Information Retrieval

Query Languages

Yannis Tzitzikas

University of Crete

Lecture : 5b
Date : 8-3-2005

Γλώσσες Επερώτησης

• Keyword-based Queries
 – Single words Queries
 – Context Queries
 • Phrasal Queries
 • Proximity Queries
 – Boolean Queries
 – Natural Language Queries

• Pattern Matching
 – Simple
 – Allowing errors (Levenstein distance, LCS longest common subsequence)
 – Regular expressions

• Structural Queries (will be covered in a subsequent lecture)

• Query Protocols
Διάρθρωση Διάλεξης

- Ο τύπος των επερωτήσεων που επιτρέπονται σε ένα σύστημα εξαρτάται από το Μοντέλο Ανάκτησης που χρησιμοποιεί το σύστημα

- Εδώ θα δούμε τι είδους επερωτήσεων μπορεί να έχουμε

Single-Word Queries
Context-Queries

- Ability to search words in a given context, that is, near other words

- Types of Context Queries
 - Phrasal Queries
 - Proximity Queries

Phrasal Queries

- Retrieve documents with a specific phrase (ordered list of contiguous words)
 - “information theory”
 - “to be or not to be”

- May allow intervening stop words and/or stemming.
 - “buy camera” matches:
 - “buy a camera”,
 - “buy a camera”, (two spaces)
 - “buying the cameras” etc.
Phrasal Retrieval with Inverted Indices

- Must have an inverted index that also stores positions of each keyword in a document.
- Retrieve documents and positions for each individual word, intersect documents, and then finally check for ordered contiguity of keyword positions.
- Best to start contiguity check with the least common word in the phrase.
- Περισσότερα στην Διάλεξη περί "Indexing and Searching"
Επερωτήσεις Εγγύτητας (Proximity Queries)

- List of words with specific maximal distance constraints between terms.
- Example:
 - “dogs” and “race” within 4 words
- May also perform stemming and/or not count stop words.
- The order may or may not be important

Proximity Retrieval with Inverted Index

- Use approach similar to phrasal search to find documents in which all keywords are found in a context that satisfies the proximity constraints.
- During binary search for positions of remaining keywords, find closest position of k_i to p and check that it is within maximum allowed distance.
- Περισσότερα στην Διάλεξη περί ”Indexing and Searching”
Boolean Queries

- **Keywords combined with Boolean operators:**
 - **OR:** \((e_1 \text{ OR } e_2)\)
 - **AND:** \((e_1 \text{ AND } e_2)\)
 - **BUT:** \((e_1 \text{ BUT } e_2)\) Satisfy \(e_1\) but not \(e_2\)
- **Negation only allowed using BUT to allow efficient use of inverted index by filtering another efficiently retrievable set.**
- **Naïve users have trouble with Boolean logic.**

Αποτίµηση µε χρήση ανεστραµµένων αρχείων

- **Primitive keyword:** Retrieve containing documents using the inverted index.
- **OR:** Recursively retrieve \(e_1\) and \(e_2\) and take union of results.
- **AND:** Recursively retrieve \(e_1\) and \(e_2\) and take intersection of results.
- **BUT:** Recursively retrieve \(e_1\) and \(e_2\) and take set difference of results.

Επερωτήσεις φυσικής γλώσσας

- **“Natural Language” Queries**
 - Full text queries as arbitrary strings.
 - Typically just treated as a *bag-of-words* for a vector-space model.
 - Typically processed using standard vector-space retrieval methods.
Pattern Matching

- Allow queries that match \textit{strings} rather than \textit{word} tokens.
- Requires more sophisticated data structures and algorithms than inverted indices to retrieve efficiently.

\textbf{Some types of simple patterns:}

- \textbf{Prefixes:} Pattern that matches start of word.
 - "anti" matches "antiquity", "antibody", etc.
- \textbf{Suffixes:} Pattern that matches end of word:
 - "ix" matches "fix", "matrix", etc.
- \textbf{Substrings:} Pattern that matches arbitrary subsequence of characters.
 - "rapt" matches "enrapture", "velociraptor" etc.
- \textbf{Ranges:} Pair of strings that matches any word lexicographically (alphabetically) between them.
 - "tin" to "tix" matches "tip", "tire", "title", etc.

More Complex Patterns: Allowing Errors

- What if query or document contains typos or misspellings?
- Judge similarity of words (or arbitrary strings) using:
 - \textbf{Edit distance} (Levenstein distance)
 - \textbf{Longest Common Subsequence} (LCS)
- Allow proximity search with \textit{bound} on string similarity.
Edit (Levenstein) Distance

- Minimum number of character deletions, additions, or replacements needed to make two strings equivalent.
 - “misspell” to “mispell” is distance 1
 - “misspell” to “mistell” is distance 2
 - “misspell” to “misspelling” is distance 3

- Can be computed efficiently using dynamic programming
 - O(mn) time where m and n are the lengths of the two strings being compared.

Longest Common Subsequence (LCS)

- Length of the longest subsequence of characters shared by two strings.
- A subsequence of a string is obtained by deleting zero or more characters.
- Examples:
 - “misspell” to “mispell” is 7
 - “misspelled” to “misinterpreted” is 7
 “mis…p…e…ed”
More complex patterns: Regular Expressions

- Language for composing complex patterns from simpler ones.

 - An individual character is a regex.

 - **Union**: If e_1 and e_2 are regexes, then $(e_1 \lor e_2)$ is a regex that matches whatever either e_1 or e_2 matches.

 - **Concatenation**: If e_1 and e_2 are regexes, then $e_1 e_2$ is a regex that matches a string that consists of a substring that matches e_1 immediately followed by a substring that matches e_2.

 - **Repetition** (Kleene closure): If e_1 is a regex, then e_1^* is a regex that matches a sequence of zero or more strings that match e_1.

Regular Expression Examples

- **(u|e)nabl(e|ing)** matches
 - unable
 - unabling
 - enable
 - enabling

- **(un|en)*able** matches
 - able
 - unable
 - unenable
 - enununenable
Enhanced Regex’s (Perl)

- Special terms for common sets of characters, such as alphabetic or numeric or general “wildcard”.
- Special repetition operator (+) for 1 or more occurrences.
- Special optional operator (?) for 0 or 1 occurrences.
- Special repetition operator for specific range of number of occurrences: \{min,max\}.
 - A\{1,5\} One to five A’s.
 - A\{5,\} Five or more A’s
 - A\{5\} Exactly five A’s

Perl Regex’s

- Character classes:
 - \w (word char) Any alpha-numeric (not: \W)
 - \d (digit char) Any digit (not: \D)
 - \s (space char) Any whitespace (not: \S)
 - . (wildcard) Anything
- Anchor points:
 - \b (boundary) Word boundary
 - ^ Beginning of string
 - $ End of string
- Examples
 - U.S. phone number with optional area code:
 - \b(\(\d{3}\)\s?\d{3}-\d{4}\b/)
 - Email address:
 - /\b[S]+@[\.]\b/ Note: Packages available to support Perl regex’s in Java
Δομικές Επερωτήσεις (Structural Queries)

• Εδώ τα έγγραφα έχουν δομή που μπορεί να αξιοποιηθεί κατά την ανάκτηση

• Η δομή μπορεί να είναι:
 – Ένα προκαθορισμένο σύνολο πεδίων
 • title, author, abstract, etc.
 – Δομή Hypertext
 – Μια ιεραρχική δομή
 • Book, Chapter, Section, etc.

• Θα τις μελετήσουμε αναλυτικά σε μια άλλη διάλεξη

Query Protocols

• They are not intended for final users

• They are query languages that are used automatically by software applications to query text databases

• Some of them are proposed as standard for querying CD-ROMs or as intermediate languages to query library systems
Some Query Protocols (I):

- **Z39.50**
 - 1995 standard ANSI, NISO
 - bibliographical information
- **WAIS (Wide Area Information Service)**
 - used before the Web
- **Dienst Protocol**
- **For CD-ROMS**
 - CCL (Common Command Language)
 - 19 commands. Based on Z39.50
 - CD-RDx (Compact Disk Read only Data Exchange)
 - SFQL (Structured Full-text Query Language)

SFQL

- **SFQL (Structured Full-text Query Language)**
 - Relational database query language SQL enhanced with “full text” search.
 - Παράδειγμα:

```
Select abstract
from journal.papers
where author contains "Teller" and
  title contains "nuclear fusion" and
  date < 1/1/1950
```

- Supports Boolean operators, thesaurus, proximity operations, wild cards, repetitions.
Some Query Protocols (II)

- **SRW (Search and Retrieve Web Service)**
 - Extension of Z39.50 using Web Technologies
 - Queries in CQL
- ...

Z39.50
CQL (Common Query Language)

- A formal language for representing queries to information retrieval systems
- Human-readable
- Search clause
 - Always includes a term
 - simple terms consist of one or more words
 - May include index name
 - To limit search to a particular field/element
 - Index name includes base name and may include prefix
 - title, subject
 - dc.title, dc.subject
 - Several index sets have been defined (called Context Sets in SRW)
 - dc
 - bath
 - srw
 - Context set defines the available indexes for a particular application

CQL (Common Query Language) (II)

- Relation
 - <, >, <=, >=, =, <>
 - exact used for string matching
 - all when term is list of words to indicate all words must be found
 - any when term is list of words to indicate any words must be found
- Boolean operators: and, or, not
- Proximity (prox operator)
 - relation (<, >, <=, >=, =, <>)
 - distance (integer)
 - unit (word, sentence, paragraph, element)
 - ordering (ordered or unordered)
- Masking rules and special characters
 - single asterisk (*) to mask zero or more characters
 - single question mark (?) to mask a single character
 - carat/hat (^) to indicateanchoring, left or right
CQL Examples

- **Simple queries:**
 - dinosaur
 - "the complete dinosaur"

- **Boolean**
 - dinosaur and bird or dinobird
 - "feathered dinosaur" and (yixian or jehol)

- **Proximity**
 - foo prox bar
 - foo prox/>/4/word/ordered bar

- **Indexes**
 - title = dinosaur
 - bath.title="the complete dinosaur"
 - srw.serverChoice=dinosaur

- **Relations**
 - year > 1998
 - title all "complete dinosaur"
 - title any "dinosaur bird reptile"
 - title exact "the complete dinosaur"