Στατιστικά Κειμένου και Συμπίεση Κειμένου

Πιάννης Τζίτζικας
Διάλεξη : 13a
Ημερομηνία : 14-4-2006
Διάρθρωση Διάλεξης

- Συχνότητα Εμφάνισης Λέξεων
- Ο Νόμος του Zipf
- Ο Νόμος του Heaps

Κείμενο

Starting with hieroglyphs, the first written surfaces (stone, wood, animal skin, papyrus and rice paper), and paper, text has been created everywhere, in many forms and languages.
• How is the frequency of different words distributed?

• How fast does vocabulary size grow with the size of a corpus?

• Such factors affect the performance of information retrieval and can be used to select appropriate term weights and other aspects of an IR system.

Συχνότητα Λέξεων

• A few words are very common.
 – 2 most frequent words (e.g. “the”, “of”) can account for about 10% of word occurrences.

• Most words are very rare.
 – Half the words in a corpus appear only once, called hapax legomena (Greek for “read only once”)

• Called a “heavy tailed” distribution, since most of the probability mass is in the “tail”
Sample Word Frequency Data
(from B. Croft, UMass)

<table>
<thead>
<tr>
<th>Frequent Word</th>
<th>Number of Occurrences</th>
<th>Percentage of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>7,398,934</td>
<td>5.9</td>
</tr>
<tr>
<td>of</td>
<td>3,893,790</td>
<td>3.1</td>
</tr>
<tr>
<td>to</td>
<td>3,364,653</td>
<td>2.7</td>
</tr>
<tr>
<td>and</td>
<td>3,320,687</td>
<td>2.6</td>
</tr>
<tr>
<td>in</td>
<td>2,311,785</td>
<td>1.8</td>
</tr>
<tr>
<td>is</td>
<td>1,559,147</td>
<td>1.2</td>
</tr>
<tr>
<td>for</td>
<td>1,313,561</td>
<td>1.0</td>
</tr>
<tr>
<td>The</td>
<td>1,144,860</td>
<td>0.9</td>
</tr>
<tr>
<td>that</td>
<td>1,066,503</td>
<td>0.8</td>
</tr>
<tr>
<td>said</td>
<td>1,027,713</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Frequencies from 336,310 documents in the 1GB TREC Volume 3 Corpus
125,720,891 total word occurrences; 508,209 unique words

Ο νόμος του Zipf

- **Rank r**: The numerical position of a word in a list sorted by decreasing frequency \(f \).
- **Zipf (1949)** “discovered” that: \(f \cdot r = k \) (for constant \(k \))

- \(\Pi \chi \):
 - \(f_1 * 1 = k \)
 - \(f_2 * 2 = k \)
 - \(f_3 * 3 = k \)
 - ...
 - \(f_i * i = k \)
 - \(= f_1 * 1 = f_1 \iff f_i = f_1 / i \)

- \(H\) συχνότητα της \(i\)-th πιο συχνά εμφανιζόμενης λέξης είναι \(1/i \) φορές η συχνότητα της πιο συχνής.
- Πιο ακριβές: \(1/i^\theta \) όπου \(\theta \) μεταξύ 1.5 και 2
Sample Word Frequency Data (again)
(from B. Croft, UMass)

<table>
<thead>
<tr>
<th>Frequent Word</th>
<th>Number of Occurrences</th>
<th>Percentage of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>7,398,934</td>
<td>5.9</td>
</tr>
<tr>
<td>of</td>
<td>3,893,790</td>
<td>3.1</td>
</tr>
<tr>
<td>to</td>
<td>3,364,653</td>
<td>2.7</td>
</tr>
<tr>
<td>and</td>
<td>3,320,687</td>
<td>2.6</td>
</tr>
<tr>
<td>in</td>
<td>2,311,785</td>
<td>1.8</td>
</tr>
<tr>
<td>is</td>
<td>1,559,147</td>
<td>1.2</td>
</tr>
<tr>
<td>for</td>
<td>1,313,561</td>
<td>1.0</td>
</tr>
<tr>
<td>The</td>
<td>1,144,860</td>
<td>0.9</td>
</tr>
<tr>
<td>that</td>
<td>1,066,503</td>
<td>0.8</td>
</tr>
<tr>
<td>said</td>
<td>1,027,713</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Frequencies from 336,310 documents in the 1GB TREC Volume 3 Corpus
125,720,891 total word occurrences; 508,209 unique words

Zipf's Law Impact on IR

- **Good News**: Stopwords will account for a large fraction of text so eliminating them greatly reduces inverted-index storage costs.

- **Bad News**: For most words, gathering sufficient data for meaningful statistical analysis (e.g. for correlation analysis for query expansion) is difficult since they are extremely rare.
Zipf and Term Weighting

- Luhn (1958) suggested that both extremely common and extremely uncommon words were not very useful for indexing.

Does Real Data Fit Zipf's Law?

- A law of the form \(y = kx^c \) is called a power law.
- Zipf's law \((f_i = f_1/i) \) is a power law with \(c = -1 \)
- On a log-log plot, power laws give a straight line with slope \(c \).

\[
\log(y) = \log(kx^c) = \log(k) + c \log(x) = \log(k) - \log(x)
\]

Zipf is quite accurate except for very high and low rank.
Mandelbrot (1954) Correction

• **Zipf’s Law:** \(f_i = f_1/i^\theta \)
• **Mandelbrot correction:** \(f_i = f_1k/(c+i)^\theta \)
 – \(c \): parameter
 – \(k \): so that all frequencies add to \(N \)
 – This formula fits better with the read texts

Explanations for Zipf’s Law

• Zipf’s explanation was his “principle of least effort.” Balance between speaker’s desire for a small vocabulary and hearer’s desire for a large one.
 – Η επανάληψη λέξεων είναι ευκολότερη από την επινόηση/χρήση νέων

• Debate (1955-61) between Mandelbrot and H. Simon over explanation.

• Li (1992) shows that just random typing of letters including a space will generate “words” with a Zipfian distribution.
 – http://linkage.rockefeller.edu/wli/zipf/
Vocabulary Growth

- How does the size of the overall vocabulary (number of unique words) grow with the size of the corpus?
- This determines how the size of the inverted index will scale with the size of the corpus.
- Vocabulary not really upper-bounded due to proper names, typos, etc.

Heaps’ Law

- If V is the size of the vocabulary and the n is the length of the corpus in words:

$$V = Kn^\beta$$

with constants K, $0 < \beta < 1$

- Typical constants:
 - $K \approx 10$–100
 - $\beta \approx 0.4$–0.6 (approx. square-root)
Heaps’ Law Data

Explanation for Heaps’ Law

- Can be derived from Zipf’s law by assuming documents are generated by randomly sampling words from a Zipfian distribution.
Average Length of Words

- Why? To estimate the storage space needed for the vocabulary.

- Average word length in TREC-2 = 5 letters
- If we remove stopwords then average word length: 6-7 letters

Επίσης

- Συμφωνά με μια ένυερα του Κέμπριτζ η σειρά των γραμμάτων σε μια λέξη δεν έχει σημασία. Ακρεί το πρώτο και το τελευταίο γράμμα να είναι στη σωστή σειρά.

- Σύμφωνα με μια έρευνα του Κέμπριτζ η σειρά των γραμμάτων σε μια λέξη δεν έχει σημασία. Αρκεί το πρώτο και το τελευταίο γράμμα να είναι στη σωστή σειρά.
Συμπίεση Κειμένου
Text Compression

Γιάννης Τζίτζικας
Διάλεξη : 13b
Ημερομηνία : 14-3-2006

Διάρθρωση Διάλεξης

• Εισαγωγή
• Βασικές Έννοιες
• ΣΤΑΤΙΣΤΙΚΕΣ Τεχνικές Συμπίεσης
• Τεχνικές Συμπίεσης ΛΕΞΙΚΟΥ (Dictionary)

• Συμπίεση Ανεστραμμένου Ευρετηρίου
• Αναζήτηση σε συμπιεσμένα
 – αρχεία
 – ανεστραμμένα ευρετήρια
 – suffix trees and arrays
 – signature files
• HY438 (Συμπίεση Δεδομένων και Σημάτων)
Eisagogē

• **Encoding** transforms data from one representation to another
• **Compression** is an encoding that takes less space
• **Lossless**: decoder can reproduce message exactly
• **Lossy**: can reproduce message approximately
• **Degree of compression**: \(\frac{\text{Original} - \text{Encoded}}{\text{Encoded}} \)
 – example: \(\frac{125 \text{ MB} - 25 \text{ MB}}{25 \text{ MB}} = 400\% \)
• **Compression ratio**: the size of the compressed file as a fraction of the uncompressed file
 – example: \(\frac{25\text{MB}}{125 \text{ MB}} = 0.2 \)
 » (compressed size) = 0.2 (original size)

Συμπίεση

• **Advantages of Compression**
 – Save space in memory (e.g., compressed cache)
 – Save space when storing (e.g., disk, CD-ROM)
 – Save time when accessing (e.g., I/O)
 – Save time when communicating (e.g., over network)

• **Disadvantages of Compression**
 – Costs time and computation to compress and uncompress
 – Complicates or prevents random access
 – May involve loss of information (e.g., JPEG)
 – Makes data corruption *much* more costly. Small errors may make all of the data inaccessible.
Generic File Compression

- files: gzip, bzip, BOA
- archivers: ARC, PKZip
- file systems: NTFS

Communication

- Fax: ITU-T Group 3
- Modems: V.42bis protocol, MNP5

Multimedia

- Images: gif, jbig, jpeg-ls, jpeg
- TV: HDTV (mpeg-4)
- Sound: mp3

Text Compression vs Data Compression

- Text compression predates most work on general data compression.
- Text compression is a kind of data compression optimized for text (i.e., based on a language and a language model).
- Text compression can be faster or simpler than general data compression, because of assumptions made about the data.
- Text compression assumes a language and language model;
- Data compression learns the model on the fly.
- Text compression is effective when the assumptions are met;
- Data compression is effective on almost any data with a skewed distribution.
Διάκριση Τεχνικών Συμπίεσης

(A) Στατιστικές τεχνικές (statistical)

- βασίζονται σε εκτιμήσεις όσον αφορά την πιθανότητα εμφάνισης των συμβόλων
- όσο πιο ακριβείς είναι αυτές οι εκτιμήσεις τόσο καλύτερη συμπίεση επιτυγχάνεται
- παραδείγματα τέτοιων τεχνικών:
 - Huffman coding
 - Arithmetic coding

(B) Τεχνικές βάσει Λεξικού (dictionary-based)

- αντικαθιστούν μια ακολουθία συμβόλων με έναν δείκτη προς μια προηγούμενη εμφάνιση της ακολουθίας
- παραδείγματα τέτοιων τεχνικών:
 - Ziv-Lempel family
 - They can compress English text to less than 4 bits per character

Βασικές Έννοιες

- **Symbol** can be a character, a text word, or a fixed number of characters.
- **Alphabet**: the set of all possible symbols in the text
- **Modeling**: the task of estimating the probability of each next symbol
- **Model**: a collection of probability distributions, one for each context in which a symbol can be coded
- **Coding**: The conversion of symbols to binary digits
- **Decoding**: Reconstruction of the original text (using the same model)
Huffman Coding

- **Idea:**
 - Use fewer bits for symbols with high probability of occurrence.

- **Effectiveness:**
 - They are able to compress English text to approximately 5 bits per character (instead of the usual 7-8).

- **Word-based Huffman**
 - They are able to compress English text to approximately 2 bits per character.

Arithmetic Coding

- **Idea:**
 - Computes the code incrementally, one symbol at a time, as opposed to Huffman coding scheme in which each different symbol is pre-encoded using a fixed-length number of bits.

- **Effectiveness:**
 - They can compress English text to just over 2 bits per character.

- **Limitation:**
 - The incremental nature does not allow decoding a string which starts in the middle of the compressed file. This requires decoding the whole text from the beginning until the desired word. This makes arithmetic coding inadequate for use in IR environment.
In an optimal encoding scheme, a symbol that is expected to occur with probability \(p \) should be assigned a code of length \(\log_2 \frac{1}{p} \) bits.

[Shannon]

- The number of bits in which a symbol is best coded represents the information content of the symbol.

Examples
- \(p = 1 \) → \(\log_2 \frac{1}{1} = 0 \)
- \(p = \frac{1}{2} \) → \(\log_2 \frac{1}{(1/2)} = \log_2 2 = 1 \)
- \(p = \frac{1}{4} \) → \(\log_2 \frac{1}{(1/4)} = \log_2 4 = 2 \)

Example
- \(A\left(\frac{1}{2}\right), B\left(\frac{1}{4}\right), C\left(\frac{1}{4}\right) \)
 - \(|\text{code}(A)| = 1, |\text{code}(B)| = 2, |\text{code}(C)| = 2 \)
 - \(\text{code}(A) = 1, \text{code}(B) = 00, \text{code}(C) = 01 \)

The average amount of information per symbol over the whole alphabet is called the **entropy** of the probability distribution, given by:

\[
E = \sum p_i \log_2 \frac{1}{p_i}
\]

- \(E \) is a lower bound on compression, measured in bits per symbol, which applies to any coding method based on the probability distribution \(p_i \).

Example
- \(A\left(\frac{1}{2}\right), B\left(\frac{1}{4}\right), C\left(\frac{1}{4}\right), \text{cod}(A) = 1, \text{cod}(B) = 00, \text{cod}(C) = 01 \)
 - \(E = \frac{1}{2}\times 1 + \frac{1}{4}\times 2 + \frac{1}{4}\times 2 = 1.5 \)
- \(A\left(\frac{1}{2}\right), B\left(\frac{1}{2}\right) \text{ cod}(A) = 1, \text{cod}(B) = 0 \)
 - \(E = \frac{1}{2}\times 1 + \frac{1}{2}\times 1 = 1 \)
Statistical Techniques: Modeling

- **Purpose**
 - provide a probability assignment for the next symbol to be coded.
 - High compression can be obtained by forming good models.

- **Model Classification**
 - (m1) Adaptive
 - (m2) Static
 - (m3) Semi-static

(m1) Adaptive Models

- Start with no information about the text and progressively learn about its statistical distribution as the compression process goes on.
- Thus, adaptive models need only one pass over the text and store no additional information apart from the compressed text.
- For long enough texts, these models converge to the true statistical distribution of the text.
- Disadvantage:
 - The decompression of a file has to start from its beginning (since information on the distribution of the data is stored incrementally inside the file).
 - Inadequate for full-text retrieval where random access to compressed patterns is a must.
(m2) **Static Models**

- They assume an average distribution for all input texts
- The modeling phase is done only once for all texts to be coded in the future
- They tend to achieve poor compression ratios when the data deviates from initial statistical assumptions
 - e.g. a model adequate for English literary texts will probably perform poorly for financial texts containing a lot of different numbers, as each number is relatively rare and so receives long codes

(m3) **Semi-static Models**

- They do not assume any distribution on the data, but learn it in a first pass.
- In a second pass, they compress the data using a fixed code derived from the distribution learned from the first pass.
- At decoding time, information on the data distribution is sent to the decoder before transmitting the encoded symbols.
- Disadvantages:
 - they must make 2 passes
 - the information on the data distribution must be stored to be used by the decoder to decompress
- Advantage for IR:
 - since the same codes are used at every point in the compressed file, direct access is possible.
Modeling: Word-based Models

- They take *words* instead of characters as symbols.
- Advantages of IR:
 - they achieve higher compression rates
 - words are the atoms on which most IRS are built
 - words are already stored for indexing purposes (inverted files) and so might be used as part of the model for compression
 - word frequencies are also useful in answering queries involving combinations of words because the best strategy is to start with the least frequent words first

Coding

- Coding is the task of obtaining the representation (code) of a symbol based on a probability distribution given by a model.
- Design goals
 - assign short codes to likely codes and long codes to unlikely ones
 - coding and decoding speed
- As the entropy of a probability distribution is a lower bound on how short the average length of a code can be, the quality of a coder is measured in terms of how close to the entropy it is able to get
Semi-Static Huffman

- First pass: the modeler determines the probability distribution of the symbols and builds a coding tree.
- Second pass: each next symbol is encoded according to the coding tree.
- Compression is achieved by assigning shorter codes to more frequent symbols.
 - Huffman codes
 - Invented by Huffman as a class assignment in 1950.
 - Used in many, if not most compression algorithms: gzip, bzip, jpeg (as option), fax compression,...
- Decompression uniqueness is guaranteed because no code is a prefix of another.

Semi-Static Huffman: Example

- Text: «for each rose, a rose is a rose»
- Frequencies: «rose»(3), «a»(2), «for»(1), «each»(1), «,»(1), «is»(1)
- Huffman tree: binary trie built on binary codes

```
  1
 / \
0   0
 \
  1
  a

  0  1
 0   1
 0  0 1
each , for is
```

- Original text: for each rose, a rose is a rose
- Compressed text: 0110 0100 1 0101 00 1 0111 00 1

No code is prefix of another
Semi-Static Huffman: Building the Huffman Tree

1. For each symbol of the alphabet a node containing the symbol and its probability is created. At this point we have a forest of one-node trees whose probabilities sum up to 1.

2. The two nodes with the smallest probabilities become children of a newly created parent node. To this node with associate with the sum of the probabilities of its children.

3. The operation is repeated ignoring nodes that are already children, until there is only one node which becomes the root of the tree.

Notes:
- By delaying the pairing of nodes with high probabilities, the algorithm necessarily places them closer to the root node, making their code smaller.
- The two branches from every internal node are consistently labeled 0 and 1.
- Given s symbols and their frequencies in the text, the algorithm build the Huffman tree in $O(s \log s)$ time.

Text: «for each rose, a rose is a rose»
Frequencies: «rose» (3), «a» (2), «for» (1), «each» (1), «,» (1), «is» (1)

Each symbol is assigned a binary code as follows:
- each: 000
- _: 001
- for: 010
- is: 011
- a: 10
- rose: 11

Diagram of the Huffman tree:
;++Motivation:
-- The number of Huffman trees which can be built for a given probability distribution is large:
-- This is because interchanging left and right subtrees of any internal node results in a different tree whenever the two subtrees are different in structure, but the weighted average code length is not affected
-- Instead of using any kind of tree, the preferred choice for most applications is to adopt a canonical tree which imposes a particular order to the coding bits.

;++A Huffman tree is canonical when the height of the left subtree of any node is never smaller than that of the right subtree, and all leaves are in increasing order of probabilities from left to right
Semi-Static Huffman: Encoding & Decoding

Encoding: Start at leaf of Huffman tree and follow path to the root. Reverse order of bits and send.

Decoding: Start at root of Huffman tree and take branch for each bit received. When at leaf can output message and return to root. The stream of bits in the compressed file is traversed from left to right.

Semi-Static Huffman: Byte-Oriented Huffman Code

- Huffman tree with degree 256 instead of 2
- Typically, the code assigned to each symbol contains between 1 and 5 bytes
Remarks

- Huffman coding allows performing **direct searching** on compressed text.

- The exact search can be done on the compressed text directly, using any known sequential pattern matching algorithm
 - The algorithms are discussed later on (see also MIR 8.8)

- For approximate searching on the compressed text it is eight times faster than an equivalent approximate searching on the uncompressed text.

Other techniques
Example Techniques

- **Restricted Variable-Length Codes**
 - Use first bit to indicate case.
 - 8 most frequent characters fit in 4 bits (0xxx).
 - 128 less frequent characters fit in 8 bits (1xxxxxxx).
 - In English, 7 most frequent characters are 65% of occurrences.
 - Expected code length is approximately 5.4 bits per character, for a 32.8% compression ratio.

- **Restricted Var-Length: Generalization for More Symbols**
 - Use more than 2 cases.
 - 1xxx for $2^3 = 8$ most frequent symbols, and
 - 0xxx1xxx for next $2^6 = 64$ symbols, and
 - 0xxx0xxx1xxx for next $2^9 = 512$ symbols, and
 - Average code length ~ 6.2 bits per symbol (23.0%) compression ratio.
 - Pro: Variable number of symbols. Con: Only 72 symbols in 1 byte.

Dictionary Methods
Dictionary Methods

- They achieve compression by replacing groups of consecutive symbols (or phrases) with a pointer to an entry in a dictionary.

- Thus, the central decision in the design of a dictionary method is the selection of entries in the dictionary.

- The choice of phrases can be made by
 - static,
 - semi-adaptive, or
 - adaptive algorithms

Dictionary Methods

Static Dictionaries

- The simplest dictionary schemes use static dictionaries containing short phrases

Example: Digram Coding
 - Idea: selected pairs of letters are replaced with codewords
 - at each step the next two characters are inspected and verified if they correspond to a digram in the dictionary
 - If so, they are coded together and the coding position is shifted by two characters; otherwise, the single character is represented by its normal code and the coding position is shifted by one character

Weaknesses:
 - The dictionary may be suitable for one text and unsuitable for another.
Dictionary Methods>
Semi-Static and Adaptive Dictionaries

• Construct a new dictionary for each text to be compressed
• The problem of deciding which phrases to put in the dictionary is not an easy task
• Adaptive Dictionaries (Ziv-Lempel)
 – Idea: Replace strings of characters with a reference to a previous occurrence of the string.
 – This approach is effective because most characters can be coded as part of a string that has occurred earlier in the text
 – If the pointer to an earlier occurrence of a string is stored in fewer bits than the string it replaces, then compression is achieved
• Disadvantages of Adaptive Dictionaries
 – they do not allow decoding to start in the middle of the compressed file (so, direct access is not possible unless we decode the text from its beginning)

Adaptive Dictionary Methods>
Lempel-Ziv Compression Algorithms

• Use the text already encountered to build the dictionary.
 – If text follows Zipf's laws, a good dictionary is built.
 – No need to store dictionary; encoder and decoder each know how to build it on the fly.

• Some variants: LZ77, Gzip, LZ78, LZW, Unix compress
• Variants differ on:
 – how dictionary is built,
 – how pointers are represented (encoded), and
 – limitations on what pointers can refer to.
Adaptive Dictionary Methods> LZ77(LZ1)

Data is encoded as a sequence of tuples:

\[\text{Number of characters back, Length, Next character} \]

Example:

- String: \(\text{abaababbbbbbbbbba} \)
- Encoding: \(<0,0,a> <0,0,b> <2,1,a> <3,2,b> <1,10,a> \)
- Encoding: \(<0,0,a> \)
- String: \(\text{a} \)
- Encoding: \(<0,0,a> <0,0,b> \)
- String: \(\text{ab} \)
- Encoding: \(<0,0,a> <0,0,b> <2,1,a> \)
- String: \(\text{abaa} \)
- Encoding: \(<0,0,a> <0,0,b> <2,1,a> <3,2,b> \)
- String: \(\text{abaabab} \)
- Encoding: \(<0,0,a> <0,0,b> <2,1,a> <3,2,b><1,10,a> \)
- String: \(\text{abaababbbbbbbbbba} \)

Optimizations:

- Limit size of back-pointers, e.g., 8K (13 bits).
- Restrict length of phrases, e.g., 15 characters (4 bits).
- Variable-length encode pointers and length.

Encoding data structures:

- Trie, hash table, or binary search tree.

Characteristics:

- Very fast decoding.
- Low memory overhead.
- Decoder is sufficiently small to include in compressed data.
 - Self expanding archives, typically found on PCs.
Gzip is a variant of LZ77
- Encoder locates previous strings using a hash table (three characters), then a linked list
- User preferences (speed vs space) determine list length
- For maximal compression, uses lookahead instead of simple greedy search for string matches
- Uses one Huffman for offsets, another for lengths and characters
- Huffman codes are semi-static:
 - Text is processed in chunks of up to 64K.
 - Each chunk has its own Huffman code.
 - Huffman codes are stored in the compressed text.

LZ78 (LZ2)

- **Data is encoded as a sequence of tuples:**
 - `<Phrase ID, Next character>`
 - Instead of looking backwards for substrings, use a phrase dictionary
- Phrase length does not need to be stored in the tuple.
- Phrase ids can take up less space than back pointers
- Phrase dictionary grows until a memory limit is reached.
- When full, dictionary:
 - is reinitialized,
 - is partially rebuilt, or
 - becomes static.
- Encodes faster than LZ77, decodes more slowly.
Compression Techniques: Summary

Statistical

- Modeling
 - Static
 - Semi-Static
 - Adaptive

Coding

- Huffman
- Arithmetic

Dictionary-based

Phrase Selection

- Static
- Semi-Adaptive
- Adaptive

Παραδείγματα Τεχνικών Συμπίεσης

Generic File Compression
- files: gzip (LZ77), bzip (Burrows-Wheeler), BOA (PPM)
- archivers: ARC (LZW), PKZip (LZW+)
- file systems: NTFS

Communication
- Fax: ITU-T Group 3 (run-length + Huffman)
- Modems: V.42bis protocol (LZW) MNP5 (RL + Huffman)

Multimedia
- Images: gif (LZW), jbig (context), jpeg-ls (residual), jpeg (transform+RL+arithmetic)
- TV: HDTV (mpeg-4)
- Sound: mp3
Comparing Text Compression Techniques

<table>
<thead>
<tr>
<th></th>
<th>Arithmetic</th>
<th>Character Huffman</th>
<th>Word Huffman</th>
<th>Ziv-Lempel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression ratio</td>
<td>very good</td>
<td>poor</td>
<td>very good</td>
<td>good</td>
</tr>
<tr>
<td>Compression speed</td>
<td>slow</td>
<td>fast</td>
<td>fast</td>
<td>very fast</td>
</tr>
<tr>
<td>Decompression speed</td>
<td>slow</td>
<td>fast</td>
<td>very fast</td>
<td>very fast</td>
</tr>
<tr>
<td>Memory space</td>
<td>low</td>
<td>low</td>
<td>high</td>
<td>moderate</td>
</tr>
<tr>
<td>Random access</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

Inverted File Compression (Sec. 7.4.5)

- An Inverted file contains:
 - (a) a vocabulary containing all distinct words in the text collection
 - (b) for each word in the vocabulary, a list of all documents in which that word occurs
- The size of the inverted file can be reduced by compressing the inverted lists

<table>
<thead>
<tr>
<th>Vocabulary</th>
<th>Occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>beautiful</td>
<td>70, 80, 100, 233, 450, 890, ...</td>
</tr>
<tr>
<td>flowers</td>
<td>45, 58, 66, 82, 123, 790, 920, 955, 1240, ...</td>
</tr>
<tr>
<td>garden</td>
<td>18, 29, 55, 61, 82, 103, 844, 1200, 1345, ...</td>
</tr>
<tr>
<td>house</td>
<td>6, 22, 33, 42, 90, ...</td>
</tr>
</tbody>
</table>
Inverted File Compression:
Compressing Inverted Lists

- As the list of document numbers within the inverted list is in ascending order, it can also be considered as a sequence of gaps between document numbers.
 - E.g. $[2,8,22,30]$ -> $[2,6,14,8]$
 - $[21002,21008,21022,21030]$ -> $[21002,6,14,8]$
- Since processing is usually done sequentially starting from the beginning of the list, the original document numbers can always be recomputed through sums of the gaps.

Occurrences

| 70, 80, 100, 233, 450, 890, ... |
| 45, 58, 66, 82, 123, 790, 920, 955, 1240,... |
| 18, 29, 55, 61, 82, 103, 844, 1200, 1345, ... |
| 6, 22, 33, 42, 90, .. |

- These gaps are
 - **small** for frequent words and
 - **large** for infrequent words
- Compression can be obtained by encoding small values with shorter codes

- **Codings**
 - Unary code
 - An integer x is coded as $(x-1)$ one bits followed by a zero bit, so the code for the integer 3 is 110
Inverted File Compression:
Compressing Inverted Lists (III)

- **Elias-γ**
 - the number \(x \) is represented by a concatenation of two parts:
 - (1) a unary code for \(1 + \lfloor \log x \rfloor \) and
 - (2) a code of \(\lfloor \log x \rfloor \) bits that represents the value of \(x - 2 \lfloor \log x \rfloor \) in binary

- **Elias-δ**
 - represents the prefix indicating the number of binary bits by the Elias-γ code

- **Golomb**
 - presented another run-length coding method for positive integers. It is very effective when the probability distribution is geometric.

Inverted File Compression:
Compressing Inverted Lists (IV)

- **Example codes for integers:**
 - MIR BOOK page 185
Searching Compressed Files

- Huffman coding allows searching directly on compressed text
- Since Huffman coding needs to store the codes of each symbol, this scheme has to store the whole vocabulary of the test.
- This is exploited to efficiently search complex queries

- Evaluating single word queries:
 - they are first searched in the vocabulary
 - their (Huffman) codes are collected which are then searched in the compressed file

Inverted Files

- Επανάληψη
 - we represent gaps by schemes that favor small numbers
 - reductions in 90% can be obtained by block addressing indices with blocks of 1 Kb size
- Remarks:
 - Compression does not necessarily degrade time performance
 - most of the time is spent in answering a query is in the disk transfer
 - Query times on compressed or decompressed indices are roughly similar