order to
ensure reliable implementation of its features.

There is also a Secure HTTP (S-HTTP) specification.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 36

HTTP protocol structure

The request message has the following format:

<Request Line, General header, Request header, Entity header, Message Body>

The Request-Line begins with a method token, followed by the Request-URI and
the protocol version, and ending with CRLF. The elements are separated by SP
characters. No CR or LF is allowed except in the final CRLF sequence. The
details of the general header, request header and entity header could be found
in the reference documents.

The response message has the following format:

<Status Line, General header, Response header, Entity header, Message Body>

The Status-Code element is a 3-digit integer result code of the attempt to
understand and satisfy the request. We will see some codes later on. The
Reason-Phrase is intended to give a short textual description of the Status-
Code. The Status-Code is intended for use by automata and the Reason-Phrase
is intended for the human user. The client is not required to examine or display
the Reason-Phrase. The details of the general header, response header and
entity header could be found in the reference documents.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 37

Examples (HTTP 1.0)

The simplest HTTP message is "GET url", to which the server replies by sending
the named document. If the document doesn't exist, the server will probably
send an HTML-encoded message stating this. | say probably, because this
simple method offers poor error handling and has been deprecated in favor of
the more elaborate scheme outlined below.

A complete HTTP 1.0 message begins "GET url HTTP/1.0". The addition of the
third field indicates that full headers are being used. The client may then send
additional header fields, one per line, terminating the message with a blank link.
The server replies in a similar vein, first with a series of header lines, then a
blank line, then the document proper.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 38

Examples (HTTP 1.0) cont

A sample HTTP 1.0 exchange:

GET / HTTP/1.0>

>

HTTP/1.0 200 OK

Date: Wed, 18 Sep 1996 20:18:59 GMT

Server: Apache/1.0.0

Content-type: text/html

Content-length: 1579

Last-modified: Mon, 22 Jul 1996 22:23:34 GMT

N NN N NN NN

HTML document

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 39

Examples (HTTP 1.0) cont

The use of full headers is preferred for several reasons:

» The first line of a server header includes a response code indicating the success
or failure of the operation.

» One of the server header fields will be Content-type:, which specifies a MIME
type to describe how the document should be interpreted.

» If the document has moved, the server can specify its new location with a
Location: field, allowing the client to transparently retry the request using the
new URL.

* The Authorization: and WWW-Authenticate: fields allow access controls to be
placed on Web documents.

» The Referer: field allows the client to tell the server the URL of the document
that triggered this request, permitting savvy servers to trace clients through a
series of requests.

In addition to GET requests, clients can also send HEAD and POST requests, of
which POSTs are the most important. POSTs are used for HTML forms and
other operations that require the client to transmit a block of data to the server.
After sending the header and the blank line, the client transmits the data. The
header must have included a Content-Length: field, which permits the server to
determine when all the data has been received.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 40

HTTP Status Codes

The status code is a three-digit integer, and the first digit identifies the general category of
response:

* 1xx indicates an informational message only

+ 2xx indicates success of some kind

+ 3xx redirects the client to another URL

* 4xx indicates an error on the client's part

* 5xx indicates an error on the server's part

The most common status codes are:

+ 200 OK

— The request succeeded, and the resulting resource (e.g. file or script output) is returned in the
message body.

* 404 Not Found
— The requested resource doesn't exist.
* 301 Moved Permanently
302 Moved Temporarily
303 See Other (HTTP 1.1 only)

— The resource has moved to another URL (given by the Location: response header), and should
be automatically retrieved by the client. This is often used by a CGI script to redirect the browser
to an existing file.

* 500 Server Error

— An unexpected server error. The most common cause is a server-side script that has bad

syntax, fails, or otherwise can't run correctly.)
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 41

HTTP Error Codes

+ 400 -Bad Request - The request could not be understood by the server due to incorrect
syntax.

* 401 -Unauthorized User - authentication is required.
* 403 - Forbidden - The server understood the request, but is refusing to fulfill it.
* 404 - Page Not Found - The server has not found anything matching the Request-URI.

* 405 - Method Not Allowed - The method specified in the Request-Line is not allowed for
the resource identified by the Request-URI.

* 406 - Not Acceptable - The server cannot generate a response that the requestor is
willing to accept.

* 407 - Proxy Authentication Required - This code is similar to 401 (Unauthorized), but
indicates that the client must first authenticate itself with the proxy.

* 408 - Request Timed Out - The server stopped waiting for a client request.

* 409 - Conflict - The request could not be completed due to a conflict with the current
state of the resource.

* 410 - Gone - The requested resource is no longer available at the server and no
forwarding address is known. This condition is similar to 404, except that the 410 error
condition is expected to be permanent.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 42

HTTP Error Codes

411 - Length Required - The server requires a content-length in the request.

412 - Precondition Failed - The precondition given in one or more of the request-header
fields evaluated to false when it was tested on the server.

413 - Request Entity Too Large - The server is refusing to process a request because
the request entity is larger than the server is willing or able to process.

414 - Request URL Too Long - The server is refusing to service the request because
the Request-URI is longer than the server is willing to interpret.

415 - Unsupported Media Type - The server is refusing to service the request because
the entity of the request is in a format not supported by the requested resource for the
requested method.

500 - Server Error - Internal Web server error

501 - No Server - Function not implemented in Web server software

502 - Server Overload - Bad Gateway; a server being used by this Web server has sent
an invalid response.

503 - Service Unavailable - Service unavailable because of temporary overload or
maintenance.

504 - Gateway Timeout - A server being used by this server has not responded in time.
505 - HTTP Version Not Supported - The server does not support the HTTP protocol
version that was used in the request message.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

43

Manually Experimenting with HTTP

Using telnet, you can open an interactive socket to an HTTP server. This lets you

Then enter your request line by line, like

manually enter a request, and see the response written to your screen. It's a
great help when learning HTTP, to see exactly how a server responds to a
particular request. It also helps when troubleshooting. From a Unix prompt, open
a connection to an HTTP server with something like

telnet www.somehost.com 80
>telnet www.csd.uoc.gr 80

>GET / HTTP/1.0

GET /path/file.html HTTP/1.0 S

[headers here, if any]

[blank line here]

After you finish your request with the blank line, you'll see the raw response from
the server, including the status line, headers, and message body.

From a Unix prompt write
>telnet www.ics.forth.gr 80
>GET http://www.ics.forth.gr/about.html HTTP/1.0

>

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

44

‘EpTTEIV
Crawling/Spidering

(Robots/Bots/Crawlers)

Crawling

H yevikn 16€a:

* Follow all links on these pages recursively to find additional pages.
* Index all novel found pages in an inverted index as they are encountered.
May allow users to directly submit pages to be indexed (and crawled from).

» Start with a comprehensive set of root URL’s from which to start the search.

Kpiolua epwriuara:
» What pages should the crawler download ?
— In most cases it cannot download all, thus we need to prioritize the URLs
* How should the crawler refresh pages?
* How should the load on the visited Web sites by minimized ?
* How should the crawling process be parallelized ?

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

46

Mopery AAyopiBuou Aidoxiong (Spidering Algorithm)

Initialize queue (Q) with initial set of known URL's.
Until Q empty or page or time limit exhausted:
Pop URL, L, from front of Q.
If L is not an HTML page (.gif, .jpeg, .ps, .pdf, .ppt...)
continue loop.
If already visited L, continue loop.
Download page, P, for L.
If cannot download P (e.g. 404 error, robot excluded)
continue loop.
Index P (e.g. add to inverted index or store cached copy).
Parse P to obtain list of new links N.
Append N to the end of Q.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

47

21patnyikEéc Aidoxiong (Crawling Strategies)

* (I) Breadth-first Search
* (IlI) Depth-first Search

* (lll) Importance-first Search
— Topic-directed search
— Link-directed search
— Location-directed search
— Weighted combination of the above

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

48

9 2TpatnyikEg Aidoxiong (Crawling Strategies)

(I) Breadth-first Search

(II) Depth-first Search

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

2TPATNYIKES Aldoxiong: 2UyKpion

* (1) Breadth-first

— explores uniformly outward from the root page but requires memory for all
nodes on the previous level (exponential in depth). Standard spidering
method.

* (Il) Depth-first
— requires memory of only depth times branching-factor (linear in depth)
but gets “lost” pursuing a single thread.

Both strategies implementable using a queue of links (URL’s).
— How new links added to the queue determines search strategy.
— FIFO (append to end of Q) gives breadth-first search.
— LIFO (add to front of Q) gives depth-first search.
— Heuristically ordering the Q gives a “focused crawler” that directs its search
towards “interesting” pages.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

50

Mopery AAyopiBuou Aidoxiong (Spidering Algorithm)

Initialize queue (Q) with initial set of known URL’s.
Until Q empty or page or time limit exhausted:
Pop URL, L, from front of Q.
If L is not an HTML page (.gif, .jpeg, .ps, .pdf, .ppt...)
continue loop.
If already visited L, continue loop.
Download page, P, for L.
If cannot download P (e.g. 404 error, robot excluded)
continue loop.
Index P (e.g. add to inverted index or store cached copy).
Parse P to obtain list of new links N.

__+—Append N to the end of Q. /[=>Breadth First Search)

|

®— Insert N at the beginning of Q // =>Depth First Search)
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

51

(Il Importance-first Search

Objective: Download and index important pages first

Related questions:
(A) What is the meaning of importance ?

(B) How a crawler operates ?
How a crawler guesses good pages to visit ?

(C) How we should refresh pages ?

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

52

(A) What is the meaning of importance ?
(Importance Metrics)

Value(p) = k1 ContentVal(p) + k2 PopularityVal(p) + k3 LocVal(url(p))

» ContentValue(p)
— can be based on a driving query q
— e.g. ContentValue(p)= Cosine(vec(text(p)), q)
— Eivai o BaBudg opoidTNTAG TNG P WE TO q BACEI TOU SIAVUOUATIKOU PHOVTEAOU.

» Notice that idf (inverse document frequency) can be only estimated
— We would know its value if we had downloaded all pages of the Web

— We could call this topic-directed search
* Popularity(p)
— backlink count: e.g. PopularityVal(p)=|{p’ | p’->p }|
— Related to citation count (coming from bibliometrics)
— Again, this can be only estimated (because we have not completed crawling)
— We could call this link-directed search
» LocationValue(url(p))
— e.g. highif “.com”, low if it contains “home”, low if it contains many slashes «/»
— We could call this location-directed search

You could think many other metrics

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 53

(B) How a crawler operates ?
(crawler models of operation)

Design a crawler that if possible visits high importance pages before
lower ranked ones (given an imporance metric).

Crawler models:

» Crawl & Stop
— Starts at its initial page p0 and stops after visiting K pages
— ldeally these should be the K pages with the highest value
+ But this it is again impossible to know (unless downloading the entire Web)
* Crawl & Stop with Threshold

— Starts at its initial page p0 and stops after visiting K pages whose value is
greater than a threshold

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 54

(C) How we should refresh pages ?
Keeping Spidered Pages Up to Date

Web is very dynamic: many new pages, updated pages, deleted
pages, etc.

Periodically check spidered pages for updates and deletions:

— Just look at header info (e.g. META tags on last update) to determine if
page has changed, only reload entire page if needed.

* Kard Tnv emmKoivwvia Je Tov web server utropoupue va XPenOoIUOTIOINCOUNE TO TV
emke@aAida (header) If-Modified-Since £1o1 woTe edv n oeAida dev £xel
aAAGEEL, va unv TNV «kateRaoel» o crawler.

Track how often each page is updated and preferentially return to
pages which are historically more dynamic.

Preferentially update pages that are accessed more often to
optimize freshness of more popular pages.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 55

Avoiding Page Duplication

Must detect when revisiting a page that has already been spidered
(web is a graph not a tree).

Must efficiently index visited pages to allow rapid recognition test.
— Tree indexing (e.g. trie)

— Hashtable

Index page using URL as a key.

— Must canonicalize URL'’s (e.g. delete ending “/”)

— Not detect duplicated or mirrored pages.

Index page using textual content as a key.

— Requires first downloading page.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 56

URL Syntax and Link Extraction

URL Syntax
— <scheme>://<authority><path>?<query>#<fragment>
— An authority has the syntax:
¢ <host>:<port-number>
— A query passes variable values from an HTML form and has the syntax:
» <variable>=<value>&<variable>=<value>...

— A fragment is also called a reference or a ref and is a pointer within the document to
a point specified by an anchor tag of the form:

* <A NAME="<fragment>">

Link Extraction
— Must find all links in a page and extract URLs.

— Must complete relative URL’s using current page URL:

* to http://www.csd.uoc.gr/~hy463/project
* to http://www.csd.uoc.gr/~hy463/index.html

— BASE tag in the header section of an HTML file changes the base URL for
all relative pointers:
+ <BASE HREF="“<base-URL>">

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 57

KavovikoTtroinon 2uvOiouwy
(Link Normalization)

Equivalent variations of ending directory normalized by removing
ending slash.

— http://www.csd.uoc.gr/~hy463/

— http://www.csd.uoc.gr/~hy463

Internal page fragments (ref's) removed:
— http://www.csd.uoc.gr/~hy463/index.html
— http://lwww.csd.uoc.gr/~hy463/index.html#grades

http://WWW.cSd.uoc.gR:80/ equiv with http://www.csd.uoc.gr:

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 58

Link Extraction in Java

« Java Swing contains an HTML parser.

* In HandleStartTag, if it is an “A” tag, take the HREF attribute value as an initial
URL.

* Complete the URL using the base URL.:
— new URL(URL baseURL, String relativeURL)
— Fails if baseURL ends in a directory name but this is not indicated by a final “/”

— Append a “/” to baseURL if it does not end in a file name with an extension (and
therefore presumably is a directory).

Also:
http://htmlparser.sourceforge.net/javadoc_1_3/org/htmlparser/
parserapplications/LinkExtractor.html

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 59

Restricting Crawling

» Restrict spider to a particular site.

— Remove links to other sites from the queue Q.
* Restrict spider to a particular directory.

— Remove links not in the specified directory.

» Obey page-owner restrictions (robot exclusion).

* Web sites and pages can specify that robots should not
crawl/index certain areas.
* Two ways:

— Robots Exclusion Protocol: Site wide specification of excluded
directories.

— Robots META Tag: Individual document tag to exclude indexing or
following links.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 60

Robots Exclusion Protocol

« Site administrator puts a “robots.txt” file at the root of the host’s
web directory.

— www.enet.gr/robots.txt
— http://www.cnn.com/robots.txt

* File is a list of excluded directories for a given robot (user-agent).
— Exclude all robots from the entire site:

User-agent: *
Disallow: /

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 61

Robot Exclusion Protocol Examples

» Exclude specific directories: « Some Details
User-agent: * — Only use blank lines to separate
Disallow: /tmp/ different User-agent disallowed
Disallow: /cgi-bin/ directories.
Disallow: /Zusers/paranoid/ — One directory per “Disallow” line.
- Exclude a specific robot: — No regex patterns in directories.

User-agent: GoogleBot
Disallow: /

» Allow a specific robot:

AciTe:
www.enet.gr/robots.txt:
User-agent: *

Disallow: /past/
Disallow: /online/

User-agent: GoogleBot
Disallow:

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 62

http://www.cnn.com/robots.txt

User-agent: *
Disallow:
Disallow:
Disallow:
Disallow:
Disallow:
Disallow:
Disallow:
Disallow:
Disallow:
Disallow:
Disallow:
Disallow:
Disallow:
Disallow:
Disallow:
Disallow:
Disallow:

/cgi-bin

/ITRANSCRIPTS

/development

/third

/beta

/java

/shockwave

/JOBS

pr

/Interactive

/alt_index.html

/webmaster_logs

/newscenter
[virtual
/DIGEST
/IQUICKNEWS
/SEARCH

CS463 - Information Retrieval Systems

User-agent:Mozilla/3.01 (hotwired-
test/0.1)

Disallow: /cgi-bin
Disallow: /TRANSCRIPTS
Disallow: /development
Disallow: /third

Disallow: /beta

Disallow: /java

Disallow: /shockwave
Disallow: /JOBS
Disallow: /pr

Disallow: /Interactive
Disallow: /alt_index.html
Disallow: /webmaster_logs
Disallow: /newscenter
Disallow: Jvirtual
Disallow: /DIGEST
Disallow: /QUICKNEWS
Disallow: /SEARCH

User-agent: GoogleBot
Disallow: /cgi-bin
Disallow: /java

Disallow: /images
Disallow: /development
Disallow: /third

Disallow: /beta

Disallow: /webmaster_logs
Disallow: /virtual

Disallow: /shockwave
Disallow: /TRANSCRIPTS
Disallow: /newscenter
Disallow: /virtual
Disallow: /DIGEST
Disallow: /QUICKNEWS
Disallow: /SEARCH
Disallow: /alt_index.html

Yannis Tzitzikas, U. of Crete, Spring 2007

63

Robots META Tag

* Include META tag in HEAD section of a specific HTML document.

— <meta name=“robots” content="none”>

« Content value is a pair of values for two aspects:
— index | noindex: Allow/disallow indexing of this page.
— follow | nofollow: Allow/disallow following links on this page.

» Special values:

— all = index,follow

— none = noindex,nofollow
 Examples:

<meta name="“robots” content="noindex,follow”>

<meta name="“robots” content="index,nofollow”>
<meta name="“robots” content="none”>

CS463 - Information Retrieval Systems

Yannis Tzitzikas, U. of Crete, Spring 2007

64

Robot Exclusion Issues

 META tag is newer and less well-adopted than “robots.txt”.
« Standards are conventions to be followed by “good robots.”

» Companies have been prosecuted for “disobeying” these
conventions and “trespassing” on private cyberspace.

» “Good robots” also try not to “hammer” individual sites with lots of
rapid requests.
— “Denial of service” attack.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

65

[MoAuvnuartikog EptruoTrc (Multi-Threaded Crawling)

» Bottleneck is network delay in downloading individual pages.

« Best to have multiple threads running in parallel each requesting a
page from a different host.

» Distribute URL’s to threads to guarantee equitable distribution of
requests across different hosts to maximize throughput and avoid
overloading any single server.

» Early Google spider had multiple co-ordinated crawlers with about
300 threads each, together able to download over 100 pages per
second.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

66

A1ro0nkn ZeAidwyv (Page Repository)

Objective
— for storing pages downloaded by crawler
— provide a fast API for indexer

Challenges

— scalability

» seamlessly distribute the repository across a cluster of computers and disks
— one computer is not enough

— dual access mode

* random access: retrieve quickly a specific page (given its id)

» streaming access: retrieve quickly the entire set or a subset (e.g. all .edu) pages
— large bulk updates

* high rate of modifications (additions/deletions of pages, read vs. write accesses)
— obsolete pages

» detect and remove obsolete pages

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 67

2. xe01aCovTag pia Katavepnuévn AodiRkn ZeAidwyv
(Distributed Page Repository)

(A) Page distribution across nodes
— Uniform (all nodes are treated identically)

— Hash distribution policy
+ allocation of pages to nodes depends on the page identifier (URL)
(B) Physical page organization within a single node
— Operations to support (page addition/insertion, high speed streaming,random page
access)
Hash-based organization
+ treats a disk as a set of hash buckets each of which is small to fit in memory
* pages are allocated to buckets depending on their URL
Log-based organization

* incoming pages are appended. Random access is supported using a separate B-
tree index

— Hybrid approaches (e.g. Hash-Log organization)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007 68

2 xe01a¢ovTag pia Katavepnuévn AodnRkn ZeAidwyv (1)

(C) Update strategies: Execution Mode

— Steady mode
» crawler runs without any stop
— Batch mode
+ crawler is executed periodically (e.g. twice every month)
» stops by time-limit or by amount of pages found
* Batch mode Partial
— recrawls only a specific set of pages or sites at each execution
Batch mode Complete
— recrawls the entire collection at each execution

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

69

2. xe01adovTag pia Katavepnuévn Aodnkn ZeAidwyv (111)

(C) Update strategies: InPlace vs. Shadowing updates
— In-Place updates

* pages received from the crawler are directly integrated into the repository’s
existing collections (possibly replacing older versions)

— Shadowing

» pages from crawler are stored separately and updates are applied in a separate
step
+ allows separating between update and read accesses

— a single storage node does not have to concurrently handle page addition and page
retrieval

— may degrade the freshness of the repository

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

70

Updates: In-Place vs.
Shadowing (with read and update nodes)

updates reads
—) <= Indexer
updates reads
Crawler =) <= Indexer
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

71

EupeTtnpiaon lotooeAidwv:
Kataokeur) AveoTpapuévou Apxeiou

» For each term with a have a sorted list of locations.
« Extra: we may store if the words appears in bold face, in heading, ...
— Commonly we multiply their weight with a constant
* Building the index
— due to frequent update rate, usually we rebuild the index (incremental updates
perform poorly)
» Partitioning the index
— by pages
» each node is responsible for a disjoint set of pages
— by terms
+ each node is responsible for a disjoint set of terms
— (6a uiAhoouue yia autd o€ emouevo uabnua (Distributed IR))
» Pipelined index build (loading (LAN) preprocessing (CPU) and flushing (DISK)
concurrently

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

72

*W AiapBpwon AIGAeENS

* loTopikA Avadpoun
» Web Challenges and Requirements for IR
« Zipf Law in the Web
e Graph Structure of the Web
* Yahoo/ODP vs Search Engines
— Automatic Document Classification
— Automatic Document Hierarchies
» Crawling/Spidering
— Aidoyion (spidering/crawling)
— Depth/Breadth and Technical Details
— Directed (Topic/Link/...) Spidering
— Multi-Threaded Spidering
« AmoBrkeuon kal Eupetnpiaon ZeAidwv

AiaBaore:
http://groogle.csd.uoc.gr/apache2-default/index.php/Crawler

Searching the Web, A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke and S.
Raghavan, TOIT,2001

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2007

73

