
DeWitt: Wisconsin Benchmark 1 Second Draft

The Wisconsin Benchmark: Past, Present, and Future

David J. DeWitt

Computer Sciences Department

University of Wisconsin

1.0. Introduction

 In 1981 as we were completing the implementation of the DIRECT database machine

[DEWI79, BORA82], attention turned to evaluating its performance. At that time no standard

database benchmark existed.  There were only a few application-specific benchmarks. While

application-specific benchmarks measure which database system is best for a particular

application, it was very difficult to understand them.   We were interested in a benchmark to

measure DIRECT's speedup characteristics.  Thus, we set out to develop a benchmark that could

be used to evaluate DIRECT both relative to itself and relative to the "university" version of

Ingres.

The result of this effort was a benchmark for relational database systems and machines

that has become known as the Wisconsin Benchmark [BITT83]. The benchmark was designed

with two objectives in mind.  First, the queries in the benchmark should test the performance of

the major components of a relational database system. Second, the semantics and statistics of the

underlying relations should be well understood so that it is easy to add new queries and to their

behavior.

We never expected this benchmark to become as popular as it did. In retrospect, the

reasons for this popularity were only partially due to its technical quality.  The primary reason for

its success was that it was the first evaluation containing impartial measures of real products. By

actually identifying the products by name, the benchmark triggered a series of "benchmark wars"

between commercial database products.  With each new release, each vendor would produce a

new set of numbers claiming superiority. With some vendors releasing their numbers, other

vendors were obliged to produce numbers for their own systems.  So the benchmark quickly

became a standard which customers knew about and wanted results for.  In retrospect, had the

products not been identified by name, there would have been no reason for the vendors to react

the way they did, and the benchmark would most likely have simply been dismissed as an



DeWitt: Wisconsin Benchmark 2 Second Draft

academic curiosity. We did not escape these wars completely unscarred.  In particular, the CEO

of one of the companies repeatedly contacted the chairman of the Wisconsin Computer Sciences

Department complaining that we had not represented his product fairly.

The benchmark changed the database marketplace in several ways. First, by pointing out

the performance warts of each system, vendors were forced to significantly improve their systems

in order to remain competitive.  Consequently, the significant performance differences among the

various products  observed in 1983 gradually disappeared. While the vendors undoubtedly wasted

some time fighting these wars, overall the customers clearly benefited from them.

The second major effect of developing the Wisconsin benchmark was to spur the

development of the Datamation benchmark [ANON88] by a large group lead by Jim Gray.  From

their viewpoint (in 1984), the Wisconsin benchmark had little to do with "real" database

applications - something the Datamation benchmark set out to rectify. Seven years later, the

DebitCredit transaction of the Datamation benchmark has replaced the Wisconsin benchmark as

the standard for relation products despite the fact that it fails to test a number of the major

components of a relational database system.  For example, the Datamation benchmark does not

detect whether a system even has a query optimizer, let alone, determine whether nested-loops is

the only join method provided. Furthermore, most vendors have ignored the scan and sort

components of the Datamation benchmark, implementing only the DebitCredit portion, diluting

the value of the original benchmark significantly. Why then is the benchmark so popular? Ignoring

its technical merits, one reason is that it reduces each system to one magic number - its "tps"

rating (which like a "sound bite" is attractive to the marketing types of the world) even though the

benchmark says nothing about the performance of a system on applications that are not debit-

credit.

Like the early relational products, the Wisconsin benchmark is not, however, without its

flaws [BITT88].  While it is missing a number of easily added tests such as bulk updates, its most

critical failing is that, being a single user benchmark, it does not test critical features required for

real-world applications.  The most important features missing from the Wisconsin benchmark are

tests of the concurrency control and recovery subsystems of a database system. Thus, the

benchmark cannot distinguish a system that supports only relational-level locking from one that

provides tuple-level locking. While the benchmark has been widely criticized for its single-user

nature, this criticism is not really justified.  Immediately after completing the single-user

benchmark we undertook the development of a multiuser version of the benchmark. As the result

of technical disagreements, this produced two competing multiuser benchmarks [BORA84,



DeWitt: Wisconsin Benchmark 3 Second Draft

BITT85] neither of which ever attracted widespread interest or use. In a number of ways both

these benchmarks represent a much more scientific approach to designing a multiuser benchmark

than did the debit-credit benchmark. Why is it that neither of these benchmarks gained the same

popularity as the Wisconsin benchmark?  There seem to be two possible explanations. The first is

that, like the Wisconsin benchmark, neither reduced each system to a single number, making it

more difficult to directly compare two systems (regardless of the superficiality of the comparison).

Second, after our experiences with the Wisconsin benchmark, both benchmarks carefully avoided

initiating a new benchmark war among the vendors.  They considered the multiuser performance

of only a single system.  This enabled the vendors to simply ignore the results because nobody

was provided with ammunition to keep the war going. In retrospect, being gun shy was a mistake.

It is now clear that comparisons of actual systems are important if you want a benchmark to

become popular.

The remainder of this chapter is organized as follows. Section 2  describes the Wisconsin

benchmark, summarizing the key results obtained using the benchmark from [BITT83].  It also

describes the weaknesses of the benchmark.  While the Wisconsin benchmark is no longer widely

used to evaluate single processor relational database systems, it is again finding applicability in

evaluating the performance of ad-hoc queries on parallel database systems [DEWI87, DEWI88,

ENGL89a, DEWI90].  It has come full circle to its original goal of evaluating highly parallel

database machines.  As  demonstrated in Section 3, the benchmark is  well suited for such

applications.  It is straightforward to use the benchmark to measure the speedup, scaleup, and

sizeup characteristics of a parallel database system.  This application of the benchmark is

illustrated with results obtained for the Gamma database machine. Our conclusions are contained

in Section 4.

2.0. An Overview of the Wisconsin Benchmark

This section begins with a description of the database that forms the basis of the

Wisconsin benchmark, indicating how the relations that form the benchmark can be scaled to a

wide range of sizes. Next, the benchmark queries are described, summarizing the results presented

originally in [BITT83].  While the original numbers are no longer of any value, it is interesting to

reflect on some of the technical limitations that the benchmark uncovered in the early relational

products. Finally, we comment on what we did right and what we did wrong in the designing the

benchmark.



DeWitt: Wisconsin Benchmark 4 Second Draft

 2.1. The Wisconsin Benchmark Relations

The development of the Wisconsin benchmark began with a database design flexible

enough to allow straightforward specification of a wide range of retrieval and update queries. One

of the early decisions was to use synthetically generated relations instead of empirical data from a

real database.  A problem with empirical databases is that they are difficult or impossible to scale.

A second problem is that the values they contain are not flexible enough to permit the systematic

benchmarking of a database system.  For example, with empirical data it is very difficult to specify

a selection query with a 10% or 50% selectivity factor or one that retrieves precisely one

thousand  tuples. For queries involving joins, it is even harder to model selectivity factors and

build queries that produce results or intermediate relations of a certain size.  An additional

shortcoming of empirical data (versus "synthetic" data) is that one has to deal with very large

amounts of data before it can be safely assumed that the data values are randomly distributed. By

building a synthetic database,  random number generators can be used to obtain uniformly

distributed attribute values, and yet keep the relation sizes tractable.

The database is designed so that one can quickly understand the structure of the relations

and the distribution of each attribute value.  Consequently, the results of the benchmark queries

are easy to understand and additional queries are simple to design. The attributes of each relation

are designed to simplify the task of controlling selectivity factors in selections and joins, varying

the number of duplicate tuples created by a projection, and controlling the number of partitions in

aggregate function queries. It is also straightforward to build an index (primary or secondary) on

some of the attributes, and to reorganize a relation so that it is clustered with respect to an index.

2.1.1. Overview of the Original Benchmark Relations

The original benchmark was composed of three relations, one with 1,000 tuples (named

ONEKTUP) and two others each with 10,000 tuples (named TENKTUP1 and TENKTUP2).

Each relation was composed of the thirteen integer attributes and three 52 byte string attributes.

While two byte integers were used in the original benchmark (because DIRECT was implemented

using PDP 11 processors which did not support four byte integers), fairly early on most users of

the benchmark switched to using four byte integers. Thus, assuming no storage overhead, the

length of each tuple is 208 bytes. The SQL statement to create the TENKTUP1 relation is shown

in Figure 1. The same basic schema is used to create other relations (e.g. a second 10,000 tuple

relation or one containing a million tuples) .



DeWitt: Wisconsin Benchmark 5 Second Draft

CREATE TABLE TENKTUP1
(  unique1 integer NOT NULL,
   unique2 integer NOT NULL PRIMARY KEY,
   two integer NOT NULL,
   four integer NOT NULL,
   ten integer NOT NULL,
   twenty integer NOT NULL,
   hundred  integer NOT NULL,
   thousand integer NOT NULL,
   twothous integer NOT NULL,
   fivethous integer NOT NULL,
   tenthous integer NOT NULL,
   odd100 integer NOT NULL,
   even100 integer NOT NULL,
   stringu1 char(52) NOT NULL,
   stringu2 char(52) NOT NULL,
   string4 char(52) NOT NULL
)

Figure 1: SQL Create Statement  for  the  Original 10,000 Tuple Relation

As discussed above, in designing the structure of the base relations for the benchmark, one

goal was to make it easy to understand the semantics of each attribute so that a user could extend

the benchmark by adding new queries. Table 1 summarizes the semantics of each attribute for the

10,000 tuple relation.

Attribute Name Range of Values Order Comment
unique1 0-9999 random candidate key
unique2 0-9999 random declared key
two 0-1 cyclic 0,1,0,1,...
four 0-3 cyclic 0,1,2,3,0,1,...
ten 0-9 cyclic 0,1,...,9,0,1,...
twenty 0-19 cyclic 0,1,...,19,0,1,...
hundred 0-99 cyclic 0,1,...,99,0,1,...
thousand 0-999 cyclic 0,1,...,999,0,1,...
twothous 0-1999 cyclic 0,1,...,1999,0,1,...
fivethous 0-4999 cyclic 0,1,...,4999,0,1,...
tenthous 0-9999 cyclic 0,1,...,9999,0,1,...
odd100 1-99 cyclic 1,3,5,...,99,1,3,...
even100 2-100 cyclic 2,4,...,100,2,4,...
stringu1 - random candidate key
stringu2 - cyclic candidate key
string4 - cyclic

Table 1: Attribute Specifications of Original Wisconsin Benchmark Relations

The values of the unique1 and unique2 attributes are uniformly distributed unique random

numbers in the range 0 to MAXTUPLES-1, where MAXTUPLES is the cardinality of the

relation. Thus, both "unique1" and "unique2" are candidate keys but "unique2" is used whenever a

declared key must be specified. When tests are conducted using indices, unique2 is used to build a



DeWitt: Wisconsin Benchmark 6 Second Draft

clustered unique index, unique1 is used to build a non-clustered unique index, and hundred is used

to build a non-clustered, non-unique index.

After the "unique1" and "unique2" attributes come a set of integer-valued attributes that

assume non-unique values.  The main purpose of these attributes is to provide a systematic way to

model a wide range of selectivity factors. Each attribute is named after the range of values the

attribute assumes. For example, the "four" attribute assumes a range of values from 0 to 3. Thus,

the selection predicate "x.four=2" will have a 25% selectivity, regardless of the size of the relation

to which it is applied. As another example, the "hundred" attribute can be used to create 100

partitions in an aggregate query if a "group by hundred" clause is used.

Finally, each relations has 3 string attributes. Each string is 52 letters long, with three

letters (the first, the middle and the last) being varied, and two separating substrings that contain

only the letter x. The three significant letters are chosen in the range (A,B,...,V), to allow up to

10,648 ( 22 * 22 * 22 ) unique string values. Thus all string attributes follow the pattern:

$xxxxxxxxxxxxxxxxxxxxxxxxx$xxxxxxxxxxxxxxxxxxxxxxxx$
  {25 x's}             {24 x's}

where "$" stands for one of the letters (A,B,...,V). Clearly, this basic pattern can be modified to

provide a wider range of string values (by replacing some of the x's by significant letters). On the

other hand, by varying the position of the significant letters, the database designer can also control

the cpu time required for string comparisons.

The first two string attributes are string versions of the "unique1" and "unique2"

attributes. That is, "stringu1" and "stringu2" may be used as key attributes, and a primary index

may be built on "stringu2".   For example, in the thousand tuple relation, "ONEKTUP", the

stringu2 attribute values are:
"Axxxx ... xxxAxxx ... xxxA"
"Bxxxx ... xxxAxxx ... xxxA"
"Cxxxx ... xxxAxxx ... xxxA"

       •••
"Vxxxx ... xxxAxxx ... xxxA"
"Axxxx ... xxxBxxx ... xxxA"

       •••
"Vxxxx ... xxxBxxx ... xxxA"
"Axxxx ... xxxCxxx ... xxxA"

       •••
"Vxxxx ... xxxVxxx ... xxxA"
"Axxxx ... xxxAxxx ... xxxB"

       •••
"Ixxxx ... xxxBxxx ... xxxC"
"Jxxxx ... xxxBxxx ... xxxC"



DeWitt: Wisconsin Benchmark 7 Second Draft

The following two queries illustrate how these string attributes can be utilized.  Each query has a

selectivity factor of 1%.

select * from TENKTUP1
where stringu2 < 'Axxx ... xxxExxx...xxxQ';

select * from TENKTUP1
where  stringu2  between 'Bxxxx ... xxxGxxx ... xxxE'
                     and 'Bxxxx ... xxxLxxx ... xxxA'

The "stringu2" variables are initially loaded in the database in the same order in which they

were generated, shown above, which is not in sort order. The attribute "stringu1" assumes exactly

the same string values as "stringu2" except that their position in the relation is randomly

determined.  A third string attribute, "string4", assumes only four unique values:

  "Axxxx ... xxxAxxx ... xxxA"
  "Hxxxx ... xxxHxxx ... xxxH"
  "Oxxxx ... xxxOxxx ... xxxO"
  "Vxxxx ... xxxVxxx ... xxxV"

2.1.2.  Scaling the Benchmark Relations

Two criticisms of the benchmark relations were that the relations were difficult to scale

(make larger) and that the structure of the string attributes were not realistic [BITT88]. While a

two megabyte relation was a reasonable choice in 1983 when most mid-range processors had

main memories in the megabyte range, the 10,000 tuple relations have become much too small for

current single-processor machines, let alone multiprocessor database machines.  (However, one

still finds people using them - even on machines with 16 or 32 megabytes of memory!)

While scaling most of the original attributes was straightforward, the meaning of certain

attributes changed as the relations were scaled. To solve this problem, the specification of the

benchmark relations was slightly modified as shown in Table 2.



DeWitt: Wisconsin Benchmark 8 Second Draft

Attribute Name Range of Values Order Comment
unique1 0-(MAXTUPLES-1) random  unique, random order
unique2 0-(MAXTUPLES-1) sequential  unique, sequential
two 0-1 random  (unique1 mod 2)
four 0-3 random  (unique1 mod 4)
ten 0-9 random  (unique1 mod 10)
twenty 0-19 random  (unique1 mod 20
onePercent 0-99 random  (unique1 mod 100)
tenPercent 0-9 random  (unique1 mod 10)
twentyPercent 0-4 random  (unique1 mod 5)
fiftyPercent 0-1 random  (unique1 mod 2)
unique3 0-(MAXTUPLES-1) random  unique1
evenOnePercent 0,2,4,...,198 random  (onePercent * 2)
oddOnePercent 1,3,5,...,199 random  (onePercent * 2)+1
stringu1 - random  candidate key
stringu2 - random  candidate key
string4 - cyclic

Table 2: Attribute Specification of "Scalable" Wisconsin Benchmark Relations

The first 6 attributes (unique1 through twentyPercent) remain basically the same except

for a couple of minor changes.  First, while the values of unique1 continue to be randomly

distributed unique values between 0 and MAXTUPLES-1, the values of unique2 are in sequential

order from 0 to MAXTUPLES-1.  Second, instead of the two, four, ten, and twenty attributes

repeating in a cyclic pattern as before, these attributes are now randomly distributed as they are

generated by computing the appropriate mod of unique1. More significantly, the hundred through

even100 attributes of the original relations have been replaced with a set of attributes that simplify

the task of scaling selection queries with a certain selectivity factor.  For example, the predicate

"twentyPercent = 3" will always return 20% of the tuples in a relation, regardless of the relation's

cardinality.

The string attributes have also been completely redesigned to eliminate several of their

earlier flaws. Their fixed-length nature was retained so that each disk page contains the same

number of tuples.  This simplifies the task of understanding the results of a benchmark. The string

attributes, stringu1 and stringu2, are the string analogies of unique1 and unique2. Both are

candidate keys and can be used in queries just like unique1 and unique2.   Both stringu1 and

stringu2  consist of seven significant characters from the alphabet ('A'-'Z') followed by 45 x's.

The seven significant characters of stringu1 (stringu2) are computed using the following

procedure.  This procedure converts a unique1 (unique2) value to its corresponding character

string representation, padding the resulting string  to a length of 7 characters with A's.



DeWitt: Wisconsin Benchmark 9 Second Draft

char *convert(unique)
 int unique;

      { char tmp[7], result[7];
        int i,j, rem, cnt;

        /* first set result string to "AAAAAAA" */
        for  ( i=0 ; i<7 ; i++)   result[i]='A';

        i = 6;  cnt = 0;
        /* convert unique value from right to left into an alphabetic string in tmp
*/

 /*  tmp digits are right justified in tmp                                  */
        while ( (unique > 0) )
              { rem = unique % 26; /* '%' is the mod operator in C */
                tmp[i] = 'A' + rem;
                unique = unique / 26;
                i--; cnt++;
               }
        /* finally move tmp into result, left justifying it */
        for (j=0; j <= cnt; j++, i++) result[j]=tmp[i];
        return  (&result[0])
      }

The last string attribute, string4, assumes four values, AAAAxxx..., HHHHxxx..., OOOOxxx...,

and VVVVxxx... in a cyclic manner:

AAAAxxx...
HHHHxxx...                 
OOOOxxx...
VVVVxxx...
AAAAxxx...
HHHHxxx...
OOOOxxx...
VVVVxxx...

In addition to the information contained in Table 2, in order to generate relations with a

range of cardinalities a mechanism is also needed for generating unique1 values.  These values

must be both unique and in random order.  The C procedure in Figure 2, based on an algorithm

developed by Susan Englert and Jim Gray [ENGL89b], will efficiently produce such a stream for

relations with cardinalities up to 100 million tuples.



DeWitt: Wisconsin Benchmark 10 Second Draft

long prime, generator;

main (argc, argv)
  int argc; char *argv[];
{
  int     tupCount; /* number of tuples in result relation */
  tupCount = atoi (argv[1]); /* get the desired table size */
  /* Choose prime and generator values for the desired table size 

*/
  if      (tupCount <= 1000) { generator = 279; prime = 1009; }
  else if (tupCount <= 10000) { generator = 2969; prime = 10007; }
  else if (tupCount <= 100000) { generator = 21395; prime = 100003; }
  else if (tupCount <= 1000000) { generator = 2107; prime = 1000003; 
  else if (tupCount <= 10000000) { generator = 211; prime = 10000019; 
  else if (tupCount <= 100000000) { generator = 21; prime = 100000007;
  else { printf("too many rows requested\n"); exit();}

  generate_relation(tupCount);
}

generate_relation (tupCount)
int tupCount; /* number of tuples in relation */

{ int unique1, i;
long rand(),  seed;

    seed = generator;
    /* generate values */
    for (i=0;i<tupCount;i++)
      {  seed = rand(seed,(long)tupCount);
         unique1 = (int) seed - 1;
         unique2 = i;
         /* statements to generated other attribute values as per table 1 go here */
         insert into wisconsin_table values  (unique1, unique2, two, four,...);
      }
}

/* generate a unique random number between 1 and limit*/
long rand (seed, limit) 
  long seed , limit;
  { do { seed = (generator * seed) % prime; } while (seed > limit);
    return (seed);
  }

Figure 2: Skeleton Benchmark Relation Generator

2.2 The Wisconsin Benchmark Query Suite

The suite of benchmark queries was designed to measure the performance of all the basic

relational operations including:

1) Selection with different selectivity factors.

2) Projections with different percentages of duplicate attributes.

3) Single and multiple joins.

4) Simple aggregates and aggregate functions.

5) Append, delete, modify.

In addition, for most queries, the benchmark contains two variations: one that can take advantage

of a primary, clustered index, and a second that can only use a secondary, non-clustered index.



DeWitt: Wisconsin Benchmark 11 Second Draft

Typically, these two variations were obtained by using the "unique2" attribute in the first case,

and the "unique1" attribute in the second.  When no indices have been created, the queries are the

same.  The benchmark contains a total of 32 queries.  The SQL specification of each query is in

Appendix I.

Several  rules must be followed when running this benchmark in order to insure that the

results obtained accurately represent the system being tested.  First, the size of the benchmark

relations should be at least a factor of 5 larger than the total main memory buffer space available.

Thus, if the buffer pool is 4 megabytes,  the benchmark relations should each  contain 100,000

tuples.  If the tests are being performed on a shared-nothing multiprocessor, this sizing task

should use the total aggregate buffer space available on all the processors. Second,  for each of

the 32 queries in the benchmark, the response time for a query must be measured by computing

the average elapsed time of several "equivalent" queries.   Typically,  ten queries are used for the

selection, update, and delete tests and four queries are used for the join, aggregate, and projection

tests. The queries in each set must alternate between two identical sets of base relations in order

to minimize the impact of buffer pool hits on the actual execution times obtained [BITT83].

Elapsed time is used as the performance metric as we have found that more detailed

metrics (e.g. CPU time and/or the number of disk I/Os performed) vary unpredictably both among

different operating systems and different database systems running on the same operating system.

The original Wisconsin benchmark did not incorporate the cost of the software and hardware

between tested because the same hardware configuration was used for all the systems (except

DIRECT).  Scaling the average response time for each query with a price metric would, however,

be possible [ANON88].  Clearly such an adjustment is necessary if the systems being compared

vary widely in price.

2.2.1.  Selection Queries   

The speed at which a database system can process a selection operation depends on a

number of factors including:

1) The storage organization of the relation.

2) The selectivity factor of the predicate.

3) The hardware speed and the quality of the software.

4) The output mode of the query.

The selection queries in the Wisconsin benchmark explore the effect of each of these four factors.

In addition, the impact of three different storage organizations is considered:



DeWitt: Wisconsin Benchmark 12 Second Draft

1) Sequential (heap) organization.

2) Primary clustered index on the unique2 attribute. (Relation is sorted on unique2 attribute)

3) Secondary, dense, non-clustered indices on the unique1 and onePercent attributes.

These three storage organizations were selected because they are representative of the access

methods provided by most relational DBMSs.

The first six selection queries (Queries 1 to 6 in Appendix I) explore the effects of two

different selectivity factors (1% and 10%) and three different storage organizations.  While our

original experiments considered a wider range of selectivity factors, the results indicated that

selectivity factors of 1% and 10% produced representative results. These six queries insert their

result tuples into a relation.  Doing so can affect the response time measured in several ways.

First, each time a page of output tuples must be written to disk, the disk heads must be moved

from their current position over the source relation to the end of the result relation.  While the

impact of this head movement is not that significant when the selectivity factor of the predicate is

low, it can become significant.  For example, with a 50% selectivity factor, for every two pages

read, one will be written, causing two random seeks to occur for every 3 pages read at steady

state (i.e.,. the buffer pool is full).  Second, if the system being tested automatically eliminates

duplicate tuples from a result relation, the cost of this duplicate elimination phase can become a

significant fraction of the response time of the query.

Query seven selects one tuple using a clustered index, returning the result tuple to the

user. The response time for this very simple query provides a good measure of the path length of

a system.  Query eight quantifies the cost of formatting and displaying tuples on a user's screen.

Like query three, query eight has a selectivity factor of 1% and uses a clustered index to retrieve

the qualifying tuples. Thus, the difference in the response time of the two queries provides a

reasonable estimate of the time to format and display result tuples on a user's screen.

Unfortunately, since most modern database systems employ a two process structure, the response

times for these two queries also includes the cost of moving data to the user process from the

database system process. [EPS87] estimates that the cost to format, transmit, and display each

result tuple is about 15 ms.

Some of the most interesting results  obtained using these queries in [BITT83] had to do

with the relatively poor performance of DIRECT and ORACLE. The design of DIRECT suffered

from two serious problems.  First, it used message passing extensively to coordinate the

processors working in parallel.  Second, DIRECT's design attempted to substitute parallelism for

indices.  As a consequence of these design flaws, DIRECT's performance was significantly worse



DeWitt: Wisconsin Benchmark 13 Second Draft

than the other systems on both non-indexed and indexed queries. The relatively poor performance

of ORACLE made it apparent that the system had some fairly serious problems that needed

correction for ORACLE was typically a factor of 5 slower than INGRES and the IDM 500 on

most selection queries (it should now be obvious why [BITT83] set off a series of benchmark

wars). One other interesting observation had to do with the execution of the 10% non-clustered

index selection.  Depending on the page size being used, in some cases it is faster to execute this

query by scanning the relation sequentially rather than using the index. While some of the query

optimizers in 1983 recognized this fact, others did not. Even today (1990) some optimizers fail to

optimize this query correctly.

 2.2.2. Join Queries

The join queries in the benchmark were designed to study the effect of three different

factors:

1)  The impact of the complexity of a query on the relative performance of the different
database systems.

2)  The performance of the join algorithms used by the different systems.

3)  The effectiveness of the query optimizers on complex queries.

Three basic join queries are used in the benchmark:

1) JoinABprime - a simple join of relations A and Bprime where the cardinality of the

Bprime relation is 10% that of the A relation.  Thus, if A contains 100,000 tuples, Bprime

contains 10,000 tuples.  The result relation has the same number of tuples as the Bprime

relation.1

2)  JoinASelB - this query is composed of one join and one selection. A and B have the same

number of tuples.  The selection on B has a 10% selectivity factor, reducing B to the size

of the Bprime relation in the JoinABprime query. The result relation for this query has the

same number of tuples as the corresponding JoinABprime query. As shown in query 9 in

Appendix I, the actual query was formulated with the join operation (TENKTUP1.unique1

= TENKTUP2.unique1) preceding the selection operation (TENKTUP1.unique2 < 1000)

in order to test whether the system has even a rudimentary query optimizer.  Surprisingly,

some of the early relational products did not and executed the join first.

                                               
1 For each join operation, the result relation contains all the fields of both input relations.



DeWitt: Wisconsin Benchmark 14 Second Draft

3)  JoinCselASelB - this query, as shown in Figure 3, is composed of two selections and two

joins. Relations A and B contain the same number of tuples. The selections on A and B

each have a selectivity factor of 10%. Since each tuple joins with exactly one other tuple,

the join of the restricted A and B relations yields an intermediate relation equal in size to

its two input relations. This intermediate relation is then joined with relation C, which

contains 1/10 the number of tuples there are in A and B. For example, assume A and B

contain 100,000 tuples. The relations resulting from selections on A and B will each

contain 10,000 tuples. Their join results in an intermediate relation of 10,000 tuples. This

relation will be joined with a C relation containing 10,000 tuples and the result of the

query will contain 10,000 tuples.

JOIN

SELECTSELECT

JOIN SCAN

(10,000 Tuples) (10,000 Tuples)

1,000 Tuples1,000 Tuples1,000 Tuples

1,000 Tuples

1,000 Tuples 1,000 Tuples

A B

C

Figure 3:  JoinCselAselB

There are three versions of each of these three queries corresponding to either no index, a

clustered index, or a non-clustered index on the join attribute. The SQL specifications for these

queries are contained in queries 9 through 17 of Appendix I.  Queries 11, 14, and 17, warrant,

however, additional explanation.  In the original version of the benchmark,  each of these queries

specified selections on both the TENKTUP1 and TENKTUP2 relations.  For example, the

original "where" clause for query 11 was:

WHERE (ONEKTUP.unique2 = TENKTUP1.unique2)
  AND (TENKTUP1.unique2 = TENKTUP2.unique2)
  AND (TENKTUP1.unique2 < 1000)
  AND (TENKTUP2.unique2 < 1000)



DeWitt: Wisconsin Benchmark 15 Second Draft

To further test the capabilities of the query optimizer,  in the revised benchmark the selection

"TENKTUP2.unique2 < 1000" has been dropped for each of these three queries. The current

generation of optimizers should be capable of recognizing that the remaining selection on

TENKTUP1 can be propogated to TENKTUP2 since the selection and join predicates involve the

same attribute.

The results in [BITT83] provided dramatic evidence of the relative performance of the

different join algorithms. For example, in 1983, nested loops was the only join method supported

by the IDM 500 and ORACLE.  Each required over 5 hours to execute the joinAselB query when

no indices were available. The commercial version of INGRES, on the other hand, included a

sort-merge join method and could execute the same query in about 2 minutes!  With indices, all

the systems performed similarly.  DIRECT's use of parallelism was somewhat more successful

than it had been with the selection tests, providing a speedup factor of about 2.58 with 4

processors. Its performance relative to the other systems was not all that impressive and led us to

conclude that "limited parallelism” and a "dumb" algorithm (parallel nested loops) could not

provide the same level of performance as a "smart" algorithm (sort merge) and “no parallelism".

2.2.3. Projection Queries

Implementation of the projection operation is normally done in two phases in the general

case.  First a pass is made through the source relation to discard unwanted attributes. A second

phase is necessary in to eliminate any duplicate tuples that may have been introduced as a side

effect of the first phase (i.e. elimination of an attribute which is the key or some part of the key).

The first phase requires a complete scan of the relation. The second phase is normally performed

in two steps. First, the relation is sorted to bring duplicate tuples together. Next, a sequential pass

is made through the sorted relation, comparing neighboring tuples to see if they are identical

(some sorts have an option to eliminate duplicates). Alternatively, hashing can be used to gather

duplicate tuples together.  Secondary storage structures such as indices are not useful in

performing this operation.  In the special case where the projected fields contain a unique key, the

duplicate elimination phase can be skipped.  That case is not tested by the benchmark.

Initially, a wide variety of queries were considered, but we discovered that only two

queries were need to obtain indicative results on the relative performance of the different systems.

The first query (Query 18, Appendix I) has a projection factor of 1%, eliminating 99% of the

relation as duplicates. For a 10,000 tuple relation, the result of this query contains 100 tuples. The

second query (Query 19, Appendix I) has a 100% projection factor. Although this query



DeWitt: Wisconsin Benchmark 16 Second Draft

eliminates no duplicates, the result relation must still be sorted and then scanned for duplicates

because the schema does not declare the projected fields to contain a unique key.  This particular

query provides an estimate of the cost of checking the result relation of an arbitrary query for

duplicates.

 2.2.4. Aggregate Queries

The aggregate queries in the Wisconsin benchmark consider both scalar aggregate

operations (e.g. the minimum value of an attribute) and complex aggregate functions.  In an

aggregate function, the tuples of a relation are first partitioned into non-overlapping subsets using

the SQL "group by" construct. After partitioning, an aggregate operation such as MIN is

computed for each partition.

The benchmark contains three aggregate queries with two versions of each (without any

indices and with a secondary, non-clustered index):

1)  MIN scalar aggregate queries (Queries 20 and 23)

2)  MIN aggregate function queries (Queries 21 and 24)

3)  SUM aggregate function queries (Queries 22 and 25)

The motivation for including an indexed version of each of these three queries was to

determine whether any of the query optimizers would use an index to reduce the execution time

of the queries.  For the MIN scalar aggregate query, a very smart query optimizer could recognize

that the query could be executed using the index alone. While none of the query optimizers tested

in [BITT83] performed this optimization, subsequent optimizers for the IDM 500 (and perhaps

other systems as well) implemented this "trick" to speed the execution of such operations.

For the two aggregate function queries, we had anticipated that any attempt to use the

secondary, non-clustered index on the partitioning attribute would actually slow the query down

as a scan of the complete relation through such an index will generally result in each data page

being accessed several times. One alternative algorithm is to ignore the index, sort on the

partitioning attribute, and then make a final pass collecting the results. Another algorithm which

works very well if the number of partitions is not too large is to make a single pass through the

relation hashing on the partitioning attribute.



DeWitt: Wisconsin Benchmark 17 Second Draft

2.2.5.  Update Queries

The update queries are probably the weakest aspect of the benchmark as only the

following four simple update queries are included:

1) Insert 1 tuple

2) Update key attribute of 1 tuple

3) Update non-key attribute of 1 tuple

4) Delete 1 tuple

The principal objective of these queries was to examine the impact of clustered and non-

clustered indices on the cost of updating, appending, or deleting a tuple. In addition, the queries

indicate the advantage of having an index to help locate the tuple to be modified. To accomplish

this two versions of each query were run: with and without indices (one primary-clustered index

on the unique2 attribute, a unique-non-clustered index on the unique1 attribute, and a non-unique-

non-clustered index on the onePercent attribute).  It should be noted, however, that not enough

updates were performed to cause a significant reorganization of the index pages.  A more realistic

evaluation of update queries would require running these queries in a multiprogramming

environment, so that the effects of concurrency control and deadlocks were measured.  In

addition, bulk updates should have been included.

Even though these update queries are very (too) simple, they produced a number of

interesting results in [BITT83].  First, was the low cost of an append compared to that of a delete,

in the no-index case. The explanation for this discrepancy is that new tuples are generally inserted

near the end of the file without checking if they are a duplicate of an existing tuple. Thus,

appending a tuple only involves writing a new tuple.  Deleting a tuple requires finding the tuple.

Without an index, this requires that the entire relation be scanned. The performance of each

system tested on the "modify non-key" query (i.e., modify a tuple identified by a qualification on a

non-key, but indexed, attribute) demonstrated a very efficient use of a secondary index to locate

the tuple. However, one could again argue that the right algorithm for this query would require

verifying that the modified tuple does not introduce a duplicate tuple.

Another interesting result occurs when the update query:

UPDATE TENKTUP1
SET unique2=10002
WHERE unique2 = 1491 (Query 28 Appendix I).



DeWitt: Wisconsin Benchmark 18 Second Draft

is executed in the presence of a clustered index on the unique2 attribute. This query is similar to

one that causes a problem known as the Halloween Problem [TAND87] to occur. For example, if

the query:

UPDATE payroll
SET salary = salary*1.1

is executed using an index on the salary attribute, it will run forever if the updated tuples are

inserted directly back into the index. As a simplistic solution to the problem, some systems (e.g.,

System R and early versions of SQL/DS) refused to use an index on any attribute if that attribute

was one of the ones being updated; instead, resorting, if necessary, to a sequential scan to process

the query. Query 28 is not an instance of the Halloween Problem and it is incorrect for the

optimizer to treat it as such.

2.2.6. Evaluation

The Wisconsin benchmark, while certainly not perfect, did a good job of discovering

performance anomalies in the early relational DBMS products.  While it no longer receives much

public attention, a number of vendors and users still run it as part of their standard quality

assurance and performance test suites.  With scaled-up relations, it is remains a fairly thorough

single-user evaluation of the basic operations that a relational system must provide.

The benchmark has been criticized for a number of deficiencies [TURB87, BITT88,

ONEI91].  These criticisms are certainly valid; in particular, its single-user nature, the absence of

bulk updates, database load and unload tests, lack of outer join tests, and the relative simplicity of

the various complex join queries.  It is not so obvious that other criticisms such as its weak

collection of data types and the difficulty of scaling are correct.  For example, the design of the

original string attributes and the lack of floating point or decimal attributes have been widely

criticized. While we admit that the design of the original strings was deficient, the fact of the

matter is that benchmark was designed to study the relative performance of two database systems

and not the relative string and integer performance of a single system.

In particular, we assert that, if system A is 20% faster than system B processing selection

predicates on integer attributes that the relative performance of the two systems would vary only

slightly if floating-point or string attributes were used instead (assuming, of course, a constant

hardware platform). The only possible way that changing the attribute type could change the



DeWitt: Wisconsin Benchmark 19 Second Draft

relative performance of two systems significantly is if the extra comparisons caused a system to

change from being I/O bound to being CPU bound.

In our opinion, other than its single user nature, the second most significant problem with

the benchmark today is that the join queries it contains are too simple. The benchmark should be

augmented to include much more complex join queries with a wider range of join selectivity

factors.   In addition,   a cost component should have been included so that one could

meaningfully compare the response times of systems with different costs.  As suggested above,

such an extension is straightforward.

3.0. Benchmarking Parallel Database Systems using the Wisconsin Benchmark

While the Wisconsin benchmark is no longer widely used to evaluate relational database

systems on mono-processor configurations, it has been fairly extensively used to evaluate

database systems running on a parallel processors including Teradata [DEWI87], Gamma

[DEWI88, DEWI90], Tandem [ENGL89a], and Volcano [GRAE90]. In this section we describe

how the Wisconsin benchmark can be used to measure the speedup and scaleup characteristics of

such parallel systems. This discussion is illustrated with an evaluation of the Gamma database

machine [DEW90].

3.1. Speedup and Scalup: Two key metrics for a Parallel Database System

As illustrated by Figure 4, speedup and scaleup are widely accepted as the two key

metrics for evaluating the performance of a parallel database system [ENGL89a, SMIT89] (see

Figure 4). Speedup is an interesting metric because it indicates whether adding additional

processors and disks to a system results in a corresponding decrease in the response time for a

query. A system provides what is termed linear speedup if twice as much hardware can perform a

given task in half the elapsed time. Figure 5.a illustrates the ideal speedup curve. However, simply

running a standard relational database system on a multiprocessor will not necessarily exhibit any

degree of speedup unless the system decomposes each of the relational operators into subunits

that can be executed independently and in parallel (Figure 5.b). While techniques to do this

decomposition are now fairly well understood, our evaluation of DIRECT in [BITT83]

demonstrated that this was not always the case.



DeWitt: Wisconsin Benchmark 20 Second Draft

100GB 100GB 100GB 1 TB

Speedup Batch Scaleup

Figure 4. The difference between a speedup design in which a one-minute job is done in 15-seconds, and a
scaleup design in which a ten-times bigger job is done in the same time by a ten-times bigger system.

As illustrated by Figure 5.c, the barriers to achieving linear speedup are startup,

interference, and skew. Startup is the time needed to start a parallel computation.  If thousands

of processes must be started, this can easily dominate the actual computation time. This is

especially true if the startup overhead for a query is a significant fraction of the total execution

time of the query, as it can be for simple queries that retrieve and process only a few tuples.

Interference is the slowdown each new process imposes on the others. Even if the interference is

only 1% per process, with 50 processors and one process/processor such a system will have a

maximum speedup of 25.  Finally, skew  (variance) in the service times of the processes executing

a job can begin to limit the obtainable speedup when an operation is divided into many very small

pieces.

O
ld

T
im

e 
N

ew
T

im
e

S
pe

ed
up

 =
 

Processors & Discs

The Good Speedup 
Curve

Linearity

    Processors & Discs

A Bad Speedup Curve
3-Factors

S
ta

rt
up

In
te

rf
er

en
ce

S
ke

w

O
ld

T
im

e 
N

ew
T

im
e

S
pe

ed
up

 =
 

Processors & Discs

A Bad Speedup Curve

Linearity

No Parallelism

         Figure 5.a                                 Figure 5.b                          Figure 5.c

Figure 5: The standard speedup curves. The upper left curve is the ideal. The upper middle graph shows no
speedup as hardware is added.  The upper right curve shows the three threats to parallelism.  Initial startup costs
may dominate at first.  As the number of processes increase, interference can increase.  Ultimately, the job is
divided so finely, that the variance in service times (skew) causes a slowdown.

The second key metric for parallel database systems is scaleup. Basically scaleup

measures whether a constant response time can be maintained as the workload is increased by

adding a proportional numbers of processors and disks. The motivation for evaluating the extent

to when a database system scales is that certain, generally batch, jobs must be must be completed

in a given window of time, regardless of whether the workload increases or not. While the

traditional solution has been to buy ever-faster mainframes, parallel database systems that exhibit



DeWitt: Wisconsin Benchmark 21 Second Draft

flat scaleup characteristics (such as those marketed by Teradata [TERA83, TERA85] and Tandem

[TAND87, TAND88]) provide a way of way of incrementally responding to increasing batch

workloads. The ideal batch scaleup curve is shown in Figure 6.a. A constant response time is

maintained as the size of the problem and system grow incrementally. Figure 6.b illustrates a bad

scaleup curve for a system with the response time growing even though resources proportional to

increases in the workload are added.

E
la

ps
ed

 T
im

e

Problem Size & Processors & Discs

The Good Batch Scaleup Curve

    

E
la

ps
ed

 T
im

e

Problem Size & Processors & Discs

A Bad Batch Scaleup Curve

Figure 6.a Figure 6.b

Figure 6: Batch scaleup curves:  Figure 6.a. is a good batch scaleup curve showing constant processing time as
proportionately more processing elements are applied to a proportionately larger problem.  Figure 6.b. is a bad
scaleup curve showing that as the problem grows the elapsed time grows even though more processing and disk
elements are applied to the problem.

Another metric related to scaleup is sizeup in which the system configuration is kept

constant while the workload is increased. A system is said to exhibit good sizeup characteristics if

doubling the size of the data set being evaluated does not result in more than a two-fold increase

in the response time for a query.  While sizeup can be considered to be a special case of the

scaleup test in which the hardware configuration is kept constant, certain relational operations

such as the sorting, the sort-merge join method, and b-tree searches are logarithmic in nature.

Since sorting is an NlogN operation (where N is the number of records to be sorted), one would

expect to only obtain sublinear sizeup results. On the other hand, since the number of levels in a b-

tree grows logarithmically, b-tree searches are likely to exhibit superlinear sizeup characteristics.

For example, assume that a b-tree on the unique2 attribute of a 100,000 tuple relation is 2 levels

deep and that the corresponding index on a one million tuple relation is 3 levels deep.   Assuming

no buffer pool hits, a single tuple indexed selection of the 100,000 tuple relation will require 3

I/Os (two index I/Os plus one I/O to fetch the appropriate data page).  The same query on the

million tuple relation will require 4, and not 30, I/Os. While sizeup is an interesting metric in itself,

the real value of conducting sizeup measurements on a parallel database system is as an aid in

understanding non-linear scaleup results.



DeWitt: Wisconsin Benchmark 22 Second Draft

3.2. Using the Wisconsin Benchmark to Measure Speedup, Scaleup, and Sizeup   

By their definition speedup tests are conducted by fixing the size of the relations in the

database and the suite of queries while the number of processors and disks is varied. There are,

however, several issues that must be carefully considered. First, the size of the benchmark

relations must be chosen carefully.  They must be large enough so that the number of levels in

each index remains constant as the number of disks over which the relation has been declustered is

increased to avoid artificially producing superlinear speedup results. The actual size will depend

on a number factors including the underlying page size that is used for the indices and the

maximum number of disks over which a relation is declustered. For example, when a 1 million

tuple relation is stored on a single disk, the indices on the unique1 and unique2 attributes will each

contain 1 million entries and will be three levels deep (assuming that index entries consist of a 4

byte key field, a 4 byte count field, and an 8 byte record_id field). If the same relation is

declustered over 100 disks, each disk will contain only 100,000 tuples and the corresponding

indices will only be 2 levels deep. As discussed above, such changes tend to artificially produce

superlinear speedup results and should be avoided, if possible.  On the other hand, the relation

cannot be so large that it will not fit on a single disk drive if a single processor/disk pair is to be

used as the base case.  In some cases it may be impossible to satisfy both these constraints.  In this

case, the solution is use more than a single processor/disk as the base case.

The second issue that must be considered when setting up a database for measuring the

speedup of a system is interprocessor communication.  If a single processor is used as the base

case (assuming that the base relations fit) no interprocessor communications will occur.  As the

system is scaled from one to two processors the interprocessor communications traffic may

increase substantially - depending on the actual query being executed and the way in which the

result relation is declustered. As a consequence, the observed speedups may very well be

sublinear. While this is reasonable if one is interested is determining the absolute speedup

achievable by a system, in some circumstances the objective is to predict what would happen if a

currently operational system were scaled from 10 to 100 processors. Thus, for some applications

it may be valid to use more than a single processor as the base case.

Designing scaleup experiments is somewhat simpler. Again, the same query suite is used

with each configuration tested. The basic decisions that must be made are to select a base relation

size and a base hardware configuration which is scaled proportionally to increases in the sizes of

the base relations. For example, assume that one million tuple benchmark relations are selected

along with a base hardware configuration of 5 processors, each with one disk. If the benchmark



DeWitt: Wisconsin Benchmark 23 Second Draft

relations are doubled in size, the hardware configuration is also doubled; expanding to 10

processors with disks. As with the speedup tests, the selection of a base configuration size can

have a significant impact on the results obtained.  Typically a base configuration of between 2 and

5 processors is a reasonable compromise.



DeWitt: Wisconsin Benchmark 24 Second Draft

3.3. Sizeup, Speedup, and Scaleup Experiments on the Gamma Prototype

This section describes the results of conducting sizeup, speedup, and scaleup experiments

on the Gamma prototype using a subset of the selection and join queries from the Wisconsin

benchmark.  It begins with an overview of the Gamma database machine. This is followed by a set

of sizeup, speedup, and scaleup experiments on a subset of the selection and join queries from the

Wisconsin benchmark.  A more complete set of tests can be found in [DEWI90].  A similar set of

tests on Release 2 of Tandem's NonStop SQL system is described in  [ENGL89a].

The tests began by constructing 100,000, 1 million, and 10 million tuple versions of the

benchmark relations. Two copies of each relation were created and loaded. Except where noted

otherwise, tuples were declustered by hash partitioning on the unique1 attribute. In all cases, the

results presented represent the average response time of a number of equivalent queries. Gamma

was configured to use a disk page size of 8K bytes and a buffer pool of 2 megabytes per

processor.  The results of all queries were stored in the database. Returning data to the host was

avoided in order to mask the speed of the communications link between the host and the database

machine and the speed of host processor itself.  By storing the result relations in the database, the

impact of these factors was minimized - at the expense of incurring the cost of declustering and

storing the result relations.

3.3.1 Overview of the Gamma Database Machine

Hardware

The design of the Gamma database machine is based on a shared-nothing architecture

[STON86], in which processors do not share disk drives or random access memory.  They can

only communicate with one another by sending messages through an interconnection network.

Mass storage in such an architecture is distributed among the processors by connecting one or

more disk drives to each processor as shown in Figure 7.  This architecture characterizes the

database systems being used by Teradata [TERA85], Gamma [DEWI86, DEWI90], Tandem

[TAND88],  Bubba [ALEX88, COPE88], and Arbre [LORI89].



DeWitt: Wisconsin Benchmark 25 Second Draft

P1 P
2

Pn

Interconnection Network

Figure 7. The basic shared nothing design.  Each processor has a private memory and one or more disk drives.
Processors communicate via a high-speed interconnect network.

The hardware platform currently used by Gamma is a 32 processor Intel iPSC/2

hypercube. Each processor is configured with a Intel 386 CPU, 8 megabytes of memory, and a

330-megabyte MAXTOR 4380 (5 1/4") disk drive. Each disk drive has an embedded SCSI

controller which provides a 45 Kbyte RAM buffer that acts as a disk cache for sequential read

operations. The nodes in the hypercube are interconnected to form a hypercube using custom

VLSI routing modules.  Each module supports eight2 full-duplex, serial, reliable communication

channels each operating at 2.8 megabytes/second.  Small messages (<= 100 bytes) are sent as

datagrams and take less than a millisecond.  For large messages, the hardware builds a

communications circuit between the two nodes over which the entire message is transmitted

without software overhead or copying.  After the message has been completely transmitted, the

circuit is released.  As an example of the performance obtainable when sending page-sized

messages, an 8 Kbyte message takes about 4.5 milliseconds.

Physical Database Organization   

Relations in Gamma are declustered [LIVN87] (see Figure 8) across all disk drives in the

system.3  Declustering a relation involves distributing the tuples of a relation among two or more

disk drives according to some distribution criteria such as applying a hash function to the key

attribute of each tuple.  One of the key reasons for using declustering in a parallel database system

is to enable the DBMS software to exploit the I/O bandwidth by reading and writing multiple

disks in parallel.  By declustering the tuples of a relation the task of parallelizing a scan operator

becomes trivial. All that is required is to start a copy of the operator on each processor or disk

containing relevant tuples, and to merge their outputs at the destination.

                                               
2  On configurations with a mix of compute and I/O nodes, one of the 8 channels is dedicated for communication to the I/O
subsystem.
3  Declustering has its origins in the concept of horizontal  partitioning initially developed as a distribution mechanism  for
distributed DBMS [RIES78].



DeWitt: Wisconsin Benchmark 26 Second Draft

 

P1 P2 Pn

a---c d---g w--z 

P1 P2 Pn P1 P2 Pn

range partitioning         round-robin            hashing

Figure 8: The three basic declustering schemes: range declustering maps contiguous fragments of a table to
various disks.  Round-Robin declustering maps the i’th record to disk i mod n.  Hashed declustering, maps each
record to a disk location based on some hash function.  Each of these schemes spreads data among a collection of
disks, allowing parallel disk access and parallel processing.

Gamma currently provides the user with three alternative declustering strategies: round

robin, hashed, and range partitioned. With the first strategy, tuples are distributed in a round-

robin fashion among the disk drives. This is the default strategy and is used for all relations

created as the result of a query. If the hashed partitioning strategy is selected, a randomizing

function is applied to the key attribute of each tuple to select a storage unit. In the third strategy

the user specifies a range of key values for each node. The partitioning information for each

relation is stored in the database catalog. Once a relation has been partitioned, Gamma provides

the normal collection of access methods including both clustered and non-clustered indices. When

the user requests that an index be created on a relation, the system automatically creates an index

on each fragment of the relation. Gamma does not require that the clustered index for a relation

be constructed on the partitioning attribute.

As a query is being optimized, the partitioning information for each source relation in the

query is incorporated into the query plan produced by the query optimizer. In the case of hash and

range-partitioned relations, this partitioning information is used by the query scheduler (discussed

below) to restrict the number of processors involved in the execution of selection queries on the

partitioning attribute. For example, if relation X is hash partitioned on attribute y, it is possible to

direct selection operations with predicates of the form "X.y = Constant" to a single node; avoiding

the use of any other nodes in the execution of the query. In the case of range-partitioned relations,

the query scheduler can restrict the execution of the query to only those processors whose ranges

overlap the range of the selection predicate (which may be either an equality or range predicate).



DeWitt: Wisconsin Benchmark 27 Second Draft

 Software Architecture

Gamma is built on top of an operating system designed specifically for supporting

database management systems. NOSE provides multiple, lightweight processes with shared

memory. A non-preemptive scheduling policy is used to help prevent convoys [BLAS79] from

occurring. NOSE provides communications between processes using the reliable message passing

hardware of the Intel iPSC/2 hypercube. File services in NOSE are based on the Wisconsin

Storage System (WiSS) [CHOU85].

The algorithms for all the relational operators are written as if they were to be run on a

single processor. As shown in Figure 9, the input to an Operator Process is a stream of tuples and

the output is a stream of tuples that is demultiplexed through a structure we term a split table.

Once the process begins execution, it continuously reads tuples from its input stream (which may

be the output of another process or a table), operates on each tuple, and uses a split table to route

the resulting tuple to the process indicated in the split table.

Process  
Executing 
Operator

Split 
Table

Figure 9:  A  relational dataflow graph showing a relational operator’s output being decomposed by a split table into
several independent streams.  Each stream may be a duplicate of the input stream, or a partitioning of the input
stream into many disjoint streams.  With the split and merge operators, a web of simple sequential dataflow nodes
can be connected to form a parallel execution plan.

As an example, consider the query shown in Figure 10 in conjunction with the split tables

in Figure 11. Assume that three processes are used to execute the join operator, and that five

other processes execute the two scan operators - three processes are used to scan the 3 partitions

of table A and two processes are used to scan the 2 partitions of table B. Each of the three table A

scan nodes will have the same split table, sending all tuples with join attributes values between "A-

H" to port 1 of join process 0, all between "I-Q" to port 1 of join process 1, and all between "R-

Z" to port 1 of join process 2.  Similarly the two table B scan nodes have the same split table

except that their outputs are merged by port 1 (not port 0) of each join process.  Each join

process sees a sequential input stream of A tuples from the port 0 merge (the left scan nodes) and

another sequential stream of B tuples from the port 1 merge (the right scan nodes).  Four join

methods are available to the query optimizer to choose from [DEWI84, SCHN89]: simple hash,



DeWitt: Wisconsin Benchmark 28 Second Draft

grace hash, hybrid hash, and sort-merge. Additional details on how queries are processed by

Gamma can be found in [DEWI90].

JOIN

SCAN SCAN

A B

C

JOIN

SCAN

A2

C

JOIN

SCAN SCAN

A1 B1

JOIN

SCAN SCAN

A0 B0

split of each scan ouput + 
merge of scan inputs  
to each join node 

Figure 10: A simple relational dataflow graph showing two relational scans (project and select) consuming two
input tables, A and B and feeding their outputs to a join operator which in turn produces a data stream C.

Table A Scan Split Table Table B Scan Split Table

Predicate Destination Process Predicate Destination Process

“A-H” (cpu #5, Process #3, Port #0) “A-H” (cpu #5, Process #3, Port #1)

“I-Q” (cpu #7, Process #8, Port #0) “I-Q” (cpu #7, Process #8, Port #1)

“R-Z” (cpu #2, Process #2, Port #0) “R-Z” (cpu #2, Process #2, Port #1)

Figure 11. Sample Split Tables which map tuples to different output streams (ports of other processes) depending
on the range value of some attribute of the input tuple.The split table on the left is for the Table A scan in figure 7,
while the table on the right is for the table B scan.

3.3.1. Sizeup Experiments

Selection Queries

The first set of selection tests were designed to determine how Gamma would respond as

the size of the source relations was increased while the machine configuration was kept at 30

processors with disks. Ideally, the response time of a query should grow as a linear function of the

size of input and result relations. For these tests six different selection queries (queries 1 to 5 and

7 from Appendix I) were run on three sets of relations containing, respectively, 0.1 million, 1

million, and 10 million tuples.  Query 6, a 10% selection through a non-clustered index query, is

not included as the Gamma query optimizer chooses to use a sequential scan for this query.

Except for query 7, the predicate of each query specifies a range of values and, thus, since the

input relations were declustered by hashing, the query must be sent to all the nodes.



DeWitt: Wisconsin Benchmark 29 Second Draft

The results from these tests are tabulated in Table 3. For the most part, the execution time

for each query scales as a fairly linear function of the size of the input and output relations. There

are, however, several cases where the scaling is not perfectly linear.  Consider, first the 1% non-

indexed selection.  As the size of the input relation is increased from 1 to 10 million tuples, the

response time increase is almost perfectly linear (8.16 secs. to 81.15 secs.). But, the response time

increase from 100,000 tuples to 1 million tuples (0.45 sec. to 8.16 sec) is sub-linear (an 18-fold

increase in response time for a 10-fold increase in database size giving a .55 sizeup benefit). The

cause of this sublinearity is that the cost of starting a query on 30 processors (approximately 0.24

seconds) constitutes almost 1/2 the total execution time of the selection on the 100,000 tuple

relation.  The 10% selection using a clustered index is another example where increasing the size

of the input relation by a factor of ten results in more than a ten-fold increase in the response time

for the query. This query takes 5.02 seconds on the 1 million tuple relation and 61.86 seconds on

the 10 million tuple relation. To understand why this happens one must consider the impact of

seek time on the execution time of the query. Since two copies of each relation were loaded,

when two one million tuple relations are declustered over 30 disk drives, the fragments occupy

approximately 53 cylinders (out of 1224) on each disk drive. Two ten million tuple relations fill

about 530 cylinders on each drive. As each page of the result relation is written to disk, the disk

heads must be moved from their current position over the input relation to a free block on the

disk.  Thus, with the 10 million tuple relation, the cost of writing each output page is much

higher.   This effect does not occur with the 1% non-indexed selection since the result relation fits

in the buffer pool and can be written to disk sequentially at the end of the query.

Table 3 - Selection Queries
30 Processors With Disks

(All Execution Times in Seconds)

         Number of Tuples in Source Relation
Query Description                                   100,000           1,000,000        10,000,000

1% non-indexed selection 0.45 8.16 81.15

10% non-indexed selection 0.82 10.82 135.61

1% selection using clustered index 0.35 0.82 5.12

10% selection using clustered index 0.77 5.02 61.86

1% selection using non-clustered index 0.60 8.77 113.37

single tuple select using clustered index 0.08 0.08 0.14

 

As expected, the use of a clustered B-tree index always provides a significant

improvement in performance. One observation to be made from Table 3 is the relative consistency

of the execution time of the selection queries through a clustered index. Notice that the execution



DeWitt: Wisconsin Benchmark 30 Second Draft

time for a 10% selection on the 1 million tuple relation is almost identical to the execution time of

the 1% selection on the 10 million tuple relation. In both cases, 100,000 tuples are retrieved and

stored, resulting in identical I/O and CPU costs.

The final row of Table 3 presents the time required to select a single tuple using a

clustered index and return it to the host. Since the selection predicate is on the partitioning

attribute, the query is directed to a single node, avoiding the overhead of starting the query on all

30 processors. The response for this query increases significantly as the relation size is increased

from 1 million to 10 million tuples because the height of the B-tree increases from two to three

levels.  It is interesting to note how the response time increases as the size of the relation

increases.  While the B-tree for all three relations is only two levels deep (at each node), the

number of entries in the root node increases from 4 to 330 as the relation size is increased from

100,000 to 10 million tuples. Consequently, significantly more time is required to do a binary

search of the root node to locate the correct leaf page.

Join Queries

Two join queries were used for the join scaleup tests: joinABprime and joinAselB. The A

and B relations contain either 0.1 million, 1 million, or 10 million tuples. The Bprime relation

contains, respectively, 10,000, 100,000, or 1 million tuples.

The first variation of the join queries tested involved no indices and used a non-

partitioning attribute for both the join and selection attributes. Thus, before the join can be

performed, the two input relations must be redistributed by hashing on the join attribute value of

each tuple. The results from these tests are contained in the first 2 rows of Table 4. The second

variation of the join queries also did not employ any indices but, in this case, the relations were

hash partitioned on the joining attribute; enabling the redistribution phase of the join to be

skipped. The results for these tests are contained in the last 2 rows of Table 4.



DeWitt: Wisconsin Benchmark 31 Second Draft

Table 4 - Join Queries
30 Processors With Disks

(All Execution Times in Seconds)
Number of Tuples in Relation A

Query Description                                               100,000           1,000,000        10,000,000

JoinABprime with non-partitioning attributes 3.52 28.69 438.90
of A and B used as join attributes

JoinAselB with non-partitioning attributes 2.69 25.13 373.98
of A and B used as join attributes

JoinABprime with partitioning attributes 3.34 25.95 426.25
of A and B used as join attributes

JoinAselB with partitioning attributes 2.74 23.77 362.89
of A and B used as join attributes

The results in Table 4 indicate that the execution time of each join query increases in a

fairly linear fashion as the size of the input relations are increased. Gamma does not exhibit

linearity for the 10 million tuple queries because the size of the inner relation (208 megabytes) is

twice as large as the total available space for hash tables. Hence, the Hybrid join algorithm

[SCHN89] needs two buckets to process these queries. While the tuples in the first bucket can be

placed directly into memory-resident hash tables, the second bucket must be written to disk.

As expected, the version of each query in which the partitioning attribute was used as the

join attribute ran faster. From these results one can estimate a lower bound on the aggregate rate

at which data can be redistributed by the Intel iPSC/2 hypercube. Consider the version of the

joinABprime query in which a million tuple relation is joined with a 100,000 tuple relation. This

query requires 28.69 seconds when the join is not on the partitioning attribute. During the

execution of this query, 1.1 million 208 byte tuples must be redistributed by hashing on the join

attribute, yielding an aggregate total transfer rate of 7.9 megabytes/second during the processing

of this query. This should not be construed, however, as an accurate estimate of the maximum

obtainable interprocessor communications bandwidth as the CPUs may be the limiting factor (the

disks are not likely to be the limiting factor as from Table 3 one can estimate that the aggregate

bandwidth of the 30 disks to be about 25 megabytes/second).



DeWitt: Wisconsin Benchmark 32 Second Draft

3.3.2 Speedup Experiments

Selection Queries

This section examines how the response times for both the non-indexed and indexed

selection queries on the 1 million tuple relation are affected by the number of processors used to

execute the query.4  Ideally, one would like to see a linear improvement in performance as the

number of processors is increased from 1 to 30. Increasing the number of processors increases

both the aggregate CPU power and I/O bandwidth available, while reducing the number of tuples

that must be processed by each processor.

Figure 12 presents the average response times for the non-indexed 1% and 10% selection

queries (queries 1 and 2) on the one million tuple relation. As expected, the response time for

each query decreases as the number of processors and disks is increased.  The response time is

higher for the 10% selection due to the cost of declustering and storing the result relation. While

one could always store result tuples locally, by partitioning all result relations in a round-robin (or

hashed) fashion one can ensure that the fragments of every result relation each contain

approximately the same number of tuples.

PROCESSORS WITH DISKS

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30

PROCESSORS WITH DISKS

RESPONSE  TIME (SECONDS) SPEEDUP 

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30

1% nonindexed selection

10% noindexed selection

1% nonindexed selection

10% noindexed selection

Figure 12: Response times and speedup of non-indexed selection queries.

                                               
4  The 1 million tuple relation was used for these experiments because the 10 million tuple relation would not fit on 1 disk
drive.



DeWitt: Wisconsin Benchmark 33 Second Draft

Figure 13 presents the average response time and speedup as a function of the number of

processors for the following three queries: a 1% selection through a clustered index (query 3), a

10% selection through a clustered index (query 4), and a 1% selection through a non-clustered

index (query 5), all accessing the 1 million tuple relation.

PROCESSORS WITH DISKS PROCESSORS WITH DISKS

SPEEDUP RESPONSE  TIME (SECONDS)

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30

100

150

200

250

300

350

400

0

50

0 5 10 15 20 25 30

1% non-clustered index selection

1% clustered index selection

10% clustered index selection

1% non-clustered index selection

1% clustered index selection

10% clustered index selection

Figure 13: Response times and speedup of indexed selection queries.

Three queries in Figures 12 and 13 have super-linear speedup,  one is slightly sublinear,

and one is significantly sublinear.  Consider first the 10% selection via a relation scan, the 1%

selection through a non-clustered index, and the 10% selection through a clustered index. As

discussed above, the source of the superlinear speedups exhibited by these queries is due to

significant differences in the time the various configurations spend seeking. With one processor,

the 1 million tuple relation occupies approximately 66% of the disk. When the same relation is

declustered over 30 disk drives, it occupies about 2% of each disk. In the case of the 1% non-

clustered index selection, each tuple selected requires a random seek. With one processor, the

range of the each random seek is approximately 800 cylinders while with 30 processors the range

of the seek is limited to about 27 cylinders. Since the seek time is proportional to the square root

of the distance traveled by the disk head [PATT89], reducing the size of the relation fragment on

each disk significantly reduces the amount of time that the query spends seeking.

A similar effect occurs with the 10% clustered index selection.  In this case, once the index

has been used to locate the tuples satisfying the query, each input page will produce one output



DeWitt: Wisconsin Benchmark 34 Second Draft

page and at some point the buffer pool will be filled with dirty output pages. In order to write an

output page, the disk head must be moved from its position over the input relation to the position

on the disk where the output pages are to be placed. The relative cost of this seek decreases

proportionally as the number of processors increases, resulting in a superlinear speedup for the

query. The 10% non-indexed selection shown in Figure 13 is also superlinear for similar reasons.

The reason that this query is not affected to the same degree is that, without an index, the seek

time is a smaller fraction of the overall execution time of the query.

The 1% selection through a clustered index exhibits sublinear speedups because the cost

of initiating a select and store operator on each processor (a total of 0.24 seconds for 30

processors) becomes a significant fraction of the total execution as the number of processors is

increased.

Join Queries

For the join speedup experiments, we used the joinABprime query with a 1 million tuple A

relation and a 100,000 tuple Bprime relation. Two different cases were considered. In the first

case, the input relations were declustered by hashing on the join attribute. In the second case, the

input relations were declustered using a different attribute. The hybrid hash-join algorithm was

used for all queries. The number of processors was varied from five to thirty. Since with fewer

than five processors two or more hash join buckets are needed, including the execution time for

one processor (which needs 5 buckets) would have made the response times for five or more

processors appear artificially fast; resulting in superlinear speedup curves.

The resulting response times and speedups are plotted in Figure 14.  From the shape of

these graphs it is obvious that the execution time for the query is significantly improved as

additional processors are employed.  Several factors prevent the system from achieving perfectly

linear speedups.  First, the cost of starting four operator processes (two scans, one join, and one

store) on each processor increases as a function of the number of processors used. Second, the

effect of short-circuiting local messages diminishes as the number of processors is increased. For

example, consider a five processor configuration and the non-partitioning attribute version of the

JoinABprime query. As each processor repartitions tuples by hashing on the join attribute, 1/5th

of the input tuples it processes are destined for itself and will be short-circuited by the

communications software. In addition, as the query produces tuples of the result relation (which is

partitioned in a round-robin manner), they too will be short circuited. As the number of

processors is increased, the number of short-circuited packets decreases to the point where, with



DeWitt: Wisconsin Benchmark 35 Second Draft

30 processors, only 1/30th of the packets will be short-circuited. Because these intra-node

packets are less expensive than their corresponding inter-node packets, smaller configurations will

benefit more from short-circuiting. In the case of a partitioning-attribute joins, all input tuples will

short-circuit the network along with a fraction of the output tuples.

PROCESSORS WITH DISKS PROCESSORS WITH DISKS

RESPONSE  TIME (SECONDS) SPEEDUP 

20

40

60

80

100

120

140

160

180

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

 hash partitioned on  
    non-join attribute

hash partitioned on  
    join attribute

 hash partitioned on  
    non-join attribute

hash partitioned on  
    join attribute

Figure 14: Response times and speedup of join queries.

3.3.3 Scaleup Experiments

Selection Queries

In the final set of selection experiments the number of processors was varied from 5 to 30

while the size of the input relations was increased from 1 million to 6 million tuples, respectively.

As shown in Figure 15, the response time for each of the five selection queries remains almost

constant. The slight increase in response time is due to the overhead of initiating a selection and

store operator at each node.  Since a single process is used to initiate the execution of a query, as

the number of processors employed is increased, the load on this process is increased

proportionally. Switching to a tree-based, query initiation scheme [GERB87] would distribute this

overhead among all the processors.



DeWitt: Wisconsin Benchmark 36 Second Draft

PROCESSORS WITH DISKS PROCESSORS WITH DISKS

RESPONSE  TIME (SECONDS) RESPONSE  TIME (SECONDS)

5 10 15 20 25 305 10 15 20 25 30

10

20

30

40

50

60

70

80

0

10 % nonindexed selection

1% non-clustered index selection

1% non-indexed selection

10 % clustered index selection

1%  clustered index selection

145

150

155

160

165

170

175

hash partitioned on non-join attribute

hash partitioned on join attribute

 
Figure 15:  Scaleup response times of various queries.

Join Queries

The JoinABprime query was used for the join scaleup experiments. For these tests, the

number of processors was varied from 5 to 30 while the size of the A relation was varied from 1

million to 6 million tuples in increments of 1 million tuples and the size of Bprime relation was

varied from 100,000 to 600,000 tuples in increments of 100,000. Two different cases were

considered. In the first case, the input relations were declustered by hashing on the join attribute.

In the second case, the input relations were declustered using a different attribute. For each

configuration, only one join bucket was needed. The results of these tests are presented in Figure

15. Three factors contribute to the slight increase in response times. First, the task of initiating 4

processes at each node is performed by a single processor. Second, as the number of processors

increases, the effects of short-circuiting messages during the execution of these queries diminishes

- especially in the case when the join attribute is not the partitioning attribute. Finally, the

response time may be being limited by the speed of the communications network.



DeWitt: Wisconsin Benchmark 37 Second Draft

4.0. Conclusions

The original intent of the Wisconsin benchmark was to develop a relatively simple, but

fairly scientific benchmark, that could be used to evaluate the performance of relational database

systems and machines. We never envisioned that the benchmark would become widely used or

cause the controversies that it did.  In retrospect, had we realized what was to come, we would

have tried to do a better job in a number of areas including more complex queries and a better

suite of update queries. In the conclusions of [BITT83], we ourselves admitted that the

benchmark was "neither an exhaustive comparison of the different systems, nor a realistic

approximation of what measurements in a multiuser environment would be like." However,

starting with a single-user benchmark provided us with insights that would have been impossible

to achieve had we begun instead with multiuser experiments.

The Wisconsin benchmark did a very good job of uncovering performance and

implementation flaws in the original relational products. Since then, however, these flaws have

been fixed and the single-user performance differences among the various products have

narrowed significantly. For the most part, the Wisconsin benchmark has been supplanted by the

Debit Credit  benchmark and its successor the TPC BM A benchmark, regardless of the many

deficiencies of this benchmark.

Over the past few years parallel database systems have evolved from research curiosities

to a highly successful products. For example, both Teradata and Tandem have each shipped

systems with over two hundred processors. While mainframe vendors have found it increasingly

difficult to build machines powerful enough to meet the CPU and I/O demands of relational

DBMSs serving large numbers of simultaneous users or searching terabytes of data, parallel

database systems based on a shared-nothing architecture [STON86] can be expanded

incrementally and can be scaled to configurations containing certainly 100s and probably 1000s of

processors and disks. While the DebitCredit benchmark is used as one metric for such systems,

many customers of such systems use them for processing complex relational queries. As

illustrated by the previous section, the Wisconsin benchmark provides a mechanism by which both

the absolute performance and the speedup and scaleup characteristics of such systems can be

measured.



DeWitt: Wisconsin Benchmark 38 Second Draft

 Acknowledgements

Dina Bitton and Carolyn Turbyfill were instrumental in the development of the Wisconsin

benchmark and in conducting the early tests.   All too often the Wisconsin benchmark is cited as

the "DeWitt" benchmark.  Doing so slights the important contributions that Dina and Carolyn

made in its development. Shahram Ghandeharizadeh and Donovan Schneider deserve all the credit

for not only gathering the results on Gamma that were presented in Section 3, but also, their

major contributions implementing Gamma itself. Finally,  I would  like to acknowledge Susan

Englert and Jim Gray for the benchmark generator described in Section 3.

This research was partially supported by the Defense Advanced Research Projects Agency

under contract N00039-86-C-0578, by the National Science Foundation under grant DCR-

8512862, by a DARPA/NASA sponsored Graduate Research Assistantship in Parallel Processing,

and by research grants from Intel Scientific Computers, Tandem Computers, and Digital

Equipment Corporation.

References

[ALEX88] Alexander, W., et. al., "Process and Dataflow Control in Distributed Data-Intensive Systems," Proc.
ACM SIGMOD Conf., Chicago, IL, June 1988. October, 1983.

[ANON88] Anon et. al., "A Measure of Transaction Processing Power," in "Readings in Database Systems", edited
by Michael Stonebraker, Morgan Kaufman, 1988.

[BLAS79] Blasgen, M. W., Gray, J., Mitoma, M., and T. Price, "The Convoy Phenomenon," Operating System
Review, Vol. 13, No. 2, April, 1979.

[BITT83] Bitton, D., DeWitt, D. J., and C. Turbyfil, "Benchmarking Database Systems: A Systematic Approach,"
Proceedings of the 1983 Very Large Database Conference, October, 1983.

[BITT85] Bitton, D. and C. Turbyfill, "Design and Analysis of Multiuser Benchmarks for Database Systems,"
Proceedings of the HICSS-18 Conference, January, 1985.

[BITT88] Bitton, D. and C. Turbyfill, "A Retrospective on the Wisconsin Benchmark," in "Readings in Database
Systems", edited by Michael Stonebraker, Morgan Kaufman, 1988.

[BORA82] Boral, H., DeWitt, D.J., Friedland, D., Jarrell, N., and W. K. Wilkinson, "Implementation of the
Database Machine DIRECT," IEEE Transactions on Software Engineering, November, 1982.

 [BORA83] Boral H. and D. J. DeWitt, "Database Machines: An Idea Whose Time has Passed? A Critique of the
Future of Database Machines," Proceedings of the 3rd International Workshop on Database Machines,
Munich, Germany, September, 1983.

[CHOU85] Chou, H-T, DeWitt, D. J., Katz, R., and T. Klug, "Design and Implementation of the Wisconsin
Storage System (WiSS)", Software Practices and Experience, Vol. 15, No. 10, October, 1985.

[COPE88] Copeland, G., Alexander, W., Boughter, E., and T. Keller, "Data Placement in Bubba," Proceedings of
the ACM-SIGMOD International Conference on Management of Data, Chicago, May 1988.

[DEWI79] DeWitt, D.J., "DIRECT - A Multiprocessor Organization for Supporting Relational Database
Management Systems," IEEE Transactions on Computers, June, 1979.

[DEWI86] DeWitt, D., et. al., "GAMMA - A High Performance Dataflow Database Machine," Proceedings of the
1986 VLDB Conference, Japan, August 1986.

[DEWI87] DeWitt, D., Smith, M., and H. Boral, .q "A Single-User Performance Evaluation of the Teradata
Database Machine," MCC Technical Report Number DB-081-87, March 5, 1987.



DeWitt: Wisconsin Benchmark 39 Second Draft

[DEWI88] DeWitt, D., Ghandeharizadeh, S., and D. Schneider, "A Performance Analysis of the Gamma Database
Machine," Proceedings of the ACM-SIGMOD International Conference on Management of Data, Chicago,
May 1988.

[DEWI90] DeWitt, D., et. al., "The Gamma Database Machine Project," IEEE Knowledge and Data Engineering,
Vol. 2, No. 1, March, 1990.

[ENGL89a] Englert, S, J. Gray, T. Kocher, and P. Shah, "A Benchmark of NonStop SQL Release 2 Demonstrating
Near-Linear Speedup and Scaleup on Large Databases," Tandem Computers, Technical Report 89.4, Tandem
Part No. 27469, May 1989.

[ENGL89b] Englert, S. and J. Gray,  "Generating Dense-Unique Random Numbers for Synthetic Database
Loading,"  Tandem Computers, January, 1989.

[EPST87] Epstein, R. "Today's Technology is producing High-Performance Relational Database Systems," Sybase
Newsletter, 1987.

[GERB87] Gerber, R. and D. DeWitt, "The Impact of Hardware and Software Alternatives on the Performance of
the Gamma Database Machine", Computer Sciences Technical Report #708, University of Wisconsin-
Madison, July, 1987.

[GRAE89] Graefe, G., and K. Ward, "Dynamic Query Evaluation Plans", Proceedings of the 1989 SIGMOD
Conference, Portland, OR, June 1989.

[GRAE90] Graefe, G., "Encapsulation of Parallelism in the Volcano Query Processing System," Proceedings of the
1990 ACM-SIGMOD International Conference on Management of Data, May 1990.

[GRAY88] Gray, J., H. Sammer, and S. Whitford, "Shortest Seek vs Shortest Service Time Scheduling of Mirrored
Disks," Tandem Computers, December 1988.

[LIVN87] Livny, M., S. Khoshafian, and H. Boral, "Multi-Disk Management Algorithms", Proceedings of the
1987 SIGMETRICS Conference, Banff, Alberta, Canada, May, 1987.

[LORI89] Lorie, R., J. Daudenarde, G. Hallmark, J. Stamos, and H. Young, "Adding Intra-Transaction Parallelism
to an Existing DBMS: Early Experience", IEEE Data Engineering Newsletter, Vol. 12, No. 1, March 1989.

[SCHN89] Schneider, D. and D. DeWitt, "A Performance Evaluation of Four Parallel Join Algorithms in a Shared-
Nothing Multiprocessor Environment", Proceedings of the 1989 SIGMOD Conference, Portland, OR, June
1989.

[ONEIL91] O’Neil, P.E. "The Set Query Benchmark", in Database and Transaction Processing Performance
Handbook, J. Gray ed. Morgan Kauffman 1991..

[PATT89] Patterson, D. A.,  J. L. Hennesssy, Computer Architecture, a Quantitative Approach, Morgan
Kaufmann, 1990.

[SCHN90] Schneider, D. and D. DeWitt, "Tradeoffs in Processing Complex Join Queries via Hashing in
Multiprocessor Database Machines," Proceedings of the Sixteenth International Conference on Very Large
Data Bases", Melbourne, Australia, August, 1990.

[SMIT89] Smith, M. et. al, "An Experiment in Response Time Scalability," Proceedings of the 6th International
Workshop on Database Machines," June, 1989.

[STON86] Stonebraker, M., "The Case for Shared Nothing," Database Engineering, Vol. 9, No. 1, 1986.
[TAND87] Tandem Database Group, "NonStop SQL, A Distributed, High-Performance, High-Reliability

Implementation of SQL,"  High Performance Transaction Systems, Springer Verlag Lecture Notes in
Computer Science 359, 1989.

[TAND88] Tandem Performance Group, "A Benchmark of Non-Stop SQL on the Debit Credit Transaction,"
Proceedings of the 1988 SIGMOD Conference, Chicago, IL, June 1988.

[TERA83] Teradata: DBC/1012 Data Base Computer Concepts & Facilities, Teradata Corp. Document No. C02-
0001-00, 1983.

[TERA85] Teradata, "DBC/1012 Database Computer System Manual Release 2.0," Document No. C10-0001-02,
Teradata Corp., NOV 1985.



DeWitt: Wisconsin Benchmark 40 Second Draft

Appendix I

Wisconsin Benchmark Queries for 10,000 Tuple Relations

Comments:

1) For the selection, insert, update, and delete queries, 10 variants of each query are used. For the

join, aggregate, and projection queries four variants of each query are used. Queries alternate

between two identical copies of each relation. For example, the selection predicates of the first

four variants of Query 1 are:

... WHERE TENKTUP1.unique2 BETWEEN 0 AND 99
 ... WHERE TENKTUP2.unique2 BETWEEN 9900 AND 9999
 ... WHERE TENKTUP1.unique2 BETWEEN 302 AND 401
 ... WHERE TENKTUP2.unique2 BETWEEN 676 AND 775

Only one variant of each query is shown below.

2) For the indexed runs, a clustered index is constructed on the unique2 attribute and non-

clustered indices are constructed on the unique1 and the hundred attribute.

3) TMP is used as a generic name for the result relation for those queries whose result tuples are

stored in the database.

Query 1 (no index) & Query 3 (clustered index) - 1% selection

INSERT INTO TMP
SELECT * FROM TENKTUP1
WHERE unique2 BETWEEN 0 AND 99

Query 2 (no index) & Query 4 (clustered index) - 10% selection

INSERT INTO TMP
SELECT * FROM TENKTUP1
WHERE unique2 BETWEEN 792 AND 1791

Query 5 - 1% selection via a non-clustered index

INSERT INTO TMP
SELECT * FROM TENKTUP1
WHERE unique1 BETWEEN 0 AND 99

Query 6 - 10% selection via a non-clustered index
INSERT INTO TMP
SELECT * FROM TENKTUP1



DeWitt: Wisconsin Benchmark 41 Second Draft

WHERE unique1 BETWEEN 792 AND 1791

Query 7 - single tuple selection via clustered index to screen

SELECT * FROM TENKTUP1
WHERE unique2 = 2001

Query 8 - 1% selection via clustered index to screen

SELECT * FROM TENKTUP1
WHERE unique2 BETWEEN 0 AND 99

Query 9 (no index) and Query 12 (clustered index) - JoinAselB

INSERT INTO TMP
SELECT * FROM TENKTUP1, TENKTUP2
WHERE (TENKTUP1.unique2 = TENKTUP2.unique2)
  AND (TENKTUP2.unique2 < 1000)

Query to make Bprime relation
INSERT INTO BPRIME
SELECT * FROM TENKTUP2
WHERE TENKTUP2.unique2 < 1000

Query 10 (no index) and Query 13 (clustered index) - JoinABprime

INSERT INTO TMP
SELECT * FROM TENKTUP1, BPRIME
WHERE (TENKTUP1.unique2 = BPRIME.unique2)

Query 11 (no index) and Query 14 (clustered index) - JoinCselAselB

INSERT INTO TMP
SELECT * FROM ONEKTUP, TENKTUP1
WHERE (ONEKTUP.unique2 = TENKTUP1.unique2)
  AND (TENKTUP1.unique2 = TENKTUP2.unique2)
  AND (TENKTUP1.unique2 < 1000)

Query 15 (non-clustered index) - JoinAselB

INSERT INTO TMP
SELECT * FROM TENKTUP1, TENKTUP2
WHERE (TENKTUP1.unique1 = TENKTUP2.unique1)
  AND (TENKTUP1.unique2 < 1000)



DeWitt: Wisconsin Benchmark 42 Second Draft

Query 16 (non-clustered index) - JoinABprime

INSERT INTO TMP
SELECT * FROM TENKTUP1, BPRIME
WHERE (TENKTUP1.unique1 = BPRIME.unique1)

Query 17 (non-clustered index) - JoinCselAselB

INSERT INTO TMP
SELECT * FROM ONEKTUP, TENKTUP1
WHERE (ONEKTUP.unique1 = TENKTUP1.unique1)
  AND (TENKTUP1.unique1 = TENKTUP2.unique1)
  AND (TENKTUP1.unique1 < 1000)

Query 18 - Projection with 1% Projection

INSERT INTO TMP
SELECT DISTINCT two, four, ten, twenty, onePercent, string4
FROM TENKTUP1

Query 19 - Projection with 100% Projection

INSERT INTO TMP
SELECT DISTINCT two, four, ten, twenty, onePercent,
tenPercent, twentyPercent, fiftyPercent, unique3,
evenOnePercent, oddOnePercent, stringu1, stringu2, string4
FROM TENKTUP1

Query 20 (no index) and Query 23 (with clustered index)

Minimum Aggregate Function

INSERT INTO TMP
SELECT MIN (TENKTUP1.unique2) FROM TENKTUP1

Query 21 (no index) and Query 24 (with clustered index)

Minimum Aggregate Function with 100 Partitions

INSERT INTO TMP
SELECT MIN (TENKTUP1.unique3) FROM TENKTUP1
GROUP BY TENKTUP1.onePercent

Query 22 (no index) and Query 25 (with clustered index)

Sun Aggregate Function with 100 Partitions

INSERT INTO TMP
SELECT SUM (TENKTUP1.unique3) FROM TENKTUP1
GROUP BY TENKTUP1.onePercent



DeWitt: Wisconsin Benchmark 43 Second Draft

Query 26 (no indices) and Query 29 (with indices) - Insert 1 tuple

INSERT INTO TENKTUP1 VALUES(10001,74,0, 2,0,10,50,688,
1950,4950,9950,1,100,
'MxxxxxxxxxxxxxxxxxxxxxxxxxGxxxxxxxxxxxxxxxxxxxxxxxxC'
'GxxxxxxxxxxxxxxxxxxxxxxxxxCxxxxxxxxxxxxxxxxxxxxxxxxA',
'OxxxxxxxxxxxxxxxxxxxxxxxxxOxxxxxxxxxxxxxxxxxxxxxxxxO')

Query 27 (no index) and Query 30 (with indices) - Delete 1 tuple

DELETE FROM TENKTUP1 WHERE unique1=10001

Query 28 (no indices) and Query 31 (with indices) - Update key attribute

UPDATE TENKTUP1
SET unique2 = 10001 WHERE unique2 = 1491

Query 32 (with indices) - Update indexed non-key attribute

UPDATE TENKTUP1
SET unique1 = 10001 WHERE unique1 = 1491


