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' Keipevo

Starting with hieroglyphs, the first written surfaces (stone, wood, animal skin,
papyrus and rice paper), and paper, text has been created everywhere, in many
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' 2TaTIOTIKEG 1816TNTEG Kelpévou

How is the frequency of different words distributed?
How fast does vocabulary size grow with the size of a corpus?

Such factors affect the performance of information retrieval and

can be used to select appropriate term weights and other aspects
of an IR system.
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' 2uxvotnTa Aéewv

» A few words are very common.

— 2 most frequent words (e.g. “the”, “of”) can account for about 10% of word
occurrences.

* Most words are very rare.

— Half the words in a corpus appear only once, called hapax legomena (Greek
for “read only once”)

» Called a “heavy tailed” distribution, since most of the probability
mass is in the “tail”
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Sample Word Frequency Data

(from B. Croft, UMass)

Frequent Number of Percentage
Word Occurrences of Total
the 7,398,934 59
of 3,893,790 3.1
o 3,364,653 27
and 3,320,687 2.6
in 2,311,785 18
is 1,559,147 12
for 1,313,561 10
The 1,144,860 0.9
that 1,066,503 08
said 1,027,713 08

Frequencies from 336,310 documents in the 1GB TREC Volume 3 Corpus
125,720,891 total word occurrences; 508,209 unique words
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O vopog Tou Zipf

* Rank r: The numerical position of a word in a list sorted by
decreasing frequency (f).

* Zipf (1949) “discovered” that: | f.-r=k (for constant k)|

. nX

- f1*1=k
f2*2=k
f3*3=k

- fi*i=k
- =f1*1=f1 o fi= f1/i
* H ouxvoérnra tng i-th mo ouxva eupavilouevng Aééng eivar 1/i
QOpPEC N ouxveTNTA TNC TTI0 OUXVAC.
« [Mio akpiBég: 1/ omrou 6 ueralu 1.5 kar 2
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Sample Word Frequency Data (again)
(from B. Croft, UMass)

Frequent Number of Percentage
Word Occurrences of Total

the 7,398,934 59 *175.9=59
of 3,893,790 3.1 $2*31=62
o 3,364,653 2.7 *3%27=81
and 3,320,687 2.6 4*26=104
in 2,311,785 1.8 *5*18=9
is 1,559,147 12 6*12=72
for 1,313,561 1.0 7*1=7

The 1,144,860 0.9 +8*0.9=7.2

that 1,066,503 0.8 *9*0.8=7.2

said 1,027,713 0.8

Frequencies from 336,310 documents in the 1GB TREC Volume 3 Corpus
125,720,891 total word occurrences; 508,209 unique words
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Zipf’'s Law Impact on IR

» Good News: Stopwords will account for a large fraction of text so
eliminating them greatly reduces inverted-index storage costs.

» Bad News: For most words, gathering sufficient data for
meaningful statistical analysis (e.g. for correlation analysis for
query expansion) is difficult since they are extremely rare.
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Zipf and Term Weighting

* Luhn (1958) suggested that both extremely common and extremely uncommon
words were not very useful for indexing.
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Does Real Data Fit Zipf's Law?

» Alaw of the form y = kx¢ is called a power law.
« Zipf's law (fi=f1/i) is a power law with ¢ = —1
* On alog-log plot, power laws give a straight line with slope c.

log(y) =logkx®) =logk +clog(x) = logk —log)

Zipf is quite accurate except for very high and low rank.
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Mandelbrot (1954) Correction

« Ziph’s Law: fi=f1/i

» Mandelbrot correction: fi= f1*k/(c+i)?
— c: parameter
— k: so that all frequencies add to N
— This formula fits better with the read texts
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Mandelbrot’s function on Brown corpus

Explanations for Zipf's Law

+ Zipf's explanation was his “principle of least effort.” Balance
between speaker’s desire for a small vocabulary and hearer’s
desire for a large one.

— H emavaAnyn Aé€ewv gival euKOAGTEPN ATTO TNV £TTIVONCN/XPrON VEWV

» Debate (1955-61) between Mandelbrot and H. Simon over
explanation.

» Li (1992) shows that just random typing of letters including a space
will generate “words” with a Zipfian distribution.
— http://linkage.rockefeller.edu/wli/zipf/
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Vocabulary Growth

* How does the size of the overall vocabulary (number of unique
words) grow with the size of the corpus?

» This determines how the size of the inverted index will scale with
the size of the corpus.

» Vocabulary not really upper-bounded due to proper names, typos,
etc.
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Heaps’ Law

» If Vis the size of the vocabulary and the n is the length of the
corpus in words:

V = Kn” with constants K, 0< S8 <l‘

» Typical constants:
- K~ 10-100
— B~0.4-0.6 (approx. square-root)
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Heaps’ Law Data

Words In Vocabulary, n {thousands)

T T
o L] 20 30 40

Words in Collecticn, N (milions)
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Explanation for Heaps’ Law

» Can be derived from Zipf's law by assuming documents are
generated by randomly sampling words from a Zipfian distribution.
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Average Length of Words ETriong

* Why? To estimate the storage space needed for the vocabulary. * Zvwpeua pe pia évuepa Tou KEUTTPITE N O1EPA TWV YUUAAPWTV OF
pia AGEn dev €ex1 onoipaa. AKPEi TO TTWTPO KAl TO TATUEAETO YHAPAU
va giavl oTn ooTwr) ogpid.

* Average word length in TREC-2 = 5 letters

» If we remove stopwords then average word length: 6-7 letters * 2UHQWVA PE pia £pEuva Tou KEPTTPITE N OEIPG TwY YPAaUUATWY GE

pia AEEN Oev €xel onuaoia. ApKei TO TTPWTO Kal TO TEAEUTAIO ypduua
va gival oTn owoTr oeglpd.
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MavematApio KpAtng, TuAua EmaoTAiung YoAoyioTwy
Avoign 2006

AidpBpwaon AIGAEENG

HY463 - Zuotiuata Avaktnang MNMAnpogopiwv . Eigaywyn
Information Retrieval (IR) Systems

* Baoikég ‘Evvoieg
* ZTOTIOTIKEG TEXVIKEG ZUTTiEONG
» Texvikég Zupmieong Aeggikou (Dictionary)

ZUI,IﬂitO'n Ktll,léVOU . iupnllson szmpappsvo’u Eupetnpiou
Text Compr‘ession _vzir):;r;on OF OUHTTIEGHEVT

— OVEOTPAUMEVO EUPETAPIA
— suffix trees and arrays

Mavvng TEiT¢ikag — signature files

Nidheén  :13b » HY438 (Zuytricon Aedouévwy Kal ZNUETWY)

Huepopnvia : 14-3-2006
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Eicaywyn &9 2UUTTiEON

* Encoding transforms data from one representation to another * Advantages of Compression

— Save space in memory (e.g., compressed cache)
— Save space when storing (e.g., disk, CD-ROM)

* Lossless: decoder can reproduce message exactly — Save time when accessing (e.g., I/O)

. Lossy: can reproduce message approximately — Save time when communicating (e.g., over network)

« Compression is an encoding that takes less space

» Degree of compression: (Original - Encoded) / Encoded

» Disadvantages of Compression
— example: (125 MB - 25 MB) / 25 MB = 400%

— Costs time and computation to compress and uncompress

» Compression ratio: the size of the compressed file as a fraction — Complicates or prevents random access
of the uncompressed file — May involve loss of information (e.g., JPEG)
— example: 25MB/125 MB = 0.2 — Makes data corruption much more costly. Small errors may make all of the
» (compressed size) = 0.2 (original size) data inaccessible.
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Mapadeiyuara TeEXVIKWV ZUuTTieong

Generic File Compression

« files: gzip, bzip, BOA

« archivers: ARC, PKZip

« file systems: NTFS
Communication

» Fax: ITU-T Group 3

* Modems: V.42bis protocol, MNP5
Multimedia

» Images: gif, jbig, jpeg-Is, jpeg
* TV: HDTV (mpeg-4)

* Sound: mp3
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2upTTieon Kelpévou

» Text Compression vs Data Compression
— Text compression predates most work on general data compression.

— Text compression is a kind of data compression optimized for text (i.e.,
based on a language and a language model).

Text compression can be faster or simpler than general data compression,
because of assumptions made about the data.

Text compression assumes a language and language model;

— Data compression learns the model on the fly.

Text compression is effective when the assumptions are met;

— Data compression is effective on almost any data with a skewed distribution.
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Aiakpion TeEXVIKWV ZuuTTieong

(A) ZTaTioTIKEG TEXVIKEG (statistical)

— BaoiCovral o€ gkTIHAOEIG 600V agopd TNV MOAvOTNTA EYRAVIONG TWV
OUHBOAWY

— 0600 TTI0 aKPIBEIG ival auTéG o1 EKTINAOEIG TOOO KAAUTEPN CUUTTIEDN
ETMITUYXAVETAI
— TToPAdEiyHATA TETOIWV TEXVIKWV:
« Huffman coding
« Arithmetic coding

(B) Texvikég Baoel Ae§ikoU (dictionary-based)
— avTikaBioToUV pia akoAouBia GUPBOAWY pe évav BEIKTN TTPOG Hia
TrponyoUpevn eu@Aavion TnG akoAoubiag
— TTOPAdEIYHATA TETOIWV TEXVIKWV:
* Ziv-Lempel family

— They can compress English text to less than 4 bits per character
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006

Baoikég ‘Evvoleg

* A symbol can be a character, a text word, or a fixed number of
characters.

» Alphabet: the set of all possible symbols in the text

* Modeling: the task of estimating the probability of each next
symbol

* Model: a collection of probability distributions, one for each
context in which a symbol can be coded

» Coding: The conversion of symbols to binary digits

» Decoding: Reconstruction of the original text (using the same
model)
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(A) ZTaTioTikéG Texvikés: Elcaywyn (1)

Huffman Coding
« 16¢a:

— KwdikoTrolei pe Aiyétepa bits Ta gUpBoAa pe peyadAn meavetnTa epedaviong
*  ATTOTEAEOUATIKOTNTA:

— They are able to compress English text to approximately 5 bits per character
(instead of the usual 7-8)

* Word-based Huffman
— They are able to compress English text to approximately 2 bits per character
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2T1aTIOTIKEG TexVIKEG: Elcaywyn (I1)

Arithmetic Coding
+ 15éa:
— Computes the code incrementally, one symbol at a time, as opposed to

Huffman coding scheme in which each different symbol is pre-encoded using
a fixed-length number of bits.

*  AtroTeAeouaTIKOTNTA
— They can compress English text to just over 2 bits per character
* Aduvapia
— The incremenal nature does not allow decoding a string which starts in the
middle of the compressed file. This requires decoding the whole text from the

beginning until the desired word. This makes arithmetic coding inadequate
for use in IR environment.
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2TATIOTIKEG TEXVIKEG:
The Lower Bound of Compression

In an optimal encoding scheme,
a symbol that is expected to occur with probability p
should be assigned a code of length log,1/p bits.
[Shannon]

* The number of bits in which a symbol is best coded represents the
information content of the symbol

* Mapadeiypata
p=1 — log, 1/1=0
p=1/2 — log, 1/(1/2)=log,2= 1
p=1/4 — log, 1/(1/4)=log,4=2
“Eotw A(1/2), B(1/4), C(1/4)
* |code(A)|=1, |code(B)|=2, |code(C)|=2
» code(A)=1, code(B)=00, code(C)=01
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2TATIOTIKEG TEXVIKEG:
The Lower Bound of Compression (Il)

» The average amount of information per symbol over the whole
alphabet is called the entropy of the probability distribution, given
by:

— E =% pilog,1/pi

» Eis a lower bound on compression, measured in bits per symbol,
which applies to any coding method based on the probability
distribution pi.

Mapadeiypa
« A(1/2), B(1/4), C(1/4), cod(A)=1, code(B)=00, code(C)=01
E=1/21+1/4*2 +1/4*2=1.5
* A(1/2), B(1/2) cod(A)=1, code(B)=0
E=1/2"1+1/2*1=1

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006
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Z1amoTikéG Texvikég: Modeling

* ZKOTTOG
— provide a probability assignment for the next symbol to be coded.
— High compression can be obtained by forming good models

* AlGKpION HOVTEAWV
— (m1) Adaptive
— (m2) Static
— (m3) Semi-static
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21amoTikéG Texvikég>Modeling:
(m1) Adaptive Models

+ Start with no information about the text and progressively learn
about its statistical distribution as the compression process goes
on

» Thus, adaptive models need only one pass over the text and store
no additional information apart from the compressed text

» Forlong enough texts, these models converge to the true
statistical distribution of the text

» Disadvantage:

— The decompression of a file has to start from its beginning (since information
on the distribution of the data is stored incrementally inside the file)

— Inadequate for full-text retrieval where random access to compressed
patterns is a must
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21aTioTikéG Texvikég>Modeling:
(m2) Static Models

» They assume an average distribution for all input texts

» The modeling phase is done only once for all texts to be coded in
the future

» They tend to achieve poor compression ratios when the data
devites from initial statistical assumptions
— e.g. a model adequate for English literary texts will probably perform poorly
for financial texts containing a lot of different numbers, as each number is
relatively rare and so receives long codes
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21amoTikéG Texvikég>Modeling:
(m3) Semi-static Models

* They do not assume any distribution on the data, but learn it in a
first pass.

» In a second pass, they compress the data using a fixed code
derived from the distribution learned from the first pass.

+ At decoding time, information on the data distribution is sent to the
decoder before transmitting the encoded symbols.

» Disadvantages:
— they must make 2 passes

— the information on the data distribution must be stored to be used by the
decoder to decompress

» Advantage for IR:

— since the same codes are used at every point in the compressed file, direct
access is possible.
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21aTioTikég Texvikég>Modeling:
Word-based Models

» They take words instead of characters as symbols.
» Advantages of IR:

— they achieve higher compression rates

— words are the atoms on which most IRS are built

— words are already stored for indexing purposes (inverted files)
and so might be used as part of the model for compression

— word frequencies are also useful in answering queries involving
combinations of words because the best strategy is to start with
the least frequent words first
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Z1amioTikéG Texvikég> Coding

» Coding is the task of obtaining the representation (code) of a
symbol based on a probability distribution given by a model.

» Design goals
— assign short codes to likely codes and long codes to unlikely
ones
— coding and decoding speed
+ As the entropy of a probability distribution is a lower bound on how
short the average length of a code can be, the quality of a coder is
measured in terms of how close to the entropy it is able to get
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Z1amoTikéG Texvikég> Coding
Semi-Static Huffman

» First pass: the modeler determines the probability distribution of
the symbols and builds a coding tree
» Second pass: each next symbol is encoded according to the
coding tree
« Compression is achieved by assigning shorter codes to more
frequent symbols.
— Huffman codes
* Invented by Huffman as a class assignment in 1950.
+ Used in many, if not most compression algorithms: gzip, bzip, jpeg (as
option), fax compression,...
» Decompression uniqueness is guaranteed because no code is a
prefix of another

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006 39

Z1aToTIkEG Texvikég> Coding
Semi-Static Huffman: Example

* Text: «for each rose, a rose is a rose»
» Frequencies: «rosex(3), «a»(2), «for»(1), «each»(1), « ,»(1), «is»(1)
» Huffman tree: binary trie built on binary codes

No code is
prefixof another

+ Original text: for each rose, a rose is a rose|
* Compressed text: 0110 0100 1 0101 00 1 0111 00 1
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21amoTIkEG Texvikég> Coding
Semi-Static Huffman: Building the Huffman Tree

(1) For each symbol of the alphabet a node containing the symbol and its

probability is created
At this point we have a forest of one-node trees whose probabilities sum up to 1

(2) The two nodes with the smallest probabilities become children of a newly
created parent node. To this node with associate with the sum of the
probabilities of its children

(3) The operation is repeated ignoring nodes that are already children, until there is
only one node which becomes the root of the tree.

Notes:

» By delaying the pairing of nodes with high probabilities, the algorithm
necessarily places them closer to the root node, making their code smaller

* The two branches from every internal node are consistently labeled 0 and 1

» Given s symbols and their frequencies in the text, the algorithm build the
Huffman tree in O(s log s) time.
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Z1aToTIkEG Texvikég> Coding
Semi-Static Huffman: Building the Huffman Tree

« Text: «for each rose, a rose is a rose»
» Frequencies: «rosex(3), «a»(2), «for»(1), «each»(1), « ,»(1), «is»(1)

each: 000
. 001
for: 010
is: 011

'\ 1 a: 10
Teach(1)] [_(1)] [for(1) | [is(1) ] [rose(3) | rose: 11
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Z1amoTikéG Texvikég> Coding
Semi-Static Huffman: Canonical Tree

* Motivation:

— The number of Huffman trees which can be built for a given
probability distribution is large:

— This is because interchanging left and right subtrees of any
internal node results in a different tree whenever the two
subtrees are different in structure, but the weighted average
code length is not affected

— Instead of using any kind of tree, the preferred choice for most
applications is to adopt a canonical tree which imposes a
particular order to the coding bits.
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Z1aToTIkEéG Texvikég> Coding
Semi-Static Huffman: Canonical Tree ()

* A Huffman tree is canonical when the height of the left subtree of
any node is never smaller than that of the right subtree, and all
leaves are in increasing order of probabilities from left to right

Least frequent symbol

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006
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Z1amoTikéG Texvikég> Coding
Semi-Static Huffman: Encoding & Decoding

Encoding: Start at leaf of Huffman tree and follow path to the root.
Reverse order of bits and send.

Decoding: Start at root of Huffman tree and take branch for each bit
received. When at leaf can output message and return to root
The stream of bits in the compressed file is traversed from left to
right
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21aTIOTIKEG TEXVIKEG™> Coding: Semi-Static Huffman:
Byte-Oriented Huffman Code

* Huffman tree with degree 256 instead of 2
» Typically, the code assigned to each symbol contains between 1
and 5 bytes

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete, Spring 2006
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21aTIOTIKEG TEXVIKEG™> Coding: Semi-Static Huffman:
Remarks

» Huffman coding allows perfoming direct searching on
compressed text.

* The exact search can be done on the compressed text directly,
using any known sequential pattern matching algorithm
— The algorithms are discussed later on (see also MIR 8.8)

» For approximate searching on the compressed text it is eight times
faster than an equivalent approximate searching on the
uncompressed text.
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Other techniques




Example Techniques

* Restricted Variable-Length Codes

— Use first bit to indicate case.

— 8 most frequent characters fit in 4 bits (0xxx).

— 128 less frequent characters fit in 8 bits (1xxxxxxx)

— In English, 7 most frequent characters are 65% of occurrences
Expected code length is approximately 5.4 bits per character, for a 32.8%
compression ratio.
» Restricted Var-Length: Generalization for More Symbols

— Use more than 2 cases.

— 1xxx for 23 = 8 most frequent symbols, and

— Oxxx1xxx for next 26 = 64 symbols, and

— Oxxx0xxx1xxx for next 2° = 512 symbols, and

— Average code length ~ 6.2 bits per symbol (23.0%) compression ratio.

— Pro: Variable number of symbols. Con: Only 72 symbols in 1 byte.
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Dictionary Methods

Dictionary Methods

Dictionary Methods> Static Dictionaries

» They achieve compression by replacing groups of consecutive
symbols (or phrases) with a pointer to an entry in a dictionary

* Thus, the central decision in the design of a dictionary method is
the selection of entries in the dictionary.

* The choice of phrases can be made by
— static,
— semi-adaptive, or
— adaptive algorithms
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» The simplest dictionary schemes use static dictionaries containing
short phrases

» Example: Digram Coding
— ldea: selected pairs of letters are replaced with codewords

— at each step the next two characters are inspected and verified if they
correspond to a digram in the dictionary
— If so, they are coded together and the coding position is shifted by two
characters; otherwise, the single character is represented by its normal code
and the coding position is shifted by one character
* Weaknesses:
— The dictionary may be suitable for one text and unsuitable for another.
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Dictionary Methods>
Semi-Static and Adaptive Dictionaries

Adaptive Dictionary Methods>
Lempel-Ziv Compression Algorithms

» Construct a new dictionary for each text to be compressed

» The problem of deciding which phrases to put in the dictionary is
not an easy task
» Adaptive Dictionaries (Ziv-Lempel)
— Idea: Replace strings of characters with a reference to a previous occurrence
of the string.

— This approach is effective because most characters can be coded as part of
a string that has occurred earlier in the text

— If the pointer to an earlier occurrence of a string is stored in fewer bits than
the string it replaces, then compression is achieved
+ Disadvanteages of Adaptive Dictionaries

— they do not allow decoding to start in the middle of the compressed file (so,
direct access is not possible unless we decode the text from its beginning)
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» Use the text already encountered to build the dictionary.
— If text follows Zipf's laws, a good dictionary is built.

— No need to store dictionary; encoder and decoder each know how to build it
on the fly.

* Some variants: LZ77, Gzip, LZ78, LZW, Unix compress
» Variants differ on:

— how dictionary is built,

— how pointers are represented (encoded), and

— limitations on what pointers can refer to.
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Adaptive Dictionary Methods> LZ77(LZ1)

Data is encoded as a sequence of tuples:
<Number of characters back, Length, Next character>
— Example:
« String:  abaababbbbbbbbbbba
* Encoding: <0,0,a> <0,0,b> <2,1,a> <3,2,b> <1,10,a>
« Encoding: <0,0,a>

« String: a
+ Encoding: <0,0,a> <0,0,b>
« String: ab

* Encoding: <0,0,a> <0,0,b> <2,1,a>

« String: abaa

» Encoding: <0,0,a> <0,0,b> <2,1,a> <3,2,b>

- String: abaabab

« Encoding: <0,0,a> <0,0,b> <2,1,a> <3,2,b><1,10,a>
« String: abaababbbbbbbbbbba
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Adaptive Dictionary Methods> LZ77(LZ1)

* Optimizations:
— Limit size of back-pointers, e.g., 8K (13 bits).
— Restrict length of phrases, e.g., 15 characters (4 bits).
— Variable-length encode pointers and length.
» Encoding data structures:
— Trie, hash table, or binary search tree.
» Characteristics:
— Very fast decoding.
— Low memory overhead.
— Decoder is sufficiently small to include in compressed data.
« Self expanding archives, typically found on PCs.
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Adaptive Dictionary Methods> LZ77> Gzip

» Gzip is a variant of LZ77

— Encoder locates previous strings using a hash table (three characters), then
a linked list

— User preferences (speed vs space) determine list length

— For maximal compression, uses lookahead instead of simple greedy search
for string matches

— Uses one Huffman for offsets, another for lengths and characters
— Huffman codes are semi-static:

» Textis processed in chunks of up to 64K.

« Each chunk has its own Huffman code.

» Huffman codes are stored in the compressed text.
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Adaptive Dictionary Methods> LZ78 (LZ2)

» Data is encoded as a sequence of tuples:
- <Phrase ID, Next character>
— Instead of looking backwards for substrings, use a phrase
dictionary
» Phrase length does not need to be stored in the tuple.
» Phrase ids can take up less space than back pointers
» Phrase dictionary grows until a memory limit is reached.
* When full, dictionary:

— is reinitialized,
— is partially rebuilt, or
— becomes static.
» Encodes faster than LZ77, decodes more slowly.
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Compression Techniques: Summary

Statistical
Py Dictionary-based

Codin, I
9 Phrase Selection

Modeling

/TNluffman Arithmetic

Static SemiStatic Adaptive

Static Semi-Adaptive Adaptive
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Mapadeiyuara TEXVIKWV ZUuTTieong

Generic File Compression

« files: gzip (LZ77), bzip (Burrows-Wheeler), BOA (PPM)

« archivers: ARC (LZW), PKZip (LZW+)

« file systems: NTFS

Communication

* Fax: ITU-T Group 3 (run-length + Huffman)

* Modems: V.42bis protocol (LZW) MNP5 (RL + Huffman)

Multimedia

» Images: gif (LZW), jbig (context), jpeg-Is (residual),
jpeg (transform+RL+arithmetic)

* TV: HDTV (mpeg-4)

+ Sound: mp3
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Comparing Text Compression Techniques

Character Word

Arithmetic Huffman Huffman Ziv-Lempel
Compression ratio very good poor very good good
Compression speed slow fast fast very fast
Decompression speed slow fast very fast very fast
Memory space low low high moderate
Random access no yes yes no
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Inverted File Compression (Sec. 7.4.5)

* An Inverted file contains:
— (a) a vocabulary containing all distinct words in the text collection

— (b) for each word in the vocabulary, a list of all documents in which that word
occurs

* The size of the inverted file can be reduced by compressing the

inverted lists \

Vocabulary Occurrences
beautiful 70, 80, 100, 233, 450, 890, ...
flowers +45, 58, 66, 82, 123, 790, 920, 955, 1240....
garden 18, 29, 55, 61, 82, 103, 844, 1200, 1345, ...
house "6, 22, 33,42, 90, ....
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Inverted File Compression:
Compressing Inverted Lists

Occurrences
70, 80, 100, 233, 450, 890, ...

45, 58, 66, 82, 123, 790, 920, 955, 1240,...
18, 29, 55, 61, 82, 103, 844, 1200, 1345, ...
6,22, 33,42, 90, ....

» As the list of document numbers within the inverted list is in
ascending order, it can also be considred as a sequence of gaps
between document numbers.

« E.g. [2,8,22,30] -> [2,6,14,8]
» [21002, 21008, 21022, 21030] -> [21002,6,14,8]

» Since processing is usually done sequentially starting from the
beginning of the list, the original document numbers can always be
recomputed through sums of the gaps.
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Inverted File Compression:
Compressing Inverted Lists (1)

* These gaps are
— small for frequent words and
— large for infrequent words
+ Compression can be obtained by encoding small values with
shorter codes

» Codings
— Unary code

« Aninteger x is coded as (x-1) one bits followed by a zero bit, so the code
for the integer 3 is 110
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Inverted File Compression:
Compressing Inverted Lists (l11)

» Elias-y
— the number x is represented by a concatenation of two parts:
+ (1) a unary code for 1 + logx | and
+ (2) a code of Llogx ] bits that represents the valus of x-2°ex Jin binary

* Elias-0
— represents the prefix indicating the number of binary bits by the Elias-y code
* Golomb

— presented another run-length coding method for positive integers. It is very
effective when the probability distribution is geometric.
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Inverted File Compression:
Compressing Inverted Lists (1V)

» Example codes for integers:
— MIR BOOK page 185
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Searching Compressed Files

Searching Compressed Files
Inverted Files

» Huffman coding allows searching directly on compressed text

» Since Huffman coding needs to store the codes of each symbol,
this scheme has to store the whole vocabulary of the test.

» This is exploited to efficiently search complex queries

» Evaluating single word queries:
— they are first searched in the vocabulary
— their (Huffman) codes are collected which are then searched in the
compressed file
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* EmavaAnyn
— we represent gaps by schemes that favor small numbers
— reductions in 90% can be obtained by block addressing indices with blocks
of 1 Kb size
* Remarks:
— Compression does not necessarily degrade time performance
» most of the time is spent in answering a query is in the disk transfer
— Query times on compressed or decompressed indices are roughly similar
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