Δομές Ευρετηρίου: Διάρθρωση Διάλεξης

- Εισαγωγή - κίνητρο
- Ανεστραμμένα Αρχεία (Inverted files)
- Δένδρα Καταλήξεων (Suffix trees)
- Αρχεία Υπογραφών (Signature files)
- Σειριακή Αναζήτηση σε Κείμενο (Sequential Text Searching)
- Απάντηση Επερωτήσεων “Ταιριάσματος Προτύπου” (Answering Pattern-Matching Queries)
Signature files (αρχεία υπογραφών)

Κύρια σημεία:
• Δομή ευρετηρίου που βασίζεται στο hashing
• Μικρή χωρική επιβάρυνση (10%-20% του μεγέθους των κειμένων)
• Αναζήτηση = σειριακή αναζήτηση στο αρχείο υπογραφών
• Κατάλληλη για όχι πολύ μεγάλα κείμενα

Συγκεκριμένα

• Χρήση hash function που αντιστοιχεί λέξεις κειμένου σε bit masks των B bits
• Διαμέριση του κειμένου σε blocks των b λέξεων το καθένα
• Bit mask of a block = Bitwise OR of the bits masks of all words in the block
• Bit masks are then concatenated
Text Signature

<table>
<thead>
<tr>
<th>Block 1</th>
<th>Block 2</th>
<th>Block 3</th>
<th>Block 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>This is a text.</td>
<td>A text has many words. Words are made from letters.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signature Function

<table>
<thead>
<tr>
<th>Text</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>text</td>
<td>000101</td>
</tr>
<tr>
<td>many</td>
<td>110000</td>
</tr>
<tr>
<td>words</td>
<td>100100</td>
</tr>
<tr>
<td>made</td>
<td>101101</td>
</tr>
<tr>
<td>letters</td>
<td></td>
</tr>
</tbody>
</table>

\[h(\text{text}) = 000101 \]
\[h(\text{many}) = 110000 \]
\[h(\text{words}) = 100100 \]
\[h(\text{made}) = 001100 \]
\[h(\text{letters}) = 100011 \]

Why Bitwise-OR?

Searching

Let us search for a word \(w \):

1. \(W := h(\text{w}) \) (we hash the word to a bit mask \(W \))

2. Compare \(W \) with all bit masks \(B_i \) of all text blocks
 - If \((W \& B_i = W) \), the text block \(i \) is candidate (may contain the word \(w \))

3. For all candidate text blocks, perform an online traversal to verify that the word \(w \) is actually there
False drops (false hits)

- **False drop**: All bits of the W are set in Bi but the word w is not there

\[w=\text{«words»}, \ h(\text{«words»})=100100 \]

<table>
<thead>
<tr>
<th>Text</th>
<th>Text Signature</th>
<th>Signature Function</th>
</tr>
</thead>
</table>
| This is a text. A text has many words. Words are made from letters. | 000101 110101 100100 101101 | \[h(\text{text})=000101 \]
| \[h(\text{many})=110000 \] \[h(\text{words})=100100 \] \[h(\text{made})=001100 \] \[h(\text{letters})=100001 \] |

Διαμόρφωση (Configuration) υπογραφών

- **Σχεδιαστικοί στόχοι**:
 - Μείωσε την πιθανότητα εμφάνισης false drops
 - Κράτησε το μέγεθος του αρχείου υπογραφών μικρό
 - δεν έχουμε κανένα false drop αν \(b=1 \) και \(B=\log_2(V) \)

- **Παράμετροι**:
 - \(B \) (το μέγεθος των bit mask)
 - \(L \) (\(L<B \)) το πλήθος των bit που είναι 1 (σε κάθε \(h(w) \))

- **The (space)-(false drop probability) tradeoff**:
 - 10% space overhead => 2% false drop probability
 - 20% space overhead => 0.046% false drop probability
Αρχεία Υπογραφών: Άλλες Παρατηρήσεις

• Μέγεθος αρχείου υπογραφών:
 – bit masks of each block plus one pointer for each block
 • (pointing to the corresponding position at the original text)
• Συντήρηση αρχείου υπογραφών:
 – Η προσθήκη/διαγραφή αρχείων αντιμετωπίζεται εύκολα
 • προσθέτονται/διαγράφονται τα αντίστοιχα bit masks

Signature files: Phrase and Proximity Queries

• Good for phrase searches and reasonable proximity queries
 – this is because all the words must be present in a block in order for that
 block to hold the phrase or the proximity query. Hence the OR of all the
 query masks is searched

• Remark:
 – no other patterns (e.g. range queries) can be searched in this scheme
Phrase/Proximity Queries and **Block Boundaries**

q=\(<\text{information retrieval}>)

Text blocks

| Information retrieval |

(πρόβλημα! Μπορούμε όμως να το λύσουμε με επικαλυπτόμενα blocks)

Overlapping blocks

| Information retrieval |

For j-proximity queries

j-1 common words

Δομές Ευρετηρίου: Διάρθρωση Διάλεξης

- Εισαγωγή - κίνητρο
- Inverted files (ανεστραμμένα αρχεία)
- Suffix trees (δένδρα καταλήξεων)
- Signature files (αρχεία υπογραφών)
- **Sequential Text Searching**
- Answering Pattern-Matching Queries
Sequential Text Searching Algorithms

- Brute-Force Algorithm
- Knuth-Morris-Pratt
- Boyer-Moore family
Brute-Force Algorithm

Brute-Force (BF), or sequential text searching:

- **Try all** possible positions in the text. For each position verify whether the pattern matches at that position.

- Since there are $O(n)$ text positions and each one is examined at $O(m)$ worst-case cost, the worst-case of brute-force searching is $O(nm)$.

Naive-String-Matcher(S,P)

```plaintext
n := length(S)
m := length(P)
for i = 0 to n-m do
    if P[1..m] = S[i+1 .. i+m] then
        return "Pattern occurs at position i"
    fi
od
```

The naive string matcher needs **worst case** running time $O((n-m+1) m)$

For $n = 2m$ this is $O(n^2)$

Its **average case** is $O(n)$ (since on random text a mismatch is found after $O(1)$ comparisons on average)

The naive string matcher is not optimal, since string matching can be done in time $O(m + n)$
Knuth-Morris-Pratt & Boyer-Moore

- Πιο γρήγοροι αλγόριθμοι που βασίζονται σε μετακινούμενο (ολισθαίνον) παράθυρο

- Γενική ιδέα:
 - They employ a window of length m which is slid over the text.
 - It is checked whether the text in the window is equal to the pattern (if it is, the window position is reported as a match).
 - Then, the window is shifted forward.

- Οι αλγόριθμοι διαφέρουν στον τρόπο με τον οποίο ελέγχουν και ολισθαίνουν (μετακινούν) το παράθυρο.
• It does not try all window positions as BF does. Instead, it reuses information from previous checks.

Knuth-Morris-Pratt (KMP) [1970]

• The pattern p is preprocessed to build a table called $next$.

• The $next$ table at position j says which is the longest proper prefix of $p[1..j-1]$ which is also a suffix and the characters following prefix and suffix are different.

• Hence $j-next[j]-1$ window positions can be safely skipped if the characters up to $j-1$ matched and the j-th did not.
KMP: the next table

\[\text{next}[j] = \text{longest proper prefix of } p[1..j-1] \text{ which is also a suffix and the characters following prefix and suffix are different} \]

\[
\begin{array}{cccccccccccc}
 j & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
 p[j] & a & b & r & a & c & a & d & a & b & r & a \\
 \text{next}[j] & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 4 \\
\end{array}
\]
KMP: the next table

\[\text{next}[j] = \text{longest proper prefix of } p[1..j-1] \text{ which is also a suffix and the characters following prefix and suffix are different} \]

<table>
<thead>
<tr>
<th>j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p[j])</td>
<td>a</td>
<td>b</td>
<td>r</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>r</td>
<td>a</td>
</tr>
<tr>
<td>(\text{next}[j])</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
KMP: the next table

\[\text{next}[j] = \text{longest proper prefix of } p[1..j-1] \text{ which is also a suffix and the characters following prefix and suffix are different} \]

<table>
<thead>
<tr>
<th>j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[j]</td>
<td>a</td>
<td>b</td>
<td>r</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>r</td>
<td>a</td>
</tr>
</tbody>
</table>

\[\text{next}[j] = \text{longest proper prefix of } p[1..j-1] \text{ which is also a suffix and the characters following prefix and suffix are different} \]

<table>
<thead>
<tr>
<th>j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[j]</td>
<td>a</td>
<td>b</td>
<td>r</td>
<td>a</td>
<td>c</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>r</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{next}[j] = \text{longest proper prefix of } p[1..j-1] \text{ which is also a suffix and the characters following prefix and suffix are different} \]
KMP: the next table

\[\text{next}[j] = \text{longest proper prefix of } p[1..j-1] \text{ which is also a suffix and the characters following prefix and suffix are different} \]

<table>
<thead>
<tr>
<th>(j)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p[j])</td>
<td>a</td>
<td>b</td>
<td>r</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>r</td>
<td>a</td>
</tr>
<tr>
<td>(\text{next}[j])</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

KMP: the next table

\[\text{next}[j] = \text{longest proper prefix of } p[1..j-1] \text{ which is also a suffix and the characters following prefix and suffix are different} \]

<table>
<thead>
<tr>
<th>(j)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p[j])</td>
<td>a</td>
<td>b</td>
<td>r</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>r</td>
<td>a</td>
</tr>
<tr>
<td>(\text{next}[j])</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
KMP: the next table

\[\text{next}[j] = \text{longest proper prefix of } p[1..j-1] \text{ which is also a suffix and the characters following prefix and suffix are different} \]

<table>
<thead>
<tr>
<th>j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[j]</td>
<td>a</td>
<td>b</td>
<td>r</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>r</td>
<td>a</td>
</tr>
<tr>
<td>next[j]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
KMP: the next table

\[
\text{next}[j] = \text{longest proper prefix of } p[1..j-1] \text{ which is also a suffix and the characters following prefix and suffix are different}
\]

<table>
<thead>
<tr>
<th>j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[j]</td>
<td>a</td>
<td>b</td>
<td>r</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>r</td>
<td>a</td>
</tr>
<tr>
<td>next[j]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
Exploiting the next table

\[\text{next}[j] = \text{longest proper prefix of } p[1..j-1] \text{ which is also a suffix and the characters following prefix and suffix are different} \]

\[
\begin{array}{cccccccccccc}
 j & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
p[j] & a & b & r & a & c & a & d & a & b & r & a \\
\text{next}[j] & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 4 \\
j-\text{next}[j]-1 & 0 & 1 & 2 & 3 & 3 & 5 & 5 & 7 & 8 & 9 & 10 & 7 \\
\end{array}
\]

- \(j-\text{next}[j]-1 \) window positions can be safely skipped if the characters up to \(j-1 \) matched and the \(j \)-th did not.

Example: match until 2nd char

\[
\begin{array}{cccccccccccc}
 j & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
p[j] & a & b & r & a & c & a & d & a & b & r & a \\
\text{next}[j] & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 4 \\
j-\text{next}[j]-1 & 0 & 1 & 2 & 3 & 3 & 5 & 5 & 7 & 8 & 9 & 10 & 7 \\
\end{array}
\]

s
\[
\begin{array}{cccccccccccc}
a & a & r & i & c & a & b & r & a & c & a \\
p & a & b & r & a & c & a & d & a & b & r & a \\
a & b & r & a & c & a & d & a & b & r & a \\
1
\end{array}
\]
Example: match until 3rd char

\[
\begin{array}{cccccccccccc}
 j & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
p[j] & a & b & r & a & c & a & d & a & b & r & a \\
next[j] & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 4 \\
j-next[j]-1 & 0 & 1 & 2 & 3 & 3 & 5 & 5 & 7 & 8 & 9 & 10 & 7 \\
\end{array}
\]

Example: match until 7th char

\[
\begin{array}{cccccccccccc}
 j & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
p[j] & a & b & r & a & c & a & d & a & b & r & a \\
next[j] & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 4 \\
j-next[j]-1 & 0 & 1 & 2 & 3 & 3 & 5 & 7 & 8 & 9 & 10 & 7 \\
\end{array}
\]
Example: pattern matched

<table>
<thead>
<tr>
<th>j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[j]</td>
<td>a</td>
<td>b</td>
<td>r</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>r</td>
<td>a</td>
</tr>
<tr>
<td>next[j]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>j-next[j]-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

s
| a | b | r | a | c | a | d | a | b | r | a |

p
| a | b | r | a | c | a | d | a | b | r | a |

j

KMP: Complexity

- Since at each text comparison the window or the text pointer advance by at least one position, the algorithm performs at most $2n$ comparisons (and at least n).

- We shouldn’t however forget the cost for building the next table.

- The overall it is $O(m+n)$

- On average is it not much faster than BF
Finite-Automaton-Matcher

• For every pattern of length m there exists an automaton with $m+1$ states that solves the pattern matching problem.

• *KMP is actually a Finite-Automaton-Matcher*
Finite Automata (επανάληψη)

A deterministic finite automaton \(M \) is a 5-tuple \((Q,q_0,A,\Sigma,\delta) \), where
- \(Q \) is a finite set of states
- \(q_0 \in Q \) is the start state
- \(A \subseteq Q \) is a distinguished set of accepting states
- \(\Sigma \), is a finite input alphabet,
- \(\delta : Q \times \Sigma \rightarrow Q \) is called the transition function of \(M \)

Let \(\varphi : \Sigma \rightarrow Q \) be the final-state function defined as:

For the empty string \(\varepsilon \) we have: \(\varphi(\varepsilon) := q_0 \)

For all \(a \in \Sigma, \ w \in \Sigma^* \) define \(\varphi(wa) := \delta(\varphi(w), a) \)

\(M \) accepts \(w \) if and only if: \(\varphi(w) \in A \)

Example (I)

\(Q \) is a finite set of states
- \(q_0 \in Q \) is the start state
\(Q \) is a set of accepting states
\(\Sigma \) : input alphabet
\(\delta : Q \times \Sigma \rightarrow Q \) : transition function

p=«abba»

input: a b a b a b a b a a
Example (II)

Q is a finite set of states

$q_0 \in Q$ is the start state

Q is a set of accepting states

Σ: input alphabet

δ: $Q \times \Sigma \rightarrow Q$: transition function

<table>
<thead>
<tr>
<th>input</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Example (III)

Q is a finite set of states

$q_0 \in Q$ is the start state

Q is a set of accepting states

Σ: input alphabet

δ: $Q \times \Sigma \rightarrow Q$: transition function

<table>
<thead>
<tr>
<th>input</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
Example (IV)

Q is a finite set of states

$q_0 \in Q$ is the start state

Q is a set of accepting states

Σ: input alphabet

δ: $Q \times \Sigma \rightarrow Q$: transition function

<table>
<thead>
<tr>
<th>input</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Example (V)

Q is a finite set of states

$q_0 \in Q$ is the start state

Q is a set of accepting states

Σ: input alphabet

δ: $Q \times \Sigma \rightarrow Q$: transition function

<table>
<thead>
<tr>
<th>input</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
Example (VI)

Q is a finite set of states
q₀ ∈ Q is the start state
Q is a set of accepting states
Σ: input alphabet
δ: Q × Σ → Q: transition function

<table>
<thead>
<tr>
<th>input</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Example (VII)

Q is a finite set of states
q₀ ∈ Q is the start state
Q is a set of accepting states
Σ: input alphabet
δ: Q × Σ → Q: transition function
Example (VIII)

Q is a finite set of states
q₀ ∈ Q is the start state
Q is a set of accepting states
Σ: input alphabet
δ: Q × Σ → Q: transition function

<table>
<thead>
<tr>
<th>input</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Example (IX)

Q is a finite set of states
q₀ ∈ Q is the start state
Q is a set of accepting states
Σ: input alphabet
δ: Q × Σ → Q: transition function

<table>
<thead>
<tr>
<th>input</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Example (X)

Q is a finite set of states

$q_0 \in Q$ is the start state

Q is a set of accepting states

Σ: input alphabet

$\delta: Q \times \Sigma \rightarrow Q$: transition function

<table>
<thead>
<tr>
<th>input</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Example (XI)

Q is a finite set of states

$q_0 \in Q$ is the start state

Q is a set of accepting states

Σ: input alphabet

$\delta: Q \times \Sigma \rightarrow Q$: transition function

<table>
<thead>
<tr>
<th>input</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
Finite-Automaton-Matcher

For every pattern P of length m there exists an automaton with $m+1$ states that solves the pattern matching problem with the following algorithm:

\[
\text{Finite-Automaton-Matcher}(T,\delta,P)
\]
\[
n := \text{length}(T)
\]
\[
q := 0 \quad // \text{initial state}
\]
\[
\text{for } i = 1 \text{ to } n \text{ do}
\]
\[
q := \delta(q,T[i]) \quad // \text{transition to the next state}
\]
\[
\text{if } q = m \text{ then } // \text{if we reached the state } m
\]
\[
\quad \text{return “Pattern occurs at position ” } i-m
\]
\[
\text{fi}
\]
\[
\text{od}
\]

Computing the Transition Function:
It is actually the idea of KMP
How to Compute the Transition Function?

- Let P_k denote the first k letter string of P (i.e. the prefix of P with length k)

```
Compute-Transition-Function(P, \Sigma)
  m := \text{length}(P)
  for q = 0 to m do
    for each character $a \in \Sigma$ do
      $k := 1 + \min(m, q+1)$
      repeat
        $k := k-1$
        until $P_k$ is a suffix of $P_{qa}$
      $\delta(q,a) := k$
    od
  od
```

Boyer-Moore (BM)
Boyer-Moore (BM) [1975]

- **Motivation**
 - KMP yields genuine benefits only if a mismatch as preceded by a partial match of some length
 - only in this case is the pattern slides more than 1 position
 - Unfortunately, this is the exception rather than the rule
 - mismatches occur much more seldom than mismatches
- **The idea**
 - start comparing characters at the end of the pattern rather than at the beginning
 - like in KMP, a pattern is pre-processed

Boyer-Moore: The idea by an example

Start comparing at the end

First wrong letter! Do a large shift!

What’s this? There is no “a” in the search pattern
We can shift m+1 letters

An “a” again...

Bingo! Do another large shift!

That’s it! 10 letters compared and ready!
Sequential Text Searching

Synopsis

- **Brute Force Algorithm**
 - $O(n^2)$ running time (worst case)
- **KMP ~ Finite Automaton Matcher**
 - Let a (finite) automaton do the job
 - Cost: cost to construct the automaton plus the cost to “consume” the string s
 - $O(m+n)$ running time (worst case)
 - m: for constructing the next table
 - n: for searching the text
- **BM Algorithm**
 - Bad letters allow us to jump through the text
 - Faster in practice
 - $O(nm)$ running time (worst case)
 - $O(n \log(m)/m)$ average time

find the first occurrence (or all occurrences) of a string (or pattern) p (of length m) in a string s (of length n)

Other string searching algorithms

- **Rabin-Karp**
- **Shift-Or (it is sketched in Book)**
- ...
- *and many others*
- ..
Δομές Ευρετηρίου: Διάρθρωση Διάλεξης

- Εισαγωγή - κίνητρο
- Inverted files (ανεστραμμένα αρχεία)
- Suffix trees (δένδρα καταλήξεων)
- Signature files (αρχεία υπογραφών)
- Sequential Text Searching
- **Answering Pattern-Matching Queries**

Answering Pattern Matching Queries

- Searching **Allowing Errors** (Levenshtein distance)
- Searching using **Regular Expressions**
Searching Allowing Errors

- **Δεδομένα:**
 - Ένα κείμενο (string) T, μήκους n
 - Ένα pattern P μήκους m
 - K επιτρεπόμενα σφάλματα

- **Ζητούμενο:**
 - Βρες όλες τις θέσεις του κειμένου όπου το pattern P εμφανίζεται με το πολύ k σφάλματα

Remember: **Edit (Levenstein) Distance:**
Minimum number of character *deletions, additions, or replacements* needed to make two strings equivalent.
- “misspell” to “mispell” is distance 1
- “misspell” to “mistell” is distance 2
- “misspell” to “misspelling” is distance 3

- **Naïve algorithm**
 - Produce all possible strings that could match P (assuming k errors) and search each one of them on T
Searching Allowing Errors: Solution using Dynamic Programming

- Dynamic Programming is the class of algorithms, which includes the most commonly used algorithms in speech and language processing.

- Among them the minimum edit distance algorithm for spelling error correction.

- Intuition:
 - a large problem can be solved by properly combining the solutions to various subproblems.

Searching Allowing Errors: Solution using Dynamic Programming (II)

Problem Statement: $T[n]$ text string, $P[m]$ pattern, k errors

Example: $T = \text{“surgery”}$, $P = \text{“survey”}$, $k=2$

We will use a $m \times n$ matrix C

one row for each char of P, one column for each char of T
T = "surgery", P = "survey", k=2

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>u</th>
<th>r</th>
<th>g</th>
<th>e</th>
<th>r</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C[0,j] := 0 for every column j
(no letter of P has been consumed)
C[i,0] := i for every row i
(i chars of P have been consumed, pointer of T at 0. So i errors (insertions) so far)

C[i,j] := C[i-1,j-1], if P[i]=T[j]
// εγινε match άρα τα "λάθη" ήταν όσα και πριν
Else C[i,j] := 1 + min of:
• C[i-1,j]
 – // i-1 chars consumed P, j chars consumed of T
 – // ~delete a char from T
• C[i,j-1]
 – // i chars consumed P, j-1 chars consumed of T
 – // ~ delete a char from P
• C[i-1,j-1]
 – // i-1 chars consumed P, j-1 chars consumed of T
 – // ~ character replacement
Searching Allowing Errors: Solution using **Dynamic Programming**: Example

- **T** = “surgery”, **P** = “survey”, **k** = 2

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>u</th>
<th>r</th>
<th>g</th>
<th>e</th>
<th>r</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>r</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>v</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>e</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>y</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

P

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>u</th>
<th>r</th>
<th>g</th>
<th>e</th>
<th>r</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>r</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>v</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>e</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>y</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Solution using **Dynamic Programming**: Example

- \(T = \) “surgery”, \(P = \) “survey”, \(k=2 \)

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>u</th>
<th>r</th>
<th>g</th>
<th>e</th>
<th>r</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Solution using **Dynamic Programming**: Example

- \(T = \) “surgery”, \(P = \) “survey”, \(k=2 \)

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>u</th>
<th>r</th>
<th>g</th>
<th>e</th>
<th>r</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Solution using **Dynamic Programming: Example**

- \(T = \text{“surgery”}, \ P = \text{“survey”}, \ k=2 \)

\[
\begin{array}{cccccccc}
\text{T} & & & & & & & \\
& s & u & r & g & e & r & y \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 1 & 0 & 1 & 2 & 2 & 2 & 2 \\
3 & 2 & 1 & 0 & 1 & 2 & 2 & 3 \\
4 & 3 & 2 & 1 & 1 & 2 & 3 & 3 \\
5 & 4 & 3 & 2 & 2 & 1 & 2 & 3 \\
6 & 5 & 4 & 3 & 3 & 2 & 2 & 2 \\
\end{array}
\]

1 +

Solution using **Dynamic Programming: Example**

- \(T = \text{“surgery”}, \ P = \text{“survey”}, \ k=2 \)

\[
\begin{array}{cccccccc}
\text{T} & & & & & & & \\
& s & u & r & g & e & r & y \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 1 & 0 & 1 & 2 & 2 & 2 & 2 \\
3 & 2 & 1 & 0 & 1 & 2 & 2 & 3 \\
4 & 3 & 2 & 1 & 1 & 2 & 3 & 3 \\
5 & 4 & 3 & 2 & 2 & 1 & 2 & 3 \\
6 & 5 & 4 & 3 & 3 & 2 & 2 & 2 \\
\end{array}
\]

1 +

Solution using **Dynamic Programming: Example**

- $T = \text{“surgery”}$, $P = \text{“survey”}$, $k=2$

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>u</th>
<th>r</th>
<th>g</th>
<th>e</th>
<th>r</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>r</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>v</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>e</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>y</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

T

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>u</th>
<th>r</th>
<th>g</th>
<th>e</th>
<th>r</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>r</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>v</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>e</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>y</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

P

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>u</th>
<th>r</th>
<th>g</th>
<th>e</th>
<th>r</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>r</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>v</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>e</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>y</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

$1 + \boxed{}$
Solution using **Dynamic Programming: Example**

- $T = \text{“surgery”}$, $P = \text{“survey”}$, $k=2$

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>u</th>
<th>r</th>
<th>g</th>
<th>e</th>
<th>r</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>r</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>v</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>e</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>y</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Bold entries indicate matching positions.

- **Cost**: $O(mn)$ time where m and n are the lengths of the two strings being compared.
- **Observation**: Η πολυπλοκότητα είναι ανεξάρτητη του k

Solution using **Dynamic Programming: Example**

- $T = \text{“surgery”}$, $P = \text{“survey”}$, $k=2$

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>u</th>
<th>r</th>
<th>g</th>
<th>e</th>
<th>r</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>r</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>v</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>e</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>y</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

- **Cost**: $O(mn)$ time where m and n are the lengths of the two strings being compared.
- **$O(m)$ space** as we need to keep only the previous column stored
Searching Allowing Errors
Solution with a Nondeterministic Automaton

- At each iteration, a new text character is read and automaton changes its state.

- Every row denotes the number of errors seen
 - (0 for the first row, 1 for the second, and so on)
- Every column represents matching to pattern up to a given position.
Searching Allowing Errors: Solution with a Nondeterministic Automaton

- **Horizontal** arrows represent matching a document.
- **Vertical** arrows represent insertions into pattern
- **Solid diagonal** arrows represent replacements (they are unlabelled: this means that they match any character)
- **Dashed diagonal** arrows represent deletion in the pattern (ε: empty).

Search time is $O(n)$
- άρα η μέθοδος αυτή είναι πιο αποδοτική από την τεχνική με δυναμικό προγραμματισμό (που ήταν $O(mn)$)
- However, if we convert NDFA into a DFA then it will be huge in size
 - An alternative solution is **BIT-Parallelism**
Searching using Regular Expressions

Classical Approach
(a) Build a ND Automaton
(b) Convert this automaton to deterministic form

(a) Build a ND Automaton
Size $O(m)$ where m the size of the regular expression

$\pi.\chi.\ \text{regex} = b\ b^* (b\ |\ b^*\ a)$
Searching using **Regular Expressions (II)**

(b) Convert this automaton to deterministic form

- It can search any regular expression in \(O(n)\) time where \(n\) the size of text
- However, its size and construction time can be exponential in \(m\), i.e. \(O(m 2^m)\).

\[
 b b^* (b | b^* a) = (b b^* b | b b^* b^* a) = (b b b^* | b b^* a)
\]

Bit-Parallelism to avoid constructing the deterministic automaton (NFA Simulation)

Pattern Marching Queries

and **Index Structures**
Pattern Matching Using **Inverted Files**

- Previously, we learned how to evaluate queries with criteria such as Edit Distance, RegExpr, by referring to the documents.
- What do we do if we already have an Inverted File?
 - Search the Dictionary, not the documents (much smaller in size)
 - Find the words that match
 - Merge the occurrence lists of the matching words.

- If **block addressing** is used, the search must be completed with a sequential search over the blocks.

- Technique of inverted files is not able to efficiently find approximate matches or regular expressions that span many words.

<table>
<thead>
<tr>
<th>Index terms</th>
<th>3</th>
<th>D₇, 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>computer</td>
<td>3</td>
<td>D₁, 3</td>
</tr>
<tr>
<td>database</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>science</td>
<td>4</td>
<td>D₃, 4</td>
</tr>
<tr>
<td>system</td>
<td>1</td>
<td>D₄, 2</td>
</tr>
</tbody>
</table>

Pattern Matching Using **Suffix Trees**

- What do we do if we already have a Suffix Tree?
- We can evaluate the queries at this point, instead of the documents;

Suffix Trie

- If block addressing is used, the search must be completed with a sequential search over the blocks.
- Technique of inverted files is not able to efficiently find approximate matches or regular expressions that span many words.

<table>
<thead>
<tr>
<th>Index terms</th>
<th>3</th>
<th>D₇, 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>computer</td>
<td>3</td>
<td>D₁, 3</td>
</tr>
<tr>
<td>database</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>science</td>
<td>4</td>
<td>D₃, 4</td>
</tr>
<tr>
<td>system</td>
<td>1</td>
<td>D₄, 2</td>
</tr>
</tbody>
</table>

Suffix Trie
If the suffix trees index all text positions (not just word beginnings) it can search for words, prefixes, suffixes and sub-strings with the same search algorithm and cost described for word search.

Indexing all text positions normally makes the suffix array size 10 times or more the text size.

Pattern Matching Using **Suffix Trees (II)**

- Range queries are easily solved by just searching both extremes in the trie and then collecting all the leaves lie in the middle.

“letter” < q < “many”
Pattern Matching Using **Suffix Trees (IV)**

- **Regular expressions** can be searched in the suffix tree. The algorithm simply simulates sequential searching of the regular expression

\[q = ma^* \]

Doméς Ευρετηρίου: Διάρθρωση Διάλεξης

- Εισαγωγή - κίνητρο
- Inverted files (ανεστραμμένα αρχεία)
- Suffix trees (δένδρα καταλήξεων)
- Signature files (αρχεία υπογραφών)
- Sequential Text Searching
- Answering Pattern-Matching Queries
 - directly on documents
 - Searching Allowing Errors
 - Searching using Regular Expressions
 - on indices (inverted files and suffix trees)
References

• Some slides were based on the slides of
 – Christian Schindelhauer (University of Paderborn)

• A recent software package that implements several string matching algorithm
 – http://flamingo.ics.uci.edu/releases/1.0/