MavemaTiuio Kpntng, Tunua EmoTtiung YmoAoyioTwy
Avoign 2006

HY463 - Zuotiuara Avaktnong MNAnpogopiwv
Information Retrieval (IR) Systems

Web Searching

I: History and Basic Notions, Crawling
IT: Link Analysis Techniques
III: Web Spam Page Identification

MNavvng TCitdikag

AidAeEn 1 7-8-9
Huepopnvia : 17-22-24 / 3 / 2006

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

A1apBpwaon AidAecnc |

* loTtopikr) Avadpoun
* Avaktnon MNMAnpogopiwv atréd Tov 1oT6: MNpokAAoEIS Kal ATTAITACEIG
* O vouog Tou Zipf kai o loTdg
* H doun Tou ypagou Tou IoTou
» KaraAoyol (Yahoo/ODP) évavti Mnxavwyv Avalritnong
— Automatic Document Classification
— Automatic Document Hierarchies
+ ‘Epmrev (Crawling/Spidering)
— Aidoxion (spidering/crawling)
— Depth/Breadth and Technical Details
— Directed (Topic/Link/...) Spidering
— Multi-Threaded Spidering
* AmoBrikeuon kal Eupetnpiacn ZeAidwv

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

[MpoioTopia

* 1965:

— O Ted Nelson ouvéAaBe Kal QVETTTUEE
TNV 16€a Tou utrepKelIpévou (hypertext

* T€EANn dekaeTiag 60:
— O Doug Engelbart emrivénoe 10 TrovTiKI
KAl TTPWTOG UAOTIOINCOE TO UTTEPKEIUEVO.

« 1970’s:
— Avdartuén tou ARPANET

Apa ol 16é€¢ Kal N Bacikn Texvoloyia utrripxe atrd 1o 70. ‘EtrpetTe va
£pOel n eroxn Twv PC kal Tn¢G eupeiag aAAnAoouvdeonc yia va
EMTIVEUOTOUNE KOl va @TIAEOoUE ToV aykoouio 1oTo.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

i e e .
1990: Avatrtruxbnke atrd Tov Tim Berners-Lee (oto CERN) yia Tnv opydvwon Twv
EPEUVNTIKWYV £yypA@wyV TTou ATav diaBéoiuya oto AladikTuo

— Avéttuge 1o TTpwToKoAo HTTP, épioe Ta URLs kai Tn yA\wooa HTML, kai uhotroinoe
TOV TTPWTO “web server.”

— 2uvduaouog 2 1I0wV:
— ‘Eyypbowv diabéoipwy pe FTP
— AlooUvoean eyypa@wy (UTTEPKEIUEVO)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

H loTopia Twv MNMAonyntwyv (Web Browsers)

« Early browsers were developed in 1992 ﬁgmﬁ%ﬁﬂﬂﬂﬂﬁJS
— Erwise, ViolaWWW

* In 1993, Marc Andreessen and Eric Bina at
UIUC NCSA developed the Mosaic browser
and distributed it widely.

i e g, ke e i

* 1994: Andreessen joined with James Clark N NETSCARES]
?: COMMUNICATOR

(Stanford Prof. and Silicon Graphics founder) to
form Mosaic Communications Inc. (which
became Netscape to avoid conflict with UIUC).

* 1995: Microsoft licensed the original Mosaic
from UIUC and used it to build Internet
Explorer.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 5

H loTopia Twv Mnxavwyv AvalATnong
Search Engine Early History: FTP, Archie

« By late 1980’s many files were available by anonymous FTP.

* In 1990, Alan Emtage of McGill Univ. developed Archie (short for
“archives”)

— Assembled lists of files available on many FTP servers.
— Allowed regex search of these filenames.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 6

Archie Client

= WinSock Archie Client ¥
File Options Help

Search for |pgp | I Search I | Frbpk I

Archie Server |alchie.duc.ic.ac.uk’ United Kingdom |£I @ Substring
-) Substring [casze senzitive]

Domain | |) Exact

) Begex

[l Exact firzt
Hosts Duectones Files

+| [Fpub T e
coombs. anu.edu_au]
ftp.comp._vuw._ac.nz
ftp.cs.uit.no
ftp.cs.umn.edu
ftp.csua.berkeley_edu
ftp.edvz_ uni-linz_ac_at
ftp_forthnet.gr

ftp.huji.ac.il
ftp_iastate_edu
ftp.ibp. fr *
File Mame [FILE: pgp
Size 3 bytes
Mode -IWRIWRI-X
Date 03-Jul-1995 17:19:00
Archie Date 02-Aug-1995 03:08:54

Host Addiess [18.72.0.3

CS463 - Infc

archie.docicacuk-7s |Packetdb of 46 |Queus T [Time Bs

Archie via WWW gateway

= Metscape - [ArchiePlex Results] H -
EFile Edit Yiew Go Bookmarks Options Directory Help

EERIEEERERID

Location: |http:,-'.i'src.duc.ic.ac.uk;'archiepIe)durm?query=pgp&typE::CaseHnsensitiVHSu |

L+

ArchiePlex Results -

Eesults for query 'pep'

Host sunsite.doc.ic.ac.uk

In Directory fcomputingloperating-systemsfunizFree BETWFree BST -current/sroiust binffile/Tlagdir
File pgp 548 Sep 2 1994

In Directory [computing/operating-svstemsiunizFreeBEDiports- 2. (utils
Directory pep 512 Feb 12 01:.08

In Directory fpackages
File pgp 25 Sep 29 1993

*|

] "
e T I
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

H loTopia Twv Mnxavwyv AvalnATnong
Search Engine Early History: Gopher

* In 1993, Veronica and Jughead were developed to search
names of text files available through Gopher servers.

» Gopher is a menu-driven Internet browser

* Presents users with a hierarchy of items and directories much like
a file system.

— The Gopher interface resembles a file system since a file system is a good
model for organizing documents and services;

— the user sees what amounts to one big networked information system
containing primarily document items, directory items, and search items
(the latter allowing searches for documents across subsets of the information
base).

Servers return either directory lists or documents.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 9

H loTopia Twv Mnxavwyv AvalATnong
Search Engine Early History: Gopher (lI)

« Each item in a directory is identified by
— a type (the kind of object the item is),
— user-visible name (used to browse and select from listings),

— an opaque selector string (typically containing a pathname used by the
destination host to locate the desired object),

— a host name (which host to contact to obtain this item), and
— an IP port number (the port at which the server process listens for
connections).
» The user only sees the user-visible name. The client software can
locate and retrieve any item by the trio of selector, hostname, and
port.

* To use a search item, the client submits a query to a special kind of
Gopher server: a search server. In this case, the client sends the
selector string (if any) and the list of words to be matched. The
response yields "virtual directory listings" that contain items
matching the search criteria.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 10

Gopher (lll)

* Veronica has three phases that are performed
periodically:

— Harvesting. Collects all the menu entries and file names for all
items in Gopherspace and extracts all the keywords.
Indexing. Creates a searchable index with the keywords
"harvested".

Searching. When you enter a specific keyword, veronica
searches its harvested index and prints out (displays) all the
matching entries and their addresses, thereby providing a list
that you can then search.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

11

Gopher via WWW gateway

BE -0 Hetscape: il
| File Edit View Go Communical He\p|

Hd & 3 4 =2 @ $ & @ E =

il Back Forward Reload Home Search Metscape Print Security Shop Stap

' «§ " Bookmarks A Location: [Ignpher //gopher . to. umn. edn: 70711 /0ther3206opher 820ande20Informations20Sery ,‘ @7 what's Related

B
i o WebMail 4 Radio ¢ People ¢ Yellow Pages ¢ Download ¢ Calendar 1§ Channels

Gopher Menu

(1 All the Gopher Servers in the World
Search All the Gopher Servers in the World

(] Search titles in Gopherspace using veronica

(] africa

[Asia

] Eurcpe

[] International Organizations

[Middle East

(1 North America

(1 pacific

(] Russia

(] south America

(] Terminal Based Information
(] WAIS Based Information
E Gopher Server Registration

il ' s wmor @ 2

Try: http://gopher.quux.org:70/Software/Gopher

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

12

H loTopia Twv Mnxavwyv Avalntnong Tou loTtou

* 1993: early web robots (else called spiders or robots) were built to
collect URL’s:

— Wanderer, ALIWEB (Archie-Like Index of the WEB), WWW Worm (indexed
URL’s and titles for regex search)

+ 1994a: Stanford grad students David Filo and Jerry Yang started YAHoO!
manually collecting popular web sites into a topical hierarchy called
Yahoo.

* 1994b: Brian Pinkerton developed WebCrawler as a class project at U
Wash. (eventually became part of Excite and AOL).

* 1994c: Fuzzy Maudlin, a grad student at CMU developed Lycos. First
to use a standard IR system as developed for the DARPA Tipster
project. First to index a large set of pages.

» 1995: DEC developed Altavista. Used a large farm of Alpha machines
to quickly process large numbers of queries. Supported boolean
operators, phrases, and “reverse pointer” queries.

altavista’

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 13

H loTopia Twv Mnxavwyv Avalntnong Tou lotou

« In 1998, Larry Page and Sergey Brin, Ph.D. students at Stanford,
started Google. Main advance is use of link analysis to rank
results partially based on authority.

Google

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 14

Avaktnon NMAnpo@opiwv atod Tov loTo:
MpokKANOEIC

 Distributed Data: Documents spread over millions of different web
servers.

« Volatile Data: Many documents change or disappear rapidly (e.g.
dead links).
— 23% of pages change daily

— .com pages: 40% change daily, half-life=10 days (in 10 days half of the pages
are gone)

« Large Volume: Billions of separate documents.

* Unstructured and Redundant Data: No uniform structure, HTML
errors, up to 30% (near) duplicate documents.

« Quality of Data: No editorial control, false information, poor quality
writing, typos, spam, etc.

« Heterogeneous Data: Multiple media types (images, video, VRML),
languages, character sets, etc.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 15

AvakTtnon FNAnpogopiwv artro Tov loTo:
NMpokAnoeIg Kal ATTAITAOEIG

» Gathering techniques
« Scalable Index Structures efficiently updatable
* Improve the discrimination ability

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 16

Number of Web Servers

3000000

MNumber Servers

2750000

2500000

2250000

2000000

1750000

1500000

1250000

1000000

Fe0000

S00000

250000

a T I I T T

Alg a5
Sep At
Moy as
Dec 9t

T T T T T - o O o S S O R R S - - - B -]
== - - - - - - - - - - IR - N - - -
= S ot z o0 5 5T o0 o o 5 F 5=
S2cT otz oy =2 = £ oo =

4 £E 2 " h o0 fF4LdELET T RO SEEESTZF

CS463 - Info

. AOLserver ~ Apache . IIS

Octas
Mo 95

Dec 93

Jan 99

fitar 99
AR

17
Number of Web Pages
*f The growth of the Web
{in Million pages)
4000
000
2000
1000
0 August 1999 Decermnber 1999 April 2000 August 2000 December 2000 April 2001
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 18

Number of Web Pages Indexed

1,500 —

Millions of Web Pages Indexed
1327

1,250 H
1000 H
750 H
300 H

250 H

1000

25
350 500
]] 320 50—

110

— —
= % :E E] =
=

SearchEngineWatch, Aug. 15, 2001

Assuming about 20KB per page,

1 billion page

s is about 20 terabytes of data.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 19
Growth of Web Pages Indexed
Search Engine Sizes
(rmillions of web pages)
1100
1000
g00
200 /
o0
600 e
500
400 ;f
300 ,/ .
200 =i
100 et ——
0] |] [
TR T L EEEEE
—G0 F&ST —
—TNE EX ML
SearchEngineWatch, Aug. 15, 2001
Google lists current number of pages searched.
May 2005: 8 billion pages
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 20

O vouocg Tou Ziph oTtov lNaykéouio lotd

O Nouog tou Ziph yia Ta Keipeva:

« H ouyvornta tnc i-th mmo cuyxva sueavilousvnc AééEnc ivai 1/i
QOPEC N oUXVOTNTA TNC TTIO OUXVNC.
— o akpiBéc: 1/ érrou O ueraéu 1.5 kai 2

O Nouog tou Ziph otov lNaykéouio 1o1é:

* Number of in-links/out-links to/from a page has a Zipfian
distribution.

— the probability that a node has in-degree i is proportional to 1/i*x, for
some x> 1.

» Length of web pages has a Zipfian distribution.
« Number of hits to a web page has a Zipfian distribution.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

21

Graph structure in the Web (I)

» Most (over 90%) of nodes form a single connected component if
links are treated as undirected edges.

» This connected web breaks naturally into four pieces.

— (1) The first piece is a central core, all of whose pages can reach one
another along directed links -- this "giant strongly connected component”
(SCC) is at the heart of the web.

— (2) IN consists of pages that can reach the SCC, but cannot be reached from
it
» - possibly new sites that people have not yet discovered and linked to.

— (3) OUT consists of pages that are accessible from the SCC, but do not link
back to it,

» such as corporate websites that contain only internal links.
— (4) TENDRILS contain pages that cannot reach the SCC, and cannot be
reached from the SCC.
» Each of the other three sets contain about 44 million pages -- thus,
all four sets have roughly the same size.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

22

Graph Structure of the Web (II)

Central core
56 million pages

Tendrils
44 milli

http://www9.org/w9cdrom/160/160.html

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

23

Graph Structure in the Web (lll)

« The diameter of the central core (SCC) is at least 28
* The diameter of the graph as a whole is over 500

« For randomly chosen source and destination pages, the probability that any path
exists from the source to the destination is only 24%.

« If a directed path exists, its average length will be about 16.

» If an undirected path exists (i.e., links can be followed forwards or backwards),
its average length will be about 6.

* In a sense the web is much like a complicated organism, in which the local
structure at a microscopic scale looks very regular like a biological cell, but the
global structure exhibits interesting morphological structure (body and limbs)
that are not obviously evident in the local structure. Therefore, while it might be
tempting to draw conclusions about the structure of the web graph from a local
picture of it, such conclusions may be misleading.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

24

EUpeon mAnpogopiag otov lNaykoouio lotd

Xeipotrointeg Tagivopieg loTou
(Manual Hierarchical Web Taxonomies)

* Yahoo approach of using human editors to assemble a large
hierarchically structured directory of web pages.
— http://www.yahoo.com/

* Open Directory Project is a similar approach based on the
distributed labor of volunteer editors (“net-citizens provide the
collective brain”). Used by most other search engines. Started by
Netscape.

— http://www.dmoz.org/

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 26

Autouartn Tagivopnon ZeAidwv

(Automatic Document Classification)

* Manual classification into a given hierarchy is labor intensive,
subjective, and error-prone.

* Text categorization methods provide a way to automatically
classify documents.

» Best methods based on training a machine learning (pattern
recognition) system on a labeled set of examples (supervised
learning).

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 27

AutopaTeg lepapyiec Eyypapwyv

(Automatic Document Hierarchies)

« Manual hierarchy development is labor intensive, subjective, and
error-prone.

|t would nice to automatically construct a meaningful hierarchical
taxonomy from a corpus of documents.

» This is possible with hierarchical text clustering (unsupervised
learning).

— Hierarchical Agglomerative Clustering (HAC)
— Oa piAnoouue yia Ouadomroinon (Clustering) o€ emoéusvo uabnua

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 28

AvakTtnon lNAnpogopiwyv oTtov loTo

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 29
["eviKA popon evog EupeTnpiou yia avaktnon TANPO@OPIWY aTTo TOV
loTo

* Crawling («épTTEIVY»)

i Indexing Items

W Ky K, kj e Kq From| To

e| d; Cii Con Ci1 N 42 143

b1 d, Cio GCo2 Ci2 e Gy

) d2 |d4

al di || G Gy Cij “) d4 |d1

e

: dy Cin Con Cin Cen d10 |d20

* Eupernpiaon (Indexing)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 30

Crawling/Spidering

Spiders (Robots/Bots/Crawlers)

« Start with a comprehensive set of root URL’s from which to start
the search.

* Follow all links on these pages recursively to find additional
pages.

* Index all novel found pages in an inverted index as they are
encountered.

» May allow users to directly submit pages to be indexed (and
crawled from).

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 32

AAy6pIBpoc Aiaoxiong (Spidering Algorithm)

Initialize queue (Q) with initial set of known URL'’s.
Until Q empty or page or time limit exhausted:
Pop URL, L, from front of Q.
If L is not an HTML page (.gif, .jpeg, .ps, .pdf, .ppt...)
continue loop.
If already visited L, continue loop.
Download page, P, for L.
If cannot download P (e.g. 404 error, robot excluded)
continue loop.
Index P (e.g. add to inverted index or store cached copy).
Parse P to obtain list of new links N.
Append N to the end of Q.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 33

Crawling: ZxeTIkKa ZnTrjuara

What pages should the crawler download ?
— In most cases it cannot download all, thus we need to prioritize the URLs

How should the crawler refresh pages?
How should the load on the visited Web sites by minimized ?
How should the crawling process be parallelized ?

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 34

21paTtnyIkEG Alaoxiong (Crawling)

* (l) Breadth-first Search

* (ll) Depth-first Search

* (lll) Importance-first Search
— Topic-directed search
— Link-directed search

— Location-directed search
— Weighted combination of the above

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

35

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

Crawling Strategy Trade-Off's

() Breadth-first
— explores uniformly outward from the root page but requires memory of all
nodes on the previous level (exponential in depth). Standard spidering
method.

* (Il) Depth-first
— requires memory of only depth times branching-factor (linear in depth)
but gets “lost” pursuing a single thread.

Both strategies implementable using a queue of links (URL’s).
— How new links added to the queue determines search strategy.
— FIFO (append to end of Q) gives breadth-first search.
— LIFO (add to front of Q) gives depth-first search.

— Heuristically ordering the Q gives a “focused crawler” that directs its search
towards “interesting” pages.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

37

AAyOpI0uog Alaoxiong (Spidering Algorithm)

Initialize queue (Q) with initial set of known URL'’s.
Until Q empty or page or time limit exhausted:
Pop URL, L, from front of Q.
If L is not an HTML page (.gif, .jpeg, .ps, .pdf, .ppt...)
continue loop.
If already visited L, continue loop.
Download page, P, for L.
If cannot download P (e.g. 404 error, robot excluded)
continue loop.
Index P (e.g. add to inverted index or store cached copy).
Parse P _to obtain list of new links N.

|

— Append N to the end of Q. /[=>Breadth First Search)
— Insert N at the beginning of Q // =>Depth First Search)

/

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

38

(II1) Importance-first Search

* Objective: Download and index important pages first

« Questions:
— A/ What is the meaning of importance ?

— B/ How a crawler operates ?
» How a crawler guesses good pages to visit ?
— C/ How we should refresh pages ?

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

39

A/ What is the meaning of importance ?
(Importance Metrics)

Value(p) = k1 ContentVal(p) + k2 PopularityVal(p) + k3 LocVal(url(p))

« ContentValue(p)
— can be based on a driving query q
— e.g. ContentValue(p)= Cosine(vec(text(p)), q)
— Notice that idf (inverse document frequency) can be only estimated
* We would know its value if we had downloaded all pages of the Web
— We could call this topic-directed search
* Popularity(p)
— backlink count: |{p’|p ->p}|
— Related to citation count (coming from bibliometrics)
— Again, this can be only estimated
— We could call this link-directed search
* LocationValue(url(p))
— e.g. highif “.com”, low if it contains “home”, low if it contains many slashes «/»

— We could call this location-directed search

You could think many other metrics

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

40

B/ How a crawler operates ?
(crawler models)

Design a crawler that if possible visits high importance pages before
lower ranked ones (given an imporance metric).

Crawler models:

 Crawl & Stop
— Starts at its initial page p0 and stops after visiting K pages
— ldeally these should be the K pages with the highest value
» But this it is again impossible to know (unless downloading the entire Web)

« Crawl & Stop with Threshold

— Starts at its initial page p0 and stops after visiting K pages whose value is
greater than a threshold

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 41

(C) Page Refresh
Keeping Spidered Pages Up to Date

« Web is very dynamic: many new pages, updated pages, deleted
pages, etc.

« Periodically check spidered pages for updates and deletions:

— Just look at header info (e.g. META tags on last update) to determine if
page has changed, only reload entire page if needed.

« Track how often each page is updated and preferentially return to
pages which are historically more dynamic.

» Preferentially update pages that are accessed more often to
optimize freshness of more popular pages.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 42

Avoiding Page Duplication

* Must detect when revisiting a page that has already been spidered
(web is a graph not a tree).

« Must efficiently index visited pages to allow rapid recognition test.
— Tree indexing (e.qg. trie)
— Hashtable
» Index page using URL as a key.
— Must canonicalize URL’s (e.g. delete ending “/”)
— Not detect duplicated or mirrored pages.
* Index page using textual content as a key.
— Requires first downloading page.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 43

URL Syntax and Link Extraction

* URL Syntax
— <scheme>://<authority><path>?7<query>#<fragment>
— An authority has the syntax:
* <host>:<port-number>
— A query passes variable values from an HTML form and has the syntax:
+ <variable>=<value>&<variable>=<value>...
— A fragment is also called a reference or a ref and is a pointer within the document to
a point specified by an anchor tag of the form:
* <A NAME="<fragment>">

Link Extraction
— Must find all links in a page and extract URLs.

— Must complete relative URL'’s using current page URL:

* <a href="project™ to http://www.csd.uoc.gr/~hy463/project
» to http://www.csd.uoc.gr/~hy463/index.html

— BASE tag in the header section of an HTML file changes the base URL for
all relative pointers:

+ <BASE HREF="<base-URL>">

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 44

Kavovikotroinon 2ZuvOEouwy
(Link Normalization)

Equivalent variations of ending directory normalized by removing
ending slash.

— http://www.csd.uoc.gr/~hy463/
— http://www.csd.uoc.gr/~hy463

 Internal page fragments (ref’'s) removed:
— http://www.csd.uoc.gr/~hy463/index.html
— http://www.csd.uoc.gr/~hy463/index.html#grades

* http://WWW.cSd.uoc.gR:80/ equiv with http://www.csd.uoc.gr:

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

45

Link Extraction in Java

« Java Swing contains an HTML parser.

In HandleStartTag, if it is an “A” tag, take the HREF attribute value as an initial
URL.

* Complete the URL using the base URL.:
— new URL(URL baseURL, String relativeURL)

— Fails if baseURL ends in a directory name but this is not indicated by a final “/”

— Append a “/” to baseURL if it does not end in a file name with an extension (and
therefore presumably is a directory).

Also:
http://htmlparser.sourceforge.net/javadoc_1_3/org/htmliparser/

parserapplications/LinkExtractor.html

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

46

Restricting Crawling

» Restrict spider to a particular site.
— Remove links to other sites from the queue Q.

» Restrict spider to a particular directory.

— Remove links not in the specified directory.
« Obey page-owner restrictions (robot exclusion).

« Web sites and pages can specify that robots should not
crawl/index certain areas.

« Two ways:

— Robots Exclusion Protocol: Site wide specification of excluded
directories.

— Robots META Tag: Individual document tag to exclude indexing or
following links.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 47

Robots Exclusion Protocol

« Site administrator puts a “robots.txt” file at the root of the host’s
web directory.

— www.enet.gr/robots.txt
— http://www.cnn.com/robots.txt

* File is a list of excluded directories for a given robot (user-agent).
— Exclude all robots from the entire site:

User-agent: *
Disallow: /

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 48

Robot Exclusion Protocol Examples

« Exclude specific directories: « Some Details
User-agent: * — Only use blank lines to separate
Disallow: /tmp/ different User-agent disallowed
Disallow: /cgi-bin/ directories.
Disallow: /users/paranoid/ — One directory per “Disallow” line.
 Exclude a specific robot: — No regex patterns in directories.

User-agent: GoogleBot
Disallow: 7/

» Allow a specific robot:

AciTe:

User-agent: GoogleBot

i d d www.enet.gr/robots.txt:

Disallow: .
User-agent:
Disallow: /past/
Disallow: /online/

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 49

http://www.cnn.com/robots.txt

User-agent: *

_ o User-agent:Mozilla/3.01 (hotwired- User-agent: GoogleBot
Disallow: /cgi-bin test/0.1) Disallow: /cai-bi
Disallow: /TRANSCRIPTS | | Disallow: /cgi-bin satiow:7egrbin
Disallow: /development Disallow: /TRANSCRIPTS Disallow: /java
Disallow: /third Disallow: /development Disallow: /images
D?sallowi /peta Disallow: /third Disallow: /development
Disallow: /java Disallow: /beta Disallow: /third
Disallow: /shockwave . .)

Disallow: /java Disallow: /beta

Disallow: /JOBS Disallow: /shock
Disallow: /pr saliow. fshockwave Disallow: /webmaster_logs
Disallow: /Interactive B!sa::OW: ;JOBS Disallow: /virtual
Disallow: /alt_index.html SaTow: b Disallow: /shockwave
Disallow: /webmaster logs Disallow: /Interactive

Disallow: /newscenter Disallow: /alt_index.html Disallow: /TRANSCRIPTS
Disallow: Nirtual Disallow: /webmaster_logs Disallow: /newscenter
Disallow: /DIGEST Disallow: /newscenter Disallow: /virtual
Disallow: /QUICKNEWS Disallow: /virtual Disallow: /DIGEST
Disallow: /SEARCH Disallow: /DIGEST Disallow: /QUICKNEWS

Disallow: /QUICKNEWS

Disallow: /SEARCH Disallow: /SEARCH

Disallow: /alt_index.html

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 50

Robots META Tag

Include META tag in HEAD section of a specific HTML document.
— <meta name=“robots” content="none™>

Content value is a pair of values for two aspects:

— index | noindex: Allow/disallow indexing of this page.

— follow | nofollow: Allow/disallow following links on this page.

Special values:

— all = index,follow

— none = noindex,nofollow

Examples:

<meta name="robots” content=“noindex,follow”>
<meta name=“robots” content=“index,nofollow”>
<meta name=“robots” content=“none”>

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

51

Robot Exclusion Issues

META tag is newer and less well-adopted than “robots.txt”.
Standards are conventions to be followed by “good robots.”

Companies have been prosecuted for “disobeying” these
conventions and “trespassing” on private cyberspace.

“Good robots” also try not to “hammer” individual sites with lots of
rapid requests.

— “Denial of service” attack.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

52

Multi-Threaded Crawling

« Bottleneck is network delay in downloading individual pages.

« Best to have multiple threads running in parallel each requesting a
page from a different host.

 Distribute URL’s to threads to guarantee equitable distribution of
requests across different hosts to maximize throughput and avoid
overloading any single server.

« Early Google spider had multiple co-ordinated crawlers with about
300 threads each, together able to download over 100 pages per
second.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

53

ATtro0nkn ZeAidwv (Page Repository)

» Objective
— for storing pages downloaded by crawler
— provide a fast API for indexer

« Challenges

— scalability

» seamlessly distribute the repository across a cluster of computers and disks

— one computer is not enough

— dual access mode

* random access: retrieve quickly a specific page (given its id)

» streaming access: retrieve quickly the entire set or a subset (e.g. all .edu) pages
— large bulk updates

* high rate of modifications (additions/deletions of pages, read vs. write accesses)
— obsolete pages

» detect and remove obsolete pages

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

54

2 xed1alovTtag pia Kartavepunuévn Atroonkn ZeAidwyv
(Distributed Page Repository)

* (A) Page distribution across nodes
— Uniform (all nodes are treated identically)

— Hash distribution policy
« allocation of pages to nodes depends on the page identifier (URL)
» (B) Physical page organization within a single node
— Operations to support (page addition/insertion, high speed streaming,random page
access)
— Hash-based organization
« treats a disk as a set of hash buckets each of which is small to fit in memory
* pages are allocated to buckets depending on their URL
— Log-based organization

* incoming pages are appended. Random access is supported using a separate B-
tree index

— Hybrid approaches (e.g. Hash-Log organization)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 55

2 xe01alovtag pia Karavepnuévn Atronkn ZeAidwv (1)

* (C) Update strategies: Execution Mode

— Steady mode
» crawler runs without any stop
— Batch mode
 crawler is executed periodically (e.g. twice every month)
 stops by time-limit or by amount of pages found
+ Batch mode Partial
— recrawls only a specific set of pages or sites at each execution
+ Batch mode Complete
— recrawls the entire collection at each execution

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 56

2xed1alovtag pia Karavepnuévn Atrofnkn ZeAidwv (l)

* (C) Update strategies: InPlace vs. Shadowing updates

— In-Place updates
» pages received from the crawler are directly integrated into the repository’s
existing collections (possibly replacing older versions)

— Shadowing
» pages from crawler are stored separately and updates are applied in a separate
step

+ allows separating between update and read accesses
— a single storage node does not have to concurrently handle page addition and page
retrieval
— may degrade the freshness of the repository

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

57

Updates: In-Place vs.
Shadowing (with read and update nodes)

updates reads
Crawler —) <= Indexer
Update (Read
nodes == nodes
updates | reads
Crawler —) \‘E{ \‘\Qa == Indexer
N @

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

58

Eupetnpiaon lotooeAidwyv

Tutrol EupeTtnpiwv
« Eupempio Keipévwyv
— I.x. AveoTpaupéva Apxeia (Inverted list), Apxeia KataAngewv, Apxeia
YT1roypagpwyv
« Eupempio Zuvdéopwyv (Link Index)
— connectivity graph of the Web (nodes: pages, edges: links)
— common tasks (find pages that point to page p, find pages pointed by p)
— billion nodes => efficient data structure
* Eupemipio Xpnoipdétntag (Utility Index)

* e.g. Site -> page index, PageRank index, etc

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 59

Eupetnpiaon lotoogAidwv:
Anchor Text Indexing

p1 p2

vector(p2) = <Greek, ... , >

« Extract anchor text (between <a> and) of each link followed.

« Anchor text is usually descriptive of the document to which it
points.

« Add anchor text to the content of the destination page to provide
additional relevant keyword indices.

 IR Course in Greek

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 60

Eupetnpiaon lotoogAidwv:
Anchor Text Indexing (ll)

» Used by Google:
— Evil Empire
— IBM

« Many times anchor text is not useful:
— “click here”

* Increases content more for popular pages with many in-coming
links, increasing recall of these pages.

» May even give higher weights to tokens from anchor text.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

Eupetnpiaon lotoogAidwv:
Kataokeur) AveoTpapuévou Apyeiou

 For each term with a have a sorted list of locations.

« Extra: we store if the words appears in bold face, in heading, ...
— Commonly we multiply their weight with a constant

 Building the index
— due to frequent update rate, usually we rebuild the index (incremental
updates perform poorly)
« Partitioning the index
— by pages
» each node is responsible for a disjoint set of pages
— by terms
» each node is responsible for a disjoint set of terms
— (Ba piAnoouue yia autra oe emouevo uabnua (Distributed IR))
» Pipelined index build (loading (LAN) preprocessing (CPU) and
flushing (DISK) concurrently

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

A1apBpwaon AIGAeENS

* loTopik) Avadpoun
+ Web Challenges and Requirements for IR
» Zipf Law in the Web
* Graph Structure of the Web
* Yahoo/ODP vs Search Engines
— Automatic Document Classification
— Automatic Document Hierarchies
» Crawling/Spidering
— Aidoxion (spidering/crawling)
— Depth/Breadth and Technical Details
— Directed (Topic/Link/...) Spidering
— Multi-Threaded Spidering
AtroBnikeuon kail Eupetnpiaon ZeAidwv

Read: Searching the Web, A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke and
S. Raghavan, TOIT

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 63

