MavemoTtipio Kpntng, Turiua EmoTtAung YmoAoyiotwy
Avoign 2006

HY463 - Zuatipara Avaktnang MAnpogopiwv
Information Retrieval (IR) Systems

Web Searching

I: History and Basic Notions, Crawling
IT: Link Analysis Techniques
IIT: Web Spam Page Identification

Mavvng TEiT¢ikag

Aidhegn 1 7-8-9
Huepopnvia : 17-22-24 / 3 / 2006

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

AlapBpwon AldAeEng |

« loTopikA Avadpour
* Avakrtnon MAnpogopiwyv arméd Tov 1oTd: MpokAAoelg kal ATTAITACEIG
« O vépog Tou Zipf kai o loTég
« H dopn Tou ypdgou Tou laTou
« Katdhoyor (Yahoo/ODP) évavti Mnxavwy AvaZitnong
— Automatic Document Classification
— Automatic Document Hierarchies
« ‘'Eptreiv (Crawling/Spidering)
— Aidoyion (spidering/crawling)
— Depth/Breadth and Technical Details
— Directed (Topic/Link/...) Spidering
— Multi-Threaded Spidering
« AmoBnkeuon kai Eupetnpiaon ZeAidwv

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

MpoicTopia

* 1965:

— O Ted Nelson cuvéAaBe kal avéTTTuge
TNV 18éa Tou utrepkeipévou (hypertext

* T€An dekaeTiag 60:
— O Doug Engelbart emvénoe 1o TrovTiki
KOI TTPWTOG UAOTTOINTE TO UTTEPKEINEVO.

* 1970’s:
— Avarrugn tou ARPANET

Apa ol 16¢€6 Kail n Baaglkr) Texvoloyia utrrpxe atré 1o 70. ‘Empete va
£pBe1 n emmoxn Twv PC kai TG eupeiag aAAnAoouvdeong yia va
EUTTVEUGTOUNE KOl va @TIaEoupe Tov Maykoéopio 10T6.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

To Maykéouiog lotog (the World Wide Web)

- o

1990: AvaTtrtuxenke armo Tov Tim Berners-Lee (oto CERN) yia Tnv opyavwon Twv
EPEUVNTIKWY £YYpaQwY TTou fTav diabéoiya ato AladikTuo

— AvémTuée 1o TTpwtékoAo HTTP, 6pioe Ta URLs kai Tn yAwooa HTML, kai uhoTroinoe
TOoV TTPWTO “web server.”

— ZuvOuaouA4G 2 IBEWV:
— 'Eyypdowv diabéoipwy pe FTP
— AlooUvdeon eyypa@wy (UTTEPKEIPEVO)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

H loTopia Twv MAonyntwv (Web Browsers)

» Early browsers were developed in 1992
— Erwise, ViolaWWWwW

* In 1993, Marc Andreessen and Eric Bina at
UIUC NCSA developed the Mosaic browser
and distributed it widely.

* 1994: Andreessen joined with James Clark
(Stanford Prof. and Silicon Graphics founder) to
form Mosaic Communications Inc. (which
became Netscape to avoid conflict with UIUC).

» 1995: Microsoft licensed the original Mosaic
from UIUC and used it to build Internet
Explorer.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

H loTopia Twv Mnxavwyv AvalAtnong
Search Engine Early History: FTP, Archie

+ By late 1980’s many files were available by anonymous FTP.

* In 1990, Alan Emtage of McGill Univ. developed Archie (short for
“archives”)

— Assembled lists of files available on many FTP servers.
— Allowed regex search of these filenames.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

Archie Client

WinSock Archie Cliemt

Flle Optionz Help

Semchior [P0

Archie Seryer | 2chin o ic ac.uk-

I Lo |
[#] ® Substiing

) Substing [gaze serastive)
= O

United Kirydum

Domain [

Dyoctones Fdaz

[FILE: pgp

Sire [3 bytes

Mude: P
Date 03-Jul-1535 17.13.00
Auchie Date |02 1995 03.08: 54

Host Addiess [10.72.0.3

CS463 - Infc

archer Gocic acuk- 7% Packal % ol 46 |Ougue 1 [Twne 5%

7

Archie via WWW gateway

= Metscape - [ArchiePlex Hesults]
Clle Edit View Go Dookmarks Options Directory Help

]@-!w!a! !@iu,-lm!&!ﬁ! :|

Lecation: | hitp:fsre.doc.ie.ac.ukfarchieplexdormTquery=pgpitype=CazeInsensithe 1 Su iﬁ

ArchiePlex Results .

Results for query ‘pgp’

Host sunsite.doc.ic.ac.uk

In Directory feomputingfoperating systemahunis
File pep 548 Sep 21994

In Directory {Fs
Threctary pap 512 Feb 12 0108

In Directory fouckuges
File pip 25 Sep 29 1993

sl I
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 8

H loTopia Twv Mnxavwyv AvalATnong
Search Engine Early History: Gopher

In 1993, Veronica and Jughead were developed to search
names of text files available through Gopher servers.

Gopher is a menu-driven Internet browser

Presents users with a hierarchy of items and directories much like
a file system.

— The Gopher interface resembles a file system since a file system is a good
model for organizing documents and services;

— the user sees what amounts to one big networked information system
containing primarily document items, directory items, and search items
(the latter allowing searches for documents across subsets of the information
base).

Servers return either directory lists or documents.

H loTtopia Twv Mnxavwyv AvalATtnong
Search Engine Early History: Gopher (II)

» Each item in a directory is identified by
— atype (the kind of object the item is),
— user-visible name (used to browse and select from listings),
— an opaque selector string (typically containing a pathname used by the

destination host to locate the desired object),
— a host name (which host to contact to obtain this item), and

— an IP port number (the port at which the server process listens for
connections).

» The user only sees the user-visible name. The client software can
locate and retrieve any item by the trio of selector, hostname, and
port.

» To use a search item, the client submits a query to a special kind of
Gopher server: a search server. In this case, the client sends the
selector string (if any) and the list of words to be matched. The
response yields "virtual directory listings" that contain items
matching the search criteria.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 9 CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 10
Gopher (111) Gopher via WWW gateway
* Veronica has three phases that are performed | ¥ A A =
. . e T S R T AT o A e b |
periodically: [e e e o s e e
i i . Gopher Menu
— Harvesting. Collects all the menu entries and file names for all e
items in Gopherspace and extracts all the keywords. wm%m“‘“
Indexing. Creates a searchable index with the keywords =
"harvested". Erpre s
Searching. When you enter a specific keyword, veronica S
searches its harvested index and prints out (displays) all the Coooitnessica
matching entries and their addresses, thereby providing a list B
that you can then search.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

Try: http://gopher.quux.org:70/Software/Gopher

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 12

H loTopia Twv Mnxavwyv AvagitTnong Tou loTou

+ 1993: early web robots (else called spiders or robots) were built to
collect URL’s:

— Wanderer, ALIWEB (Archie-Like Index of the WEB), WWW Worm (indexed
URL'’s and titles for regex search)

* 1994a: Stanford grad students David Filo and Jerry Yang started
manually collecting popular web sites into a topical hierarchy called
Yahoo.

* 1994b: Brian Pinkerton developed WebCrawler as a class project at U

Wash. (eventually became part of Excite and AOL).

1994c: Fuzzy Maudlin, a grad student at CMU developed Lycos. First

to use a standard IR system as developed for the DARPA Tipster

project. First to index a large set of pages.

1995: DEC developed Altavista. Used a large farm of Alpha machines

to quickly process large numbers of queries. Supported boolean

operators, phrases, and “reverse pointer” queries.

altavista

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 13

H loTopia Twv Mnxavwyv AvalitTnong Tou loTou

* In 1998, Larry Page and Sergey Brin, Ph.D. students at Stanford,
started Google. Main advance is use of link analysis to rank
results partially based on authority.

Google

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 14

AvdakTtnon MAnpogopiwv atod Tov loTo:
MpokAnoeig

» Distributed Data: Documents spread over millions of different web
servers.
» Volatile Data: Many documents change or disappear rapidly (e.g.
dead links).
— 23% of pages change daily
— .com pages: 40% change daily, half-life=10 days (in 10 days half of the pages
are gone)
» Large Volume: Billions of separate documents.
» Unstructured and Redundant Data: No uniform structure, HTML
errors, up to 30% (near) duplicate documents.
+ Quality of Data: No editorial control, false information, poor quality
writing, typos, spam, etc.
» Heterogeneous Data: Multiple media types (images, video, VRML),
languages, character sets, etc.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 15

AvakTtnon MNMAnpogopiwyv ato Tov 1oTo:
MpokANoeIg Kal ATTAITAOEIG

* Gathering techniques
« Scalable Index Structures efficiently updatable
* Improve the discrimination ability

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 16

Number of Web Servers

MNumber Servers

i3S

CS463 - Info 17

=% Number of Web Pages

The growth of the Web

fin Million pages)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 18

Number of Web Pages Indexed

Millions of Web Pages Indexed
1,500 —1387

1,250

1,000

1000

s00
500 380—— 35—
® |] e W
0

z £ & =

B 7 K]
SearchEngineWatch, Aug. 15, 2001

Assuming about 20KB per page,
1 billion pages is about 20 terabytes of data.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

Growth of Web Pages Indexed

Search Engine Sizes
(millions of web pages)

1295
3406
696
996

12/36
397
697
2497

1237
398
698
393

12/38
399
699
9/99

12/58
M0
G0
00

1200
31
601

—_—GG FAST —AV
—IE —EX WL
SearchEngineWatch, Aug. 15, 2001

Google lists current number of pages searched.
May 2005: 8 billion pages

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 20

O vépuog Tou Ziph aTtov MNaykdopyio 016

O Noépog Tou Ziph yia Ta keipeva:

* H ouxvdrnra 1ng i-th mo ouxva supavilouevng Aééng givar 1/i
QOPEC N ouxvOTNTA TNE TTIO GUXVAC.
— [io akpiBég: 1/i° 6mrou O ueraéu 1.5 kai 2

O Noépog Tou Ziph oTtov Naykéopio 1016:

* Number of in-links/out-links to/from a page has a Zipfian
distribution.

— the probability that a node has in-degree i is proportional to 1/i*x, for
some x> 1.

« Length of web pages has a Zipfian distribution.
* Number of hits to a web page has a Zipfian distribution.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

Graph structure in the Web (1)

* Most (over 90%) of nodes form a single connected component if
links are treated as undirected edges.
» This connected web breaks naturally into four pieces.

— (1) The first piece is a central core, all of whose pages can reach one
another along directed links -- this "giant strongly connected component"
(SCC) is at the heart of the web.

— (2) IN consists of pages that can reach the SCC, but cannot be reached from
it

« - possibly new sites that people have not yet discovered and linked to.

— (3) OUT consists of pages that are accessible from the SCC, but do not link
back to it,

« such as corporate websites that contain only internal links.
— (4) TENDRILS contain pages that cannot reach the SCC, and cannot be
reached from the SCC.
» Each of the other three sets contain about 44 million pages -- thus,
all four sets have roughly the same size.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 22

Graph Structure of the Web (1)

Caniral gome

t
56 midlion pages /4t million pagas

L)
s s
- [t milon pages)

http://www9.org/w9cdrom/160/160.html

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

Graph Structure in the Web (lll)

« The diameter of the central core (SCC) is at least 28

« The diameter of the graph as a whole is over 500

« For randomly chosen source and destination pages, the probability that any path
exists from the source to the destination is only 24%.

« If a directed path exists, its average length will be about 16.

« If an undirected path exists (i.e., links can be followed forwards or backwards),
its average length will be about 6.

« In a sense the web is much like a complicated organism, in which the local
structure at a microscopic scale looks very regular like a biological cell, but the
global structure exhibits interesting morphological structure (body and limbs)
that are not obviously evident in the local structure. Therefore, while it might be
tempting to draw conclusions about the structure of the web graph from a local
picture of it, such conclusions may be misleading.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 24

EUpeon mAnpogopiag atov Maykdéopio loTtd

B3 XecipotroinTeg Taglvouieg loTou
(Manual Hierarchical Web Taxonomies)

» Yahoo approach of using human editors to assemble a large
hierarchically structured directory of web pages.
— http://www.yahoo.com/

» Open Directory Project is a similar approach based on the
distributed labor of volunteer editors (“net-citizens provide the
collective brain”). Used by most other search engines. Started by
Netscape.

— http://www.dmoz.org/

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 26

(B3 Autopartn Tagivounon ZeAidwv
(Automatic Document Classification)

» Manual classification into a given hierarchy is labor intensive,
subjective, and error-prone.

» Text categorization methods provide a way to automatically
classify documents.

» Best methods based on training a machine learning (pattern
recognition) system on a labeled set of examples (supervised
learning).

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

AuTtouareg lepapyieg Eyypaowyv

(Automatic Document Hierarchies)

* Manual hierarchy development is labor intensive, subjective, and
error-prone.

* It would nice to automatically construct a meaningful hierarchical
taxonomy from a corpus of documents.

» This is possible with hierarchical text clustering (unsupervised
learning).
— Hierarchical Agglomerative Clustering (HAC)
— Oa piAjooupe yia Ouadorroinan (Clustering) o€ eméuevo uabnua

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 28

Avdktnon MNMAnpogopiwv oTov IoTd

1. Pagel
2. Page2
3. Page3

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

IevikA Hopen evog Eupetnpiou yia avakTnon TTAnpo@opiwy atéd Tov
loTto

* Crawling («€pTreivy)

Indexing Items
w kz . S e t From| To
e CZ,l e Ci,l e Ct,l d2 |d3
b Cp -+ Gy ... Gy
o o ce d2 |d4
2 Cai i G d4 |d1
2 Cn oo Gin o -ee Gy d10 |d20

Eupetnpiaon (Indexing)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 30

Crawling/Spidering

Spiders (Robots/Bots/Crawlers)

» Start with a comprehensive set of root URL’s from which to start
the search.

* Follow all links on these pages recursively to find additional
pages.

* Index all novel found pages in an inverted index as they are
encountered.

» May allow users to directly submit pages to be indexed (and
crawled from).

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 32

AAy6pIBuog Aidoxiong (Spidering Algorithm)

Initialize queue (Q) with initial set of known URL’s.
Until Q empty or page or time limit exhausted:
Pop URL, L, from front of Q.
If L is not an HTML page (.gif, .jpeg, .ps, .pdf, .ppt...)
continue loop.
If already visited L, continue loop.
Download page, P, for L.
If cannot download P (e.g. 404 error, robot excluded)
continue loop.
Index P (e.g. add to inverted index or store cached copy).
Parse P to obtain list of new links N.
Append N to the end of Q.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

Crawling: ZXeTIKG ZnTrApoTa

What pages should the crawler download ?
— In most cases it cannot download all, thus we need to prioritize the URLs

How should the crawler refresh pages?
How should the load on the visited Web sites by minimized ?
How should the crawling process be parallelized ?

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 34

21patnyikég Aidoxiong (Crawling)

» (I) Breadth-first Search
* (ll) Depth-first Search
* (lll) Importance-first Search
— Topic-directed search
— Link-directed search
— Location-directed search
— Weighted combination of the above

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 36

Crawling Strategy Trade-Off's

* (I) Breadth-first
— explores uniformly outward from the root page but requires memory of all
nodes on the previous level (exponential in depth). Standard spidering
method.
* (Il) Depth-first
— requires memory of only depth times branching-factor (linear in depth)
but gets “lost” pursuing a single thread.
Both strategies implementable using a queue of links (URL’s).
— How new links added to the queue determines search strategy.
FIFO (append to end of Q) gives breadth-first search.
— LIFO (add to front of Q) gives depth-first search.

Heuristically ordering the Q gives a “focused crawler” that directs its search
towards “interesting” pages.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

AAy6pI1Buog Aidoxiong (Spidering Algorithm)

CS463 - Information Retrieval Systems

1+ Append N to the end of Q.

Initialize queue (Q) with initial set of known URL's.
Until Q empty or page or time limit exhausted:
Pop URL, L, from front of Q.
If L is not an HTML page (.gif, .jpeg, .ps, .pdf, .ppt...)
continue loop.
If already visited L, continue loop.
Download page, P, for L.
If cannot download P (e.g. 404 error, robot excluded)
continue loop.
Index P (e.g. add to inverted index or store cached copy).
Parse P to obtain list of new links N.
/I =>Breadth First Search)
— Insert N at the beginning of Q // =>Depth First Search)

Yannis Tzitzikas, U. of Crete, Spring 2006 38

(1) Importance-first Search

» Objective: Download and index important pages first

* Questions:
— A/ What is the meaning of importance ?
— B/ How a crawler operates ?
* How a crawler guesses good pages to visit ?
— C/ How we should refresh pages ?

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

A/ What is the meaning of importance ?
(Importance Metrics)

Value(p) = k1 ContentVal(p) + k2 PopularityVal(p) + k3 LocVal(url(p))
ContentValue(p)
— can be based on a driving query q
— e.g. ContentValue(p)= Cosine(vec(text(p)), q)
— Notice that idf (inverse document frequency) can be only estimated
* We would know its value if we had downloaded all pages of the Web
— We could call this topic-directed search
Popularity(p)
— backlink count: |{p’|p'->p}|
— Related to citation count (coming from bibliometrics)
— Again, this can be only estimated
— We could call this link-directed search
LocationValue(url(p))
— e.g. highif “.com”, low if it contains “home”, low if it contains many slashes «/»

— We could call this /ocation-directed search

CS463 - Information Retrieval Systems

1 You could think many other metrics

Yannis Tzitzikas, U. of Crete, Spring 2006 40

B/ How a crawler operates ?
(crawler models)

Design a crawler that if possible visits high importance pages before
lower ranked ones (given an imporance metric).

Crawler models:
* Crawl & Stop
— Starts at its initial page p0 and stops after visiting K pages
— Ideally these should be the K pages with the highest value
« But this it is again impossible to know (unless downloading the entire Web)
» Crawl & Stop with Threshold

— Starts at its initial page p0 and stops after visiting K pages whose value is
greater than a threshold

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

4

(C) Page Refresh
Keeping Spidered Pages Up to Date

CS463 - Information Retrieval Systems

Web is very dynamic: many new pages, updated pages, deleted
pages, etc.

Periodically check spidered pages for updates and deletions:

— Just look at header info (e.g. META tags on last update) to determine if
page has changed, only reload entire page if needed.

Track how often each page is updated and preferentially return to
pages which are historically more dynamic.

Preferentially update pages that are accessed more often to
optimize freshness of more popular pages.

Yannis Tzitzikas, U. of Crete, Spring 2006 42

Avoiding Page Duplication

URL Syntax and Link Extraction

» Must detect when revisiting a page that has already been spidered
(web is a graph not a tree).

» Must efficiently index visited pages to allow rapid recognition test.
— Tree indexing (e.g. trie)
— Hashtable
* Index page using URL as a key.
— Must canonicalize URL'’s (e.g. delete ending “/”)
— Not detect duplicated or mirrored pages.
» Index page using textual content as a key.
— Requires first downloading page.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 43

URL Syntax
— <scheme>://<authority><path>?<query>#<fragment>
— An authority has the syntax:
« <host>:<port-number>
— A query passes variable values from an HTML form and has the syntax:
« <variable>=<value>&<variable>=<value>...
— Afragment is also called a reference or a ref and is a pointer within the document to
a point specified by an anchor tag of the form:
* <A NAME="<fragment>">

Link Extraction
— Must find all links in a page and extract URLs.

— Must complete relative URL’s using current page URL:

« to http://lwww.csd.uoc.gr/~hy463/project
« to http://www.csd.uoc.gr/~hy463/index.html

— BASE tag in the header section of an HTML file changes the base URL for
all relative pointers:
« <BASE HREF="<base-URL>">

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 44

KavovikoTroinan Zuvoéauwy
(Link Normalization)

Link Extraction in Java

» Equivalent variations of ending directory normalized by removing
ending slash.
— http://www.csd.uoc.gr/~hy463/
— http://www.csd.uoc.gr/~hy463

» Internal page fragments (ref’s) removed:

— http://www.csd.uoc.gr/~hy463/index.html
— http://www.csd.uoc.gr/~hy463/index.html#grades

* http://WWW.cSd.uoc.gR:80/ equiv with http://www.csd.uoc.gr:

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 45

Java Swing contains an HTML parser.
In HandleStartTag, if it is an “A” tag, take the HREF attribute value as an initial
URL.
Complete the URL using the base URL:
— new URL(URL baseURL, String relativeURL)
— Fails if baseURL ends in a directory name but this is not indicated by a final “/

— Append a “/” to baseURL if it does not end in a file name with an extension (and
therefore presumably is a directory).

Also:
http://htmlparser.sourceforge.net/javadoc_1_3/org/htmiparser/
parserapplications/LinkExtractor.html

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 46

Restricting Crawling

Robots Exclusion Protocol

» Restrict spider to a particular site.
— Remove links to other sites from the queue Q.
» Restrict spider to a particular directory.
— Remove links not in the specified directory.
» Obey page-owner restrictions (robot exclusion).

» Web sites and pages can specify that robots should not
crawl/index certain areas.
» Two ways:
— Robots Exclusion Protocol: Site wide specification of excluded
directories.
— Robots META Tag: Individual document tag to exclude indexing or
following links.

Yannis Tzitzikas, U. of Crete, Spring 2006 47

CS463 - Information Retrieval Systems

» Site administrator puts a “robots.txt” file at the root of the host’s
web directory.
— www.enet.gr/robots.txt
— http://www.cnn.com/robots.txt
« File is a list of excluded directories for a given robot (user-agent).
— Exclude all robots from the entire site:
User-agent: *
Disallow: /

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 48

Robot Exclusion Protocol Examples

» Exclude specific directories: * Some Details

— Only use blank lines to separate
different User-agent disallowed
directories.

— One directory per “Disallow” line.
— No regex patterns in directories.

User-agent: *

Disallow: /tmp/

Disallow: /cgi-bin/

Disallow: /users/paranoid/
» Exclude a specific robot:

User-agent: GoogleBot
Disallow: /

» Allow a specific robot:

Acite:
www.enet.gr/robots.txt:
User-agent: *

Disallow: /past/
Disallow: /online/

User-agent: GoogleBot
Disallow:

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

49

http://www.cnn.com/robots.txt

User-agent: *

Disallow: /cgi-bin
Disallow: /TRANSCRIPTS
Disallow: /development
Disallow: /third

Disallow: /beta

Disallow: /java

Disallow: /shockwave
Disallow: /JOBS
Disallow: /pr

Disallow: /Interactive
Disallow: /alt_index.html|
Disallow: /webmaster_logs
Disallow: /newscenter

User-agent:Mozilla/3.01 (hotwired-
test/0.1)

Disallow: /cgi-bin

Disallow: /TRANSCRIPTS

Disallow: /development

Disallow: /third

Disallow: /beta

Disallow: fjava

Disallow: /shockwave

Disallow: /JOBS

Disallow: /pr

Disallow: /Interactive

Disallow: /alt_index.html

User-agent: GoogleBot
Disallow: /cgi-bin
Disallow: /java

Disallow: /images
Disallow: /development
Disallow: /third

Disallow: /beta

Disallow: /webmaster_logs
Disallow: /virtual

Disallow: /shockwave
Disallow: /TRANSCRIPTS
Disallow: /newscenter

Disallow: Nirtual Disallow: /webmaster_logs
Disallow: /DIGEST Disallow: /newscenter Disallow: /virtual
Disallow: /QUICKNEWS Disallow: /virtual Disallow: /DIGEST
Disallow: /SEARCH g}sa::"‘”: ;Zﬁiirzews Disallow: /QUICKNEWS
isallow: . .
Disallow: ~ /SEARCH Disallow: /SEARCH

Disallow: /alt_index.html

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

50

Robots META Tag

* Include META tag in HEAD section of a specific HTML document.
— <meta name="robots” content="none">
» Content value is a pair of values for two aspects:
— index | noindex: Allow/disallow indexing of this page.
— follow | nofollow: Allow/disallow following links on this page.
» Special values:
— all = index,follow
— none = noindex,nofollow
* Examples:
<meta name="robots” content="noindex,follow">

<meta name="robots” content="index,nofollow”>
<meta name="‘robots” content="none”>

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

Robot Exclusion Issues

* META tag is newer and less well-adopted than “robots.txt”.

» Standards are conventions to be followed by “good robots.”

» Companies have been prosecuted for “disobeying” these
conventions and “trespassing” on private cyberspace.

» “Good robots” also try not to “hammer” individual sites with lots of
rapid requests.
— “Denial of service” attack.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

52

Multi-Threaded Crawling

» Bottleneck is network delay in downloading individual pages.

» Best to have multiple threads running in parallel each requesting a
page from a different host.

» Distribute URL'’s to threads to guarantee equitable distribution of
requests across different hosts to maximize throughput and avoid
overloading any single server.

» Early Google spider had multiple co-ordinated crawlers with about

300 threads each, together able to download over 100 pages per
second.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

ATroBnkn ZeAidwv (Page Repository)

» Objective
— for storing pages downloaded by crawler
— provide a fast API for indexer
+ Challenges
scalability
» seamlessly distribute the repository across a cluster of computers and disks
— one computer is not enough
— dual access mode
« random access: retrieve quickly a specific page (given its id)
« streaming access: retrieve quickly the entire set or a subset (e.g. all .edu) pages
— large bulk updates
« high rate of modifications (additions/deletions of pages, read vs. write accesses)
obsolete pages
« detect and remove obsolete pages

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

54

>xedlacovtag pia Katavepnuévn ATo0ARkn ZeAidwv
(Distributed Page Repository)

* (A) Page distribution across nodes
— Uniform (all nodes are treated identically)
— Hash distribution policy
« allocation of pages to nodes depends on the page identifier (URL)
» (B) Physical page organization within a single node
— Operations to support (page addition/insertion, high speed streaming,random page
access)
— Hash-based organization
« treats a disk as a set of hash buckets each of which is small to fit in memory
« pages are allocated to buckets depending on their URL
— Log-based organization
« incoming pages are appended. Random access is supported using a separate B-
tree index

— Hybrid approaches (e.g. Hash-Log organization)

>xedidlovtag pia Karavepnuévn Atrobnkn ZeAidwv (I1)

* (C) Update strategies: Execution Mode
— Steady mode
« crawler runs without any stop
— Batch mode
« crawler is executed periodically (e.g. twice every month)
« stops by time-limit or by amount of pages found
« Batch mode Partial
— recrawls only a specific set of pages or sites at each execution
« Batch mode Complete
— recrawls the entire collection at each execution

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 55 CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 56
. , i . Updates: In-Place vs.
>xedidCovtag pia Karavepnuévn Atrodnkn ZeAidwy (lll) P . .
Shadowing (with read and update nodes)
* (C) Update strategies: InPlace vs. Shadowing updates
— In-Place updates
;))) - updates reads
+ pages received from the crawler are directly integrated into the repository’s Crawler p- o Indexer
existing collections (possibly replacing older versions)
— Shadowing
« pages from crawler are stored separately and updates are applied in a separate
step
+ allows separating between update and read accesses Update (/) Read
— asingle storage node does not have to concurrently handle page addition and page nodes =3 nodes
retrieval updates | @ reads
— may degrade the freshness of the repository Crawler — = W= <= Indexer
@ e
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 57 CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 58
EuosTnoiaon loToseNiSwy Eupetnpioon lotooeAidwv:
peTnpiacn Anchor Text Indexing
Tutror Eupetnpiwv p1 p2
* EupetApio Keipévwv
— M.x. AveoTpapuéva Apxeia (Inverted list), Apxeia KataAigewv, Apxeia vector(p2) = <Greek, ... , >
YToypagwv 5
* EupetApio Zuvdéopwy (Link Index)
— connectivity graph of the Web (nodes: pages, edges: links)
— common tasks (find pages that point to page p, find pages pointed by p) + Extract anchor text (between <a> and) of each link followed.
— billion nodes => efficient data structure Anchor text is usually descriptive of the document to which it
» EupetApio Xpnoipétnrag (Utility Index) points.
* e.g. Site -> page index, PageRank index, etc » Add anchor text to the content of the destination page to provide
. additional relevant keyword indices.
 IR Course in Greek
Yannis Tzitzikas, U. of Crete, Spring 2006 59 CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 60

CS463 - Information Retrieval Systems

Eupetnpioon lotooeAidwv:
Kataokeur) AveoTpauuévou Apxeiou

Eupetnpioon loTooeAidwv:
Anchor Text Indexing (Il)

» Used by Google: » For each term with a have a sorted list of locations.
~ Evil Empire « Extra: we store if the words appears in bold face, in heading, ...
— IBM — Commonly we multiply their weight with a constant
» Many times anchor text is not useful: « Building the index
— “click here” — due to frequent update rate, usually we rebuild the index (incremental
 Increases content more for popular pages with many in-coming updates perform poorly)
links, increasing recall of these pages. » Partitioning the index
* May even give higher weights to tokens from anchor text. — by pages
« each node is responsible for a disjoint set of pages
— by terms
« each node is responsible for a disjoint set of terms
— (6a piAfjooupe yia autd ot eméuevo puadnua (Distributed IR))
» Pipelined index build (loading (LAN) preprocessing (CPU) and
flushing (DISK) concurrently

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 61 CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

AiGpBpwan AIGAeEng

« loTopikA Avadpour)
* Web Challenges and Requirements for IR
« Zipf Law in the Web
« Graph Structure of the Web
* Yahoo/ODP vs Search Engines
— Automatic Document Classification
— Automatic Document Hierarchies
« Crawling/Spidering
— Aidoyion (spidering/crawling)
— Depth/Breadth and Technical Details
— Directed (Topic/Link/...) Spidering
— Multi-Threaded Spidering
« AmoBnkeuon kai Eupetnpiaon ZeAidwv

Read: Searching the Web, A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke and
S. Raghavan, TOIT

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 63

