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Abstract

Search operations in databases require some special support at the physical
level. This is true for conventional databases as well as for spatial databases, where
typical search operations include the point query (find all objects that contain a
given search point) and the region query (find all objects that overlap a given search
region). More than ten years of spatial database research have resulted in a great
variety of multidimensional access methods to support such operations. This paper
gives an overview of that work. After a brief survey of spatial data management
in general, we first present the class of point access methods, which are used to
search sets of points in two or more dimensions. The second part of the paper
is devoted to spatial access methods, which are able to manage extended objects
(such as rectangles or polyhedra). We conclude with a discussion of theoretical and
experimental results concerning the relative performance of the various approaches.
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1 Introduction

With an increasing number of computer applications that rely heavily on multidimen-
sional data, the database community has recently devoted considerable attention to
spatial data management. While the main motivation originated in the geosciences
and mechanical CAD, the range of possible applications has now expanded to areas
such as robotics, visual perception and autonomous navigation, environmental protec-
tion, and medical imaging (Giinther and Buchmann 1990).

Just as broad as the range of applications is the range of interpretations given to
the term spatial data management. In VLSI CAD and cartography this term refers
to applications that rely mostly on two—dimensional or layered two—dimensional data.
VLSI data is usually represented by rectilinear polylines or polygons whose edges are
iso-oriented, i.e., parallel to the coordinate axes. Typical operations include intersection
and geometric routing. Cartographic data is also two—dimensional with points, lines,
and regions as basic primitives. In contrast to VLSI CAD, however, the shapes are often
characterized by extreme irregularities. Common operations include spatial searches,
map overlay, as well as distance-related operations. In mechanical CAD, on the other
hand, data objects are usually three—dimensional solids. They may be represented
in a variety of data formats, including cell decomposition schemes, constructive solid
geometry (CSG), and boundary representations (Kemper and Wallrath 1987). Yet
other applications emphasize the processing of unanalyzed images, such as X-rays and
satellite imagery, from which features are extracted. In those areas, the terms spatial
database and image database are sometimes even used interchangeably.

Strictly speaking, however, spatial databases contain multidimensional data with
explicit knowledge about objects, their extent, and their position in space. The objects
are usually represented in some vector—based format, and their relative position may
be explicit or implicit (i.e., derivable from the internal representation of their absolute
positions). Image databases, on the other hand, often place less emphasis on data
analysis. They provide storage and retrieval for unanalyzed pictorial data, which is
typically represented in some raster format. Techniques developed for the storage and
manipulation of image data can be applied to other media as well, such as infrared
sensor signals or sound.

In this survey, we assume that the goal is to manipulate analyzed multidimensional
data, and that unanalyzed images are only handled as the source from which spatial
data can be derived. The challenge for the developers of a spatial database system lies
not so much in providing yet another collection of special-purpose data structures. One
rather has to find abstractions and architectures to implement generic systems, i.e., to
build systems with generic spatial data management capabilities that can be tailored
to the requirements of a particular application domain. Important issues in this con-



text include the handling of spatial representations and data models, multidimensional
access methods, as well as pictorial or spatial query languages and their optimization.

This paper is a survey of multidimensional access methods to support search oper-

ations in spatial databases. Figure 1 gives a first overview of the diversity of existing
multidimensional access methods. The goal of this paper is not to describe all of these
structures, but to discuss the most prominent ones, to present possible taxonomies,
and to establish references to further literature.
Several shorter surveys have been published previously in various Ph.D. theses (Ooi
1990; Kolovson 1990; Oosterom 1990; Schiwietz 1993). Widmayer (1991) gives an
overview of work published before 1991. Like the thesis by Schiwietz, however, his
survey is only available in German. Samet’s books (1989, 1990) present the state of the
art until 1989. However, they primarily cover quadtrees and related data structures.
Lomet (1991) discusses the field from a systems-oriented point of view.

The remainder of the paper is organized as follows. Section 2 discusses some basic
properties of spatial data and their implications on the design and implementation
of spatial databases. Section 3 gives an overview of some traditional data structures
that had an impact on the design of multidimensional access methods. Sections 4 and
5 form the core of this survey, presenting a variety of point access methods (PAMs)
and spatial access methods (SAMs), respectively. Some remarks about theoretical and
experimental analyses are contained in Section 6, and Section 7 concludes the paper.

2 Organization of Spatial Data

2.1 What Is Special About Spatial?

To obtain a better understanding of the requirements in spatial database systems,
let us first discuss some basic properties of spatial data. First, spatial data has a
complex structure. A spatial data object may be composed of a single point or several
thousands of polygons, arbitrarily distributed across space. It is usually not possible
to store collections of such objects in a single relational table with a fixed tuple size.
Second, spatial data is often dynamic. Insertions and deletions are interleaved with
updates, and data structures used in this context have to support this dynamic behavior
without deteriorating over time. Third, spatial databases tend to be large. Geographic
maps, for example, typically occupy several gigabytes of storage. The integration of
secondary and tertiary memory is therefore essential for efficient processing (Chen et al.
1995). Fourth, there is no standard algebra defined on spatial data, although several
proposals have been made in the past (Scholl and Voisard 1989; Giiting 1989; Giiting
and Schneider 1993). This means in particular that there is no standardized set of
base operators. The set of operators heavily depends on the given application domain,
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Figure 1: History of Multi-Dimensional Access Methods

although some operators (such as intersection) are more common than others. Fifth,
many spatial operators are not closed. The intersection of two polygons, for example,
might return any number of single points, dangling edges, or disjoint polygons. This
is particularly relevant when operators are applied consecutively. Sixth, although the
computational costs vary among spatial database operators, they are generally more

expensive than standard relational operators.

An important class of geometric operators that needs special support at the physical
level is the class of spatial search operators. Retrieval and update of spatial data is
usually based not only on the value of certain alphanumeric attributes, but also on
the spatial location of a data object. A retrieval query on a spatial database often



requires the fast execution of a geometric search operation such as a point or region
query. Both operations require fast access to those data objects in the database that
occupy a given location in space.

To support such search operations, one needs special multidimensional access meth-
ods. The main problem for the design of such methods, however, is that there exists no
total ordering among spatial objects that preserves spatial proximity. In other words,
there is no mapping from two- or higher-dimensional space into one-dimensional space
such that any two objects that are spatially close in the higher-dimensional space are
also close to each other in a one-dimensional sorted sequence.

This makes the design of efficient access methods in the spatial domain much
more difficult than in traditional databases, where a broad range of efficient and well-
understood access methods is available. Examples for such one-dimensional access
methods (also called single key structures, although that term is somewhat mislead-
ing) include the B-Tree (Bayer and McCreight 1972) and extendible hashing (Fagin
et al. 1979); see Section 3.1 for a brief discussion. A natural approach to handle
multidimensional search queries consists in the consecutive application of such single
key structures, one per dimension. Unfortunately, this approach can be very inefficient
(Kriegel 1984). Since each index is traversed independently of the others, we cannot
exploit the possibly high selectivity in one dimension for narrowing down the search
in the remaining dimensions. In general, there is no easy and obvious way to extend
single key structures in order to handle multidimensional data.

There is a variety of requirements that multidimensional access methods should meet,
based on the properties of spatial data and their applications (Robinson 1981; Lomet
and Salzberg 1989; Nievergelt 1989):

1. Dynamics. As data objects are inserted and deleted from the database in any
given order, access methods should continuously keep track of the changes.

2. Secondary/tertiary storage management. Despite growing main memories, it is
often not possible to hold the complete database in main memory. Therefore,
access methods need to integrate secondary and tertiary storage in a seamless
manner.

3. Broad range of supported operations. Access methods should not support just
one particular type of operation (such as retrieval) at the expense of other tasks
(such as deletion).

4. Independence of the input data. Access methods should maintain their efficiency
even when the input data is highly skewed. This point is especially important for
data that is distributed differently along the various dimensions.



5. Simplicity. Intricate access methods with special cases are often error-prone to
implement and thus not sufficiently robust to be used in large-scale applications.

6. Scalability. Access methods should adapt well to the growth in the underlying
database.

7. Time efficiency. Spatial searches should be fast. A major design goal is to
meet the performance characteristics of one-dimensional B-trees: First, access
methods should guarantee a logarithmic worst-case search performance for all
possible input data distributions regardless of the insertion sequence. Second,
this worst-case performance should hold for any combination of the d attributes.

8. Space efficiency. An index should be small in size compared with the data to be
addressed and therefore guarantee a certain storage utilization.

9. Concurrency and recovery. In modern databases where multiple users concur-
rently update, retrieve and insert data, access methods should provide robust
techniques for transaction management without significant performance penal-
ties.

10. Minimum impact. The integration of an access method into a database system
should have minimum impact on existing parts of the system.

2.2 Definitions and Queries

We have already introduced the term multidimensional access methods to denote the
large class of access methods that support searches in spatial databases and that are the
subject of this survey. Within this class, we distinguish between point access methods
(PAMs) and spatial access methods (SAMs). Point access methods have primarily been
designed to perform spatial searches on point databases (that is, databases that store
only points). The points may be embedded in two or more dimensions, but they do not
have a spatial extension. Spatial access methods, on the other hand, are able to manage
extended objects, such as lines, polygons, or even higher-dimensional polyhedra. In the
literature, one often finds the term spatial access method referring to what we call
multidimensional access method. Other terms used for this purpose include spatial
index or spatial index structure.

We generally assume that the given objects are embedded in d-dimensional Fu-
clidean space E? or a suitable subspace thereof. In this paper, this space is also referred
to as universe or original space. Any point object stored in a spatial database has a
unique location in the universe, defined by its d coordinates. Unless the distinction is
essential, we use the term point both for locations in space and for point objects stored



in the database. Note, however, that any point in space can be occupied by several
point objects stored in the database.

A (convex) d-dimensional polytope P in E?is defined to be the intersection of some
finite number of closed halfspaces in E¢, such that the dimension of the smallest affine
subspace containing P is d. If a € £ — {0} and ¢ € E' then the (d — 1)-dimensional
set H(a,c)={z € E?:2-a = ¢} defines a hyperplane in E®. A hyperplane H(a,c)
defines two closed halfspaces, the positive halfspace 1 - H(a,c¢) = {z € E?: 2 -a > c},
and the negative halfspace —1 - H(a,c) = {x € E?: 2 -a < c}. A hyperplane H(a,c)
supports a polytope P if H(a,e)N P # @ and P C 1- H(a,c), i.e., if H(a,c) embeds
parts of P’s boundary. If H(a,c)is any hyperplane supporting P then PN H(a,c)is a
face of P. The faces of dimension 1 are called edges; those of dimension 0 vertices.

By forming the union of some finite number of polytopes @1, ..., @, we obtain a (d-
dimensional) polyhedron @) in E? that is not necessarily convex. Following the intuitive
understanding of polyhedra, we require that the Q; (¢ = 1, ..., n) have to be connected.
Note that this still allows for polyhedra with holes. Each face of ) is either the face of
some ();, or a fraction thereof, or the result of the intersection of two or more ();. Each
polyhedron P divides the points in space into three subsets that are mutually disjoint:
its interior, its boundary, and its exterior.

Following usual conventions, we use the terms line and polyline to denote a one-
dimensional polyhedron and the terms polygon and region to denote a two-dimensional
polyhedron. We further assume that for each k£ (0 < k£ < d), the set of k-dimensional
polyhedra forms a data type, which leads us to the common collection of spatial data
types { Point, Line, Region, ...}. Combined types sometimes also occur. An object o in
a spatial database is usually defined by several non-spatial attributes and one attribute
of some spatial data type. This spatial attribute describes the object’s spatial extent
0.G. In the spatial database literature, the terms “geometry”, “shape”, and “spatial
extension” are often used instead of “spatial extent.” For the description of 0.G one
finds the terms “shape descriptor/description,
description,” among others.

? “shape information,” and “geometric

Typically, indices can only handle simple entries of about equal size efficiently. One
therefore often abstracts from the actual shape of a spatial object before inserting it
into an index. This can be achieved by approzimating the original data object with
a simpler shape, such as a bounding box or a sphere. Given the minimum bounding
interval I;(o) = [l;,w;] (I;,u; € E') describing the extent of the spatial object o along
dimension i, the d-dimensional minimum bounding box (MBB) is defined by I%(0) =
Ii(0) x I3(0) X ... x I4(0).

An index may only administer the MBB of each object, together with a pointer to
the object’s database entry (the object ID or object reference). With this design, the
index only produces a set of candidate solutions (Figure 2). This step is termed filter



step. For each element of that candidate set we have to decide whether the MBB is
sufficient to decide that the actual object must indeed satisfy the search predicate. In
those cases, the object can be added directly to the query result (dashed line). However,
there are often cases where the MBB does not prove to be sufficient. In a refinement
step we then have to retrieve the exact shape information from secondary memory and
test it against the predicate. If the predicate evaluates to true, the object is added to
the query result as well, otherwise we have a false drop.

filter step refinement step
Query v
\V load spatial extent

Y

test on spatial
Spatia Ind extent
.
false drops @

|
|
-

Figure 2: Multi-Step Spatial Query Processing Based on Brinkhoff et al. (1994)

Another way of obtaining simple index entries is to represent the shape of each
data object as the geometric union of simpler shapes (such a convex polygons with a
bounded number of vertices). This approach is called decomposition.

We have mentioned the term efficiency several times so far without giving a formal
definition. In the case of space efficiency, this can be easily done: The goal is to minimize
the number of bytes occupied by the index. For time efficiency the situation is not so
clear. Elapsed time is obviously what the user cares about, but one should keep in
mind that the corresponding measurements depend a lot on implementation, hardware
utilization, and other details. In the literature, one therefore often finds a seemingly
more objective performance measure: the number of disk accesses performed during
a search. This approach, which has become popular with the B-tree, is based on the
assumption that most searches are I/O-bound rather than CPU-bound — an assumption
that is not always true in spatial data management, however. In applications where
objects have complex shapes, the refinement step can incur major CPU costs and change
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the balance with I/O (Gaede 1995b; Hoel and Samet 1995). Of course, one should keep
the minimization of disk accesses in mind as one design goal. Practical evaluations,
however, should always give some information on elapsed time and the condition under
which it was achieved.

As noted above, in contrast to relational databases there exists neither a standard
spatial algebra nor a standard spatial query language. The set of operators strongly
depends on the given application domain, although some operators (such as intersec-
tion) are generally more common than others. Queries are often expressed by some
extension of SQL that allows abstract data types to represent spatial objects and their
associated operators (Roussopoulos and Leifker 1984; Egenhofer 1994). The result of a
query is usually a set of spatial data objects. In the remainder of this section, we give a
formal definition of several of the more common spatial database operators. Figures 3
through 8 give some concrete examples.

Query 1 (Exact Match Query EMQ, Object Query) Given an object o' with
spatial extent o'.G C E?, find all objects o with the same spatial extent as o'.

EMQ(0") ={o]d.G = 0.G}
Query 2 (Point Query PQ) Given a point p € E?, find all objects o overlapping p.

PQ(p) ={olpno.G = p}

The point query can be regarded as a special case of several of the following queries,
such as the intersection query, the window query, or the enclosure query.

Query 3 (Window Query WQ, Range Query) Given a d-dimensional interval
1Y = [ly,u1] X [la,uz] X ... X [lg,uq], find all objects o having at least one point in
common with T?.

WQ(I?) = {o|I N 0.G # 0}

The query implies that the window is iso-oriented, i.e., its faces are parallel to the
coordinate axes. A more general variant is the region query that permits search regions
to have arbitrary orientations and shapes:

Query 4 (Intersection Query IQ, Region Query, Overlap Query) Given an
object o' with spatial extent o' .G C E?, find all objects o having at least one point in
common with o .

I1Q(0") = {o|ld".G N o.G # 0}
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Query 5 (Enclosure Query EQ) Given an object o' with spatial extent o’.G C E?,
find all objects o enclosing o'.

EQ(d') = {o|(d/.GNo.G) = .G}

Query 6 (Containment Query CQ) Given an object o' with spatial extent o' .G C
E?, find all objects o enclosed by o'.

CQ(0") = {o](¢'.GNo.G) = 0.G}

The enclosure and the containment query are symmetric to each other. They are both
more restrictive formulations of the intersection query by specifying the result of the
intersection to be one of the two inputs.

Query 7 (Adjacency Query AQ) Given an object o' with spatial extent o’ .G C E?,
find all objects o adjacent to o.

AQ(0) ={0lo.GNd.G#DAN.G°No.G° =0}

Here, o'.G° and 0.G° denote the interiors of the spatial extents o’.(G and 0.G, respec-
tively.

Query 8 (Nearest Neighbor Query NNQ) Given an object o' with spatial extent
o'.G C E%, find all objects o having a minimum distance from o'.

NNQ(0) = {o|Vo" : dist(0'.G,0.G) < dist(d'.G,0".G)}

Distance between extended spatial data objects is usually defined as the distance be-
tween their closest points. Common distance functions for points include the Euclidean
and the Manhattan distance.

Besides spatial selections, as exemplified by Queries 1 through 8, the spatial join is
one of the most important spatial operations and can be defined as follows (Giinther

1993):

Query 9 (Spatial Join) Given two collections R and S of spatial objects and a spatial
predicate 0, find all pairs of objects (0,0) € R x S where 6(0.G, 0 .G) evaluates to true.

R ™y 5 ={(o,0)J]oe RN € 5Nb(0.G,0.G)}

12
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As for the spatial predicate 6, a brief survey of the literature (Orenstein 1986;
Becker 1992; Rotem 1991; Giinther 1993; Brinkhoff, Kriegel, and Seeger 1993; Gaede
and Riekert 1994; Brinkhoff 1994; Lo and Ravishankar 1994; Aref and Samet 1994;
Papadias, Theodoridis, Sellis, and Egenhofer 1995) yields a wide variety of possibilities,
including

e intersects(-)

e contains(-)

e is_enclosed_by(-)

o distance(-)®q, with © € {=,<,<,>,>} and ¢ € E!
e northwest(-)

o adjacent(-)

13



o meets(-)

A closer inspection of these spatial predicates shows that the intersection join
R ™ tersects S plays a crucial role for the computation in virtually all cases (Gaede
and Riekert 1994). For predicates such as contains, encloses, or adjacent, for example,
the intersection join is an efficient filter that yields a set of candidate solutions typically
much smaller than the Cartesian product R X §.

3 Basic Data Structures

3.1 One-Dimensional Access Methods

Classical one-dimensional access methods are an important foundation for almost all
multidimensional access methods. Although the survey on hashing functions by Knott
(1975) is somewhat dated, it represents a good coverage of the different approaches. In
practice, the most common one-dimensional structures include linear hashing (Litwin
1980; Larson 1980), extendible hashing (Fagin et al. 1979), and the B-tree (Bayer
and McCreight 1972; Comer 1979). Hierarchical access methods such as the B-tree are
scalable and behave well in the case of skewed input; they are nearly independent of the
distribution of the input data. This is not necessarily true for hashing techniques, whose
performance may degenerate depending on the given input data and hash function.
This problem is aggravated by the use of order-preserving hash functions (Orenstein
1983; Garg and Gotlieb 1986) that try to preserve neighborhood relationships between
data items, in order to support range queries. As a result, highly skewed data keeps
accumulating at a few selected locations in image space.

3.1.1 Linear Hashing (Larson 1980; Litwin 1980)

Linear hashing divides the universe [A, B) of possible hash values into binary intervals
of size (B — A)/2* or (B — A)/2**! for some k > 0. Each interval corresponds to a
bucket, i.e., a collection of records stored on a disk page. t € [A, B) is a pointer that
separates the smaller intervals from the larger ones: all intervals of size (B — A)/2" are
to the left of ¢, and vice versa. If a bucket reaches its capacity due to an insertion, the
interval [t,t+ (B — A)/2*) is split into two subintervals of equal size, and ¢ is advanced
to the next large interval remaining. Note that the split interval does not have to be
the same interval as the one that caused the split; consequently, there is no guarantee
that the split relieves the bucket in question from its overload. If an interval contains
more objects than bucket capacity permits, the overload is stored on an overflow page,
which is linked to the original page. When ¢ = B, the file has doubled and all intervals
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have the same length (B — A)/2%+1. In this case we teset the pointer ¢ to A and resume
the split procedure for the smaller intervals.

3.1.2 Extendible Hashing (Fagin et al. 1979)

As linear hashing, extendible hashing organizes the data in binary intervals, here called
cells. Overflow pages are avoided in extendible hashing by using a central directory.
Each cell has an index entry in that directory; it initially corresponds to one bucket.
If during an insertion a bucket at maximal depth exceeds its maximum capacity, all
cells are split into two. New index entries are created and the directory doubles in size.
Since not each bucket was at full capacity before the split, it may now be possible to
fit more than one cell in the same bucket. In that case, adjacent cells are regrouped in
data regions and stored on the same disk page. In the case of skewed data this may
lead to a situation where numerous directory entries exist for the same data region
(and therefore the same disk page). Even in the case of uniformly distributed data,
the directory growth may be superlinear (Widmayer 1991). Exact match searches take
no more than two page accesses: one for the directory and one for the bucket with the
data. This is more than the best-case performance of linear hashing, but better than
the worst case.

Besides the potentially poor space utilization of the index, extendible hashing also
suffers from a non-incremental growth of the index due to the doubling steps. To address
these problems, Lomet (1983) proposed a technique called bounded index extendible
hashing. In this proposal, the index grows as in extendible hashing until its size reaches
a predetermined mazimum, i.e., the index size is bounded. Once this limit is reached
while inserting new items, bounded index extendible hashing starts doubling the data
bucket size rather than the index size.

3.1.3 The B-Tree (Bayer and McCreight 1972)

Other than hashing schemes, the B-tree and its variants (Comer 1979) organize the
data in a hierarchical manner. B-trees are balanced trees that correspond to a nesting
of intervals. Each node v corresponds to a disk page D(v) and an interval I(v). If v is
an interior node then the intervals I(v;) corresponding to the immediate descendants
of v are mutually disjoint subsets of I(r). Leaf nodes contain pointers to data items;
depending on the type of B-tree, interior nodes may do so as well. B—trees have an
upper and lower bound for the number of descendants of a node. The lower bound
prevents the degeneration of trees and leads to an efficient storage utilization. Nodes
whose number of descendants drops below the lower bound are deleted and its content is
distributed among the adjacent nodes at the same tree level. The upper bound follows
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from the fact that each tree node corresponds to exactly one disk page. If during an
insertion a node reaches its capacity, it is split into two. Splits may propagate up
the tree. As the size of the intervals depends on the given data (and the insertion
sequence), the B-tree is an adaptive data structure. For uniformly distributed data,
however, extendible as well as linear hashing outperform the B-tree on the average for
exact match queries, insertions and deletions.

3.2 Main Memory Structures

Early multidimensional access methods did not account for paged secondary memory
and are therefore less suited for large spatial databases. In this section, we review
several of these fundamental data structures, which are adapted and incorporated in
numerous multidimensional access methods. To illustrate the methods, we introduce
a small scenario that we shall use as a running example throughout this survey. The
scenario, depicted in Figure 9, contains ten points pi and ten polygons r¢, randomly
distributed in a finite two-dimensional universe. To represent polygons, we shall often
use their centroids ci (not pictured) or their minimum bounding boxes (MBBs) mi.
Note that the quality of the MBB approximation varies considerably. The MBB m8,
for example, provides a fairly tight fit, whereas r5 is only about half as large as its
MBB m5.

m9 o
ml
m10 mé
.l m7
p9 @
ps@®
p10@
ma4
m2 m5
m8
m3
r4
2@
p3@ p6 @
p1 @ ® s
p4 @

Figure 9: Running Example
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3.2.1 The K-D-Tree (Bentley 1975; Bentley 1979)

One of the most prominent d-dimensional data structures is the k-d-tree. The k-d-
tree is a binary search tree that represents a recursive subdivision of the universe into
subspaces by means of (d — 1)-dimensional hyperplanes. The hyperplanes are iso-
oriented, and their direction alternates between the d possibilities. For d = 3, for
example, splitting hyperplanes are alternately perpendicular to the z,y, and z— axis.
Each splitting hyperplane has to contain at least one data point, which is used for
its representation in the tree. Interior nodes have one or two descendants each and
function as a discriminator to guide the search. Searching and insertion of new points
are straightforward operations. Deletion is somewhat more complicated and may cause
a reorganization of the subtree below the data point to be deleted.

Figure 10 shows a k-d-tree for the running example. Because the tree can only
handle points, we represent the polygons by their centroids ¢i. The first splitting line
is the vertical line crossing ¢3. We therefore store ¢3 in the root of the corresponding
k-d-tree. The next splits occur along horizontal lines crossing p10 (for the left subtree)
and c7 (for the right subtree), and so on.
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Figure 10: K-D-Tree

One disadvantage of the k-d-tree is that the structure is sensitive to the order in
which the points are inserted. Another one is that data points are scattered all over
the tree. The adaptive k-d-tree (Bentley and Friedman 1979) mitigates these problems
by choosing a split such that one finds about the same number of elements on both
sides. While the splitting hyperplanes are still parallel to the axes, they do not have to
contain a data point and their directions do not have to be strictly alternating anymore.
As a result, the split points are not part of the input data; all data points are stored
in the leaves. Interior nodes contain the dimension (e.g. z or y) and the coordinate of
the corresponding split. Splitting is continued recursively until each subspace contains
only a certain number of points. The adaptive k-d-tree is a rather static structure; it is
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obviously difficult to keep the tree balanced in the presence of frequent insertions and
deletions. The structure works best if all the data is known a priori and if updates are
rare. Figure 11 shows an adaptive k-d-tree for the running example. Note that the tree
still depends on the order of insertion.
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Figure 11: Adaptive K-D-Tree

Another variant of the k-d-tree is the bintree (Tamminen 1984). This structure
partitions the universe recursively into d-dimensional boxes of equal size until each one
contains only a certain number of points. Even though this kind of partitioning is less
adaptive, it has several advantages, such as the implicit knowledge of the partitioning
hyperplanes. In the remainder of this paper, we shall encounter several other structures
that are based on this kind of partitioning.

A disadvantage common to all k-d-trees is that for certain distributions no hyper-
plane can be found which splits the data points evenly (Lomet and Salzberg 1989). By
introducing a more flexible partitioning scheme, the BSP-tree presented subsequently
avoids this problem completely.

3.2.2 The BSP-Tree (Fuchs, Kedem, and Naylor 1980; Fuchs, Abram, and
Grant 1983)

Splitting the universe only along iso-oriented hyperplanes is a severe restriction in the
schemes presented so far. Allowing arbitrary orientations gives more flexibility to find a
hyperplane that is well-suited for the split. A well-known example for such a method is
the binary space partitioning (BSP) tree. Like k-d-trees, BSP-trees are binary trees that
represent a recursive subdivision of the universe into subspaces by means of (d — 1)
dimensional hyperplanes. Fach subspace is subdivided independently of its history
and of the other subspaces. The choice of the partitioning hyperplanes depends on
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the distribution of the data objects in a given subspace. The decomposition usually
continues until the number of objects in each subspace is below a given threshold.

The resulting partition of the universe can be represented by a BSP-tree, where
each hyperplane corresponds to an interior node of the tree and each subspace corre-
sponds to a leaf. Fach leaf stores references to those objects that are contained in the
corresponding subspace. Figure 12 shows a BSP-tree for the running example with no
more than two objects per subspace.
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Figure 12: BSP-Tree

In order to perform a point query, we insert the search point into the root of the tree
and determine on which side of the corresponding hyperplane it is located. Next, we
insert the point into the corresponding subtree and proceed recursively until we reach
a leaf of the tree. Finally, we have to examine the data objects in the corresponding
subspace whether they contain the search point. The range search algorithm is a
straightforward generalization.

BSP-trees can adapt well to different data distributions. However, they are typically
not balanced and may have very deep subtrees, which has a negative impact on tree
performance. BSP-trees also have higher space requirements, since storing an arbitrary
hyperplane per split occupies more storage space than a discriminator, which is typically
just a real number.

3.2.3 The Quadtree

The quadtree with its many variants is a close relative of the k-d-tree. For an exten-
sive discussion of this structure, see (Samet 1984; Samet 1989; Samet 1990). While
the term quadtree usually refers to the two-dimensional variant, the basic idea applies
to arbitrary d. Like the k-d-tree, the quadtree decomposes the universe by means of
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iso-oriented hyperplanes. An important difference, however, is the fact that quadtrees
are not binary trees anymore. In d dimensions, the interior nodes of a quadtree have 2%
descendants, each corresponding to an interval-shaped partition of the given subspace.
These partitions do not have to be of equal size, although that is often the case. For
d = 2, for example, each interior node has four descendants, each corresponding to
a rectangle. These rectangles are typically referred to as the NW, NE, SW, and SE
quadrants. The decomposition into subspaces is usually continued until the number of
objects in each partition is below a given threshold. Quadtrees are therefore not nec-
essarily balanced; subtrees corresponding to densely populated regions may be deeper
than others.

Searching in a quadtree is similar to searching in an ordinary binary search tree.
At each level, one has to decide which of the four subtrees need to be included in the
future search. In the case of a point query, typically, only one subtree qualifies, whereas
for range queries there are often several. We repeat this search step recursively until
we reach the leaves of the tree.

Finkel and Bentley (1974) proposed one of the first variants: It is called point
quadtree and is essentially a multidimensional binary search tree. The point quadtree
is constructed consecutively by inserting the data points one by one. For each point,
we first perform a point search. If we do not find the point in the tree, we insert it into
the leaf node where the search has terminated. The corresponding partition is divided
into 2% subspaces with the new point at the center. The deletion of a point requires the
restructuring of the subtree below the corresponding quadtree node. A simple way to
achieve this is to reinsert all points into the subtree. Figure 13 shows a two-dimensional
point quadtree for the running example.
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Figure 13: Point Quadtree
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Another popular variant is the region quadiree (Samet 1984). Region quadtrees
are based on a regular decomposition of the universe, i.e., the 2¢ subspaces resulting
from a partition are always of equal size. This greatly facilitates searches. For the
running example, Figure 14 shows how region quadtrees can be used to represent sets
of points. Here the threshold for the number of points in any given subspace was set to
one. In more complex versions of the region quadtree, such as the PM quadiree (Samet
and Webber 1985), it is also possible to store polygonal data directly. PM quadtrees
divide the quadtree regions (and the data objects in them) until they contain only a
small number of polygon edges or vertices. These edges or vertices (which together
form an exact description of the data objects) are then attached to the leaves of the
tree. Another class of quadtree structures has been designed for the management of
collections of rectangles; see (Samet 1988) for a survey.
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Figure 14: Region Quadtree

4 Point Access Methods

The multidimensional data structures presented in the previous section do not take
secondary storage management explicitly into account. They have originally been de-
signed for main memory applications where all the data is available without accessing
the disk. Despite growing main memories, this is of course not always the case. Espe-
cially in many spatial database applications, such as geography, the amount of data to
be managed is notoriously large. While one can certainly use main memory structures
for data that resides on disk, their performance will often be considerably below the op-
timum because there is no control over the way the operating system performs the disk
accesses. The access methods presented in this and the following section have been
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designed with secondary storage management in mind. Their operations are closely
coordinated with the operating system to ensure that overall performance is optimized.

As mentioned before, we shall first present a selection of point access methods
(PAMs). Usually, the points in the database are organized in a number of buckets, each
of which corresponds to a disk page and to some subspace of the universe. The sub-
spaces (often referred to as data regions, bucket regions or simply regions, even though
their dimension may be greater than two) need not be rectilinear, although they often
are. The buckets are accessed by means of a search tree or some d-dimensional hash
function.

The grid file (Nievergelt, Hinterberger, and Sevcik 1984), for example, uses a di-
rectory and a grid-like partition of the universe to answer an exact match query with
exactly two disk accesses. Furthermore, there are multidimensional hashing schemes
(Tamminen 1982; Kriegel and Seeger 1986; Kriegel and Seeger 1988), multilevel grid
files (Whang and Krishnamurthy 1985; Hutflesz, Six, and Widmayer 1988b), and hash
trees (Ouksel 1985; Otoo 1985), which organize the directory as a tree structure. Tree—
based access methods are usually a generalization of the B—tree to higher dimensions,
such as the k-d-B-tree (Robinson 1981) or the hB-tree (Lomet and Salzberg 1989).

In the remainder of this section, we first discuss the approaches based on hash-
ing, then continue with hierarchical (tree-based) access methods. This classification is
hardly unambiguous, especially in the presence of an increasing number of hybrid ap-
proaches that attempt to combine the advantages of several different techniques. Our
approach resembles the classification of Samet (1990) who distinguishes between hier-
archical methods (point/ region quadtrees, k-d-trees, range trees) on the one hand and
bucket methods (grid file, EXCELL) on the other hand. His discussion of the former
is primarily in the context of main memory applications. Our presentation focuses
throughout on structures that take secondary storage management into account.

Another interesting taxonomy has been proposed by Seeger and Kriegel (1990) who
classify point access methods by the properties of the bucket regions (Table 1). First,
they may be pairwise disjoint or they may have mutual overlaps. Second, they may
have the shape of an interval (box) or be of some arbitrary polyhedral shape. Third,
they may cover the complete universe or just those parts that contain any data objects.
This taxonomy results in eight classes, four of which are populated by existing access
methods.

4.1 Multidimensional Hashing

Although there is no total order for objects in two- and higher-dimensional space that
completely preserves spatial proximity, there have been numerous attempts to construct
hashing functions that preserve proximity at least to some extent. The goal of all
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property

point access method
intervals | complete | disjoint

X X X quadtree (Finkel and Bentley 1974; Samet
1984), k-d-B tree (Robinson 1981), EX-
CELL (Tamminen 1982), interpolation hash-
ing (Burkhard 1983), multidimensional ex-
tendible hashing (Otoo 1984), grid file (Niev-
ergelt, Hinterberger, and Sevcik 1984), bal-
anced multidimensional two-level grid file (Hin-
richs 1985), interpolation—based grid file (Ouk-
sel 1985), extendible hash tree (Otoo 1986),
MOLHPE (Kriegel and Seeger 1986), PLOP-
hashing (Kriegel and Seeger 1988), quantile
hashing (Kriegel and Seeger 1989), LSD-tree
(Henrich, Six, and Widmayer 1989)

X X twin grid file (Hutflesz, Six, and Widmayer
1988b)
X X multilevel grid file (Whang and Krishnamurthy
1985), buddy tree (Seeger and Kriegel 1990)
X X BSP-tree (Fuchs, Kedem, and Naylor 1980),

BD-tree (Ohsawa and Sakauchi 1983), BANG
file (Freeston 1987), hB-tree (Lomet and
Salzberg 1989)

Table 1: Classification of PAMs according to Seeger and Kriegel (1990)

these heuristics is that objects that are located close to each other in original space
should be stored close together on the disk with high probability. This could contribute
substantially to minimizing the number of disk accesses per range query. We begin our
presentation with several structures based on extendible hashing. Structures based on
linear hashing are discussed in Section 4.1.5. The discussion of two hybrid methods,
the BANG file and the buddy tree, is postponed until Section 4.2.

4.1.1 The Grid File (Nievergelt, Hinterberger, and Sevcik 1981)

As a typical representative for an access method based on hashing, we will first dis-
cuss the grid file and some of its variants (Hinrichs 1985; Ouksel 1985; Whang and
Krishnamurthy 1985; Six and Widmayer 1988; Blanken et al. 1990). The grid file
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superimposes a d-dimensional orthogonal grid on the universe. Because the grid is not
necessarily regular, the resulting cells may be of different shapes and sizes. A grid di-
rectory associates one or more of these cells with data buckets, which are stored on one
disk page each. Each cell is associated with one bucket, but a bucket may contain sev-
eral adjacent cells. Since the directory may grow large, it is usually kept on secondary
storage. To guarantee that data items are always found with no more than two disk
accesses for exact match queries, the grid itself is kept in main memory, represented by
d one-dimensional arrays called scales.

Figure 15 shows a grid file for the running example. We assume bucket capacity to
be four data points. The center of the figure shows the directory with scales on the z-
and y-axes. The data points are displayed in the directory for demonstration purposes
only; they are not stored there of course. In the lower left part, four cells are combined
into a single bucket, represented by four pointers to a single page. Hence there are
four directory entries for the same page, which illustrates a well-known problem of the
grid file: It suffers from a superlinear growth of the directory even for data that is
uniformly distributed (Regnier 1985; Widmayer 1991). The bucket region containing
the point ¢5 could have been merged with one of the neighboring buckets for better
storage utilization. Combining such buddies may cause problems later, however, when
trying to combine buckets that are underoccupied (Hinrichs 1985; Seeger and Kriegel
1990). This is a tradeoff that has to be solved depending on the particular application
at hand.

To answer an exact match query, one first uses the scales to locate the cell containing
the search point. If the appropriate grid cell is not in main memory, one disk access
is necessary. The loaded cell contains a reference to the page where to find possibly
matching data. Retrieving this page may require another disk access. Altogether no
more than two page accesses are necessary to answer this query. For a range query, one
has to examine all cells that overlap the search region. After eliminating duplicates,
one fetches the corresponding data pages into memory for a more detailed inspection.

To insert a point, one first performs an exact match query to locate the cell and the
data page v; where the entry should be inserted. If there is sufficient space left on v;, the
new entry is inserted. If not, we have to distinguish two cases, depending on the number
of grid cells that point to the data page where the new data item is to be inserted. If
there are several, one checks whether an existing hyperplane stored in the scales can
be used for splitting the data page successfully. If so, a new data page is allocated
and the data points are distributed accordingly between the data pages. If none of
the existing hyperplanes is suitable, or if only one grid cell points to the data page in
question, a splitting hyperplane H is introduced and a new data page v; is allocated.
The new entry and the entries of the original page v; are redistributed among v; and
v;, depending on their location relative to H. H is inserted into the corresponding
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Figure 15: Grid File

scale; all cells that intersect H are split accordingly. Splitting is therefore not a local
operation and can lead to superlinear directory growth (Regnier 1985; Freeston 1987;
Widmayer 1991).

Deletion is not a local operation either. With the deletion of an entry, the storage
utilization of the corresponding data page may drop below the given threshold. De-
pending on the current partitioning of space, it may then be possible to merge this page
with a neighbor page and to drop the partitioning hyperplane from the corresponding
scale. Depending on the implementation of the grid directory, merging may require a
complete directory scan (Hinrichs 1985). Hinrichs discusses several methods for finding
candidates with which a given data bucket can merge, including the neighbor system
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and the multidimensional buddy system. The neighbor system allows to merge two
adjacent regions if the result is a rectangular region again. In the buddy system, two
adjacent regions can be merged provided that the joined region can be obtained by
a regular binary subdivision of the universe. Both systems are not able to eliminate
completely the possibility of a deadlock, in which case no merging is feasible because
the resulting bucket region would not be box-shaped (Hinrichs 1985; Seeger and Kriegel
1990).

For a theoretical analysis of the grid file and some of its variants see (Regnier 1985)
or (Becker 1992). Regnier shows in particular that the average space occupancy of the
data buckets is about 69 % (In 2) for uniformly distributed data.

4.1.2 EXCELL (Tamminen 1982)

Closely related to the grid file is the FXCELL method (EXtendible CELL) proposed
by Tamminen (1982). In contrast to the grid file, where the partitioning hyperplanes
may be spaced arbitrarily, the EXCELL method decomposes the universe regularly;
all grid cells are of equal size. In order to maintain this property in the presence of
insertions, each new split results in the halving of all cells and therefore in the doubling
of the directory size. To alleviate this problem, Tamminen (1983) later suggested a
hierarchical method, similar to the multilevel grid file of Whang and Krishnamurthy
(1985). Overflow pages are introduced to limit the depth of the hierarchy.

4.1.3 The Two-Level Grid File (Hinrichs 1985)

The basic idea of the two-level grid file is to use a second grid file to manage the grid
directory. The first of the two levels is called the root directory, which is a coarsened
version of the second level, the actual grid directory. Entries of the root directory
contain pointers to the directory pages of the lower level, which in turn contain pointers
to the data pages. By having a second level, splits are often confined to the subdirectory
regions without affecting too much of their surroundings. Even though this modification
leads to a slower directory growth, it does not solve the problem completely. Figure 16
shows a two-level grid file for the running example. Fach cell in the root directory has
a pointer to the corresponding entries in the subdirectory, which have their own scales
in turn.

4.1.4 The Twin Grid File (Hutflesz, Six, and Widmayer 1988b)

The twin grid file tries to increase space utilization compared to the original grid file
by introducing a second grid file. As indicated by the name “twin,” the relationship
between these two grid files is not hierarchical, as in the case of the two-level grid file,
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Figure 16: Two-Level Grid File

but somewhat more balanced. Both grid files are spanning the whole universe and the
distribution of the data among the two files is performed dynamically. Hutflesz et al.
(1988b) report an average occupancy of 90% for the twin grid file (compared to 69%
for the original grid file) without experiencing substantial performance penalties.

To illustrate the underlying technique, consider the running example depicted in
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Figure 17. Let us assume that each bucket can accommodate four points. If the number
of points in a bucket exceeds that limit, one possibility is to create a new bucket and
redistribute the points among the two new buckets. Before doing so, however, the twin
grid file tries to redistribute the points among the two grid files. A transfer of points
from the primary file P to the secondary file S may lead to a bucket overflow in S.
It may, however, also imply a bucket underflow in P, which may in turn lead to a
bucket merge and therefore to a reduction of buckets in P. The overall objective of
the reshuffling is to minimize the total number of buckets in the two grid files P and
5. Therefore we shift points from P to S5 if and only if the resulting decrease in the
number of buckets in P outweighs the increase in the number of buckets in 5. This
strategy also favors points to be placed in the primary file in order to form large and
empty buckets in the secondary file. Consequently, all points in S can be associated
with an empty or a full bucket region of P. Note that there usually exists no unique
optimum for the distribution of data points among the two files.

The fact that data points may be found in either of the two grid files requires
search operations to visit the two files, which causes some overhead. Nevertheless,
the performance results reported by Hutflesz et al. (1988b) indicate that the search
efficiency of the twin grid file is competitive with the original grid file. While the twin
grid file is somewhat inferior to the original grid file for smaller query ranges, this
changes for larger search spaces.
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Figure 17: Twin Grid File

4.1.5 Multidimensional Linear Hashing

Unlike multidimensional extendible hashing, multidimensional linear hashing uses no
or only a very small directory. It therefore occupies relatively little storage compared
to extendible hashing, and it is usually possible to keep all relevant information in main
memory.
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Several different strategies have been proposed to perform the required address
computation. While early proposals (Ouksel and Scheuermann 1983) failed to support
range queries, Kriegel and Seeger (1986) later proposed a variant of linear hashing called
multidimensional order-preserving linear hashing with partial expansions (MOLHPFE).
This structure is based on the idea of partially extending the buckets without expanding
the file size at the same time. To this end, they use a d-dimensional expansion pointer
referring to the group of pages that will be expanded next. With this strategy, Kriegel
and Seeger can guarantee a modest file growth, at least in the case of well-behaved
data. According to their experimental results, MOLHPE outperforms its competitors
for uniformly distributed data. It fails, however, for non-uniform distributions, mostly
because the hashing function does not adapt gracefully to the given distribution.

To solve this problem, the same authors later applied a stochastic technique (Burkhard
1984) to determine the split points. Because of the name of that technique (a-quantiles),
the access method was called quantile hashing (Kriegel and Seeger 1987; Kriegel and
Seeger 1989). The critical property of the division in quantile hashing is that the orig-
inal data, which may have a non-uniform distribution, is transformed into uniformly
distributed values for a. These values are then used as input to the MOLHPE algo-
rithms for retrieval and update. Since the region boundaries are not necessarily simple
binary intervals, a small directory is needed. In exchange, skewed input data can be
maintained as efficiently as uniformly distributed data. PLOP (piecewise linear order-
preserving) hashing has been proposed by the same authors one year later (Kriegel and
Seeger 1988). Because this structure can also be used as an access method for extended
objects, we delay its discussion until Section 5.3.7.

Another variant that has better order-preserving properties than MOLHPE has
been reported by Hutflesz, Six, and Widmayer (1988a). Their dynamic z-hashing uses
a space-filling technique called z-ordering (Orenstein and Merrett 1984) to guarantee
that points that are located close to each other are also stored close together on the
disk. Z-ordering will be described in detail in Section 5.2.1. One disadvantage of z-
hashing is that a number of useless data blocks will be generated, similar as in the
interpolation-based grid file (Ouksel 1985). On the other hand, z-hashing allows to
read three to four buckets in a row on the average before a seek is required, whereas
MOLHPE manages to read only one (Hutflesz et al. 1988a). Widmayer (1991) later
noted, however, that both z-hashing and MOLHPE are of limited use in practice due
to their inability to adapt to different data distributions.

4.2 Hierarchical Access Methods

In this section we discuss several PAMs that are based on a binary or multiway tree
structure. Except for the BANG file and the buddy tree, which are hybrid structures,
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they do not perform any address computation. Like hashing-based methods, however,
they organize the data points in a number of buckets. Fach bucket usually corresponds
to a leaf node of the tree (also called data node) and a disk page, which contains those
points that are located in the corresponding bucket region. The interior nodes of the
tree (also called index nodes) are used to guide the search; each of them typically
corresponds to a larger subspace of the universe that contains all bucket regions in the
subtree below. A search operation is then performed by a top-down tree traversal.

Differences between tree structures are mainly based on the characteristics of the
regions. Table 1 on page 23 showed that in most PAMs the regions at the same tree
level form a partitioning of the universe, i.e., they are mutually disjoint, with their
union being the complete space. For SA4 Ms this is not necessarily true; as we will see in
Section 5, overlapping regions and partial coverage are important techniques to improve
the search performance of SAMs.

4.2.1 The K-D-B-Tree (Robinson 1981)

The k-d-B-tree combines the properties of the adaptive k-d-tree (Bentley and Friedman
1979) and the B-tree (Comer 1979) to handle multidimensional points. It partitions the
universe in the manner of an adaptive k-d-tree and associates the resulting subspaces
with tree nodes. Each interior node corresponds to an interval-shaped region. Regions
corresponding to nodes at the same tree level are mutually disjoint; their union is
the complete universe. The leaf nodes store the data points that are located in the
corresponding partition. Like the B-tree, the k-d-B-tree is a perfectly balanced tree
that adapts well to the distribution of the data. Other than for B-trees, however, no
minimum space utilization can be guaranteed. A k-d-B-tree for the running example
is sketched in Figure 18.

Search queries are answered in a straightforward manner, analogously to the k-d-
tree algorithms. For the insertion of a new data point, one first performs a point search
to locate the right bucket. If it is not full, the entry is inserted. Otherwise, it is split and
about half of the entries are shifted to the new data node. In order to find an optimal
split, various heuristics are available (Robinson 1981). If the parent index node does
not have enough space left to accommodate the new entries, a new page is allocated
and the index node is split by a hyperplane. The entries are distributed among the two
pages, depending on their position relative to the splitting hyperplane, and the split is
propagated up the tree. The split of the index node may also affect regions at lower
levels of the tree, which have to be split by this hyperplane as well. Because of this
forced split effect, it is not possible to guarantee a minimum storage utilization.

Deletion is straightforward. After performing an exact match query, the entry is
removed. If the number of entries drops below a given threshold, the data node may be
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merged with a sibling data node as long as the union remains a d-dimensional interval.
The procedure to find a suitable sibling node to merge with may involve several nodes.
The union of data pages results in the deletion of at least one hyperplane in the parent
index node. If an underflow occurs, the deletion has to be propagated up the tree.
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Figure 18: K-D-B-Tree

4.2.2 The LSD-Tree (Henrich, Six, and Widmayer 1989)

We list the LSD (Local Split Decision) tree as a point access method although it has
been emphasized by the authors that the structure can also be used for managing
extended objects. This claim is based on the fact that the LSD-tree adapts well to
data that is non-uniformly distributed and that it is therefore well-suited for using it
in connection with the transformation technique; a more detailed discussion of this
approach follows in Section 5.1.1.

The directory of the LSD-tree is organized as an adaptive k-d-tree, partitioning
the universe into disjoint cells of various sizes. In comparison to the fixed binary
partitioning, this results in a better adaption to the data distribution. While the k-d-
tree may be arbitrarily unbalanced, the LSD-tree is height-balanced. This property is
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maintained by a special paging algorithm. If the structure becomes too large to fit in
main memory, this algorithm identifies subtrees that can be paged out such that the
external balancing property is preserved. While efficient, this special paging strategy
is obviously a major impediment for the integration of the LSD-tree into a general-
purpose database system. Figure 19 shows an LSD-tree for the running example with
one external directory page.
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Figure 19: LSD-Tree

As indicated above, the split strategy of the LSD-tree does not assume the data
to be uniformly distributed. On the contrary, it tries to accommodate skewed data by
combining two split strategies:

e data dependent (S P4 ):
The choice of the split depends on the data and tries to achieve a most balanced
structure, i.e., there should be an equal number of objects on both sides of the
split. As the name of the structure suggests, this split decision is made locally.

e distribution dependent (SPj):
The split is done at a fixed dimension and position. The given data is not taken
into account because an underlying (known) distribution is assumed.

To determine the split position S P, we form the linear combination of the split locations
that would result from applying just one of those strategies:

SP:aSPl—}—(l—a)SPQ

The factor a is determined empirically based on the given data; it can vary as objects
are inserted and deleted from the tree.
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Recently, Henrich (1995) presented two algorithms to improve the storage utilization
of the LSD-tree by redistributing data entries among buckets. Since these strategies
make the LSD-tree sensitive to the insertion sequence, the splitting strategy must be
adapted accordingly. In order to improve the search performance for non-point data
and range queries, Henrich and Méller (1995) suggest to store auxiliary information on
the existing data regions along with the index entries of the LSD-tree.

4.2.3 The Buddy Tree (Seeger and Kriegel 1990)

The buddy tree is a dynamic hashing scheme with a tree-structured directory. The tree
is constructed by consecutive insertion, cutting the universe recursively into two parts
of equal size with iso-oriented hyperplanes. Each interior node v corresponds to a d-
dimensional partition P?(v) and to an interval I%(v) C P%(v). I%(v)is the MBB of the
points or intervals below v. Partitions P? (and therefore intervals I¢) that correspond
to nodes on the same tree level are mutually disjoint. As in all tree-based structures,
the leaves of the directory point to the data pages. Other important properties of the
buddy tree include:

1. Each directory node contains at least two entries.

2. Whenever a node v is split, the MBBs I%(v;) and I%(v;) of the two resulting
subnodes v; and v; are recomputed to reflect the current situation.

3. Except for the root of the directory, there is exactly one pointer referring to each
directory page.

Due to property 1, the buddy tree may not be balanced, i.e., the leaves of the
directory may be on different levels. Property 2 tries to achieve a high selectivity at
the directory level. Properties 1 and 3 make sure that the growth of the directory
remains linear. To avoid the deadlock problem of the grid file, the buddy tree uses k-
d-tries (Orenstein 1982) to partition the universe. Only a restricted number of buddies
are admitted, namely those that could have been obtained by some recursive halving of
the universe. However, as shown by Seeger and Kriegel (1990), the number of possible
buddies is larger than in the grid file and other structures, which makes the buddy tree
more flexible in the case of updates. Experiments by Kriegel et al. (1990) indicate that
the buddy tree is superior to several other PAMs, including the hB-tree, the BANG file,
and the two-level grid file. A buddy tree for the running example is shown in Figure
20.

Two older structures, the interpolation-based grid file by Ouksel (1985) and the
balanced multidimensional extendible hash tree by Otoo (1986), are both special cases
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Figure 20: Buddy Tree

of the buddy tree. They can be obtained by restricting the properties of the regions.
Interpolation-based grid files avoid the excessive growth of the grid file directory by
representing blocks explicitly, which guarantees that there is only one directory entry
for each data bucket. The disadvantage of this approach is that empty regions have to
be introduced in the case of skewed data input. Seeger (1991) later showed that the
buddy tree can be easily modified to handle spatially extended objects by using one of
the techniques presented in Section 5.1.

4.2.4 The BANG File (Freeston 1987)

To obtain a better adaption to the given data points, Freeston (1987) proposed a
structure called the BANG (Balanced And Nested Grid) file, even though it differs
from the grid file in many aspects. Similar to the grid file, it partitions the universe
into intervals (boxes). What is different, however, is that in the BANG file bucket
regions may intersect, which is not possible in the regular grid file. In particular, one
can form non-rectangular bucket regions by taking the geometric difference of two or
more intervals (nesting). To increase storage utilization, it is possible during insertion to
redistribute points between different buckets. To manage the directory, the BANG file
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uses a balanced search tree structure. In combination with the hash-based partitioning
of the universe, the BANG file can therefore be viewed as a hybrid structure.

Figure 21 shows a BANG file for the running example. Three rectangles have been
cut out of the universe R1: R2, R5, and R6. In turn, the rectangles R3 and R4 are
nested into R2 and Rb5, respectively.
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Figure 21: BANG File

In order to achieve a high storage utilization, the BANG file performs spanning
splits which may lead to the displacement of parts of tree. As a result, a point search
may require in the worst case the traversal of the entire directory in a depth-first
manner. To address this problem, Freeston (1990a) later proposed different splitting
strategies which avoid the spanning problem at the expense of a potentially very low
storage utilization.

In (Freeston 1990b), the same author proposes an extension to the BANG file to
handle extended objects. As often found in PAM extensions, the centroid is used to
determine the bucket where to place a given object. To take account for the object’s
spatial extension, the bucket regions are extended where necessary (Ooi 1990; Seeger
and Kriegel 1988).

In a recent paper, Ouksel and Mayer (1992) proposed an access method called
nested interpolation-based grid file, which is closely related to the BANG file. The
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major difference concerns the way the directory is organized. In essence, the directory
consists of a list of one-dimensional access methods (e.g., B-trees) storing the z-order
encoding of the different data regions along with pointers to the respective data buckets.
By doing so, Ouksel and Mayer improved the worst-case bounds from linear (as in the
case of the BANG file) to logarithmic.

4.2.5 The BD-Tree (Ohsawa and Sakauchi 1983)

The BD-tree (Ohsawa and Sakauchi 1983) is an early precursor of the BANG file. It
stores binary encodings (called DZ-expressions) of excised data regions in a binary
tree. Unfortunately, the authors do not describe how the directory is maintained on
disk. Detailed algorithms to paginate the BD-tree as well as several other proposals
for improvement were later presented by Dandamudi and Sorenson (1986, 1991).

A structure closely related to the BD-tree is the G-tree or grid tree (Kumar 1994a).
The structure differs in the way the partitions are mapped into buckets. To obtain a
simpler mapping, the G-tree sacrifices the minimum storage utilization that holds for
the BD-tree.

4.2.6 The hB-Tree (Lomet and Salzberg 1989; Lomet and Salzberg 1990)

The hB-tree (holey brick tree) is related to the k-d-B-tree in that it utilizes k-d-trees
to organize the space represented by its interior nodes. One of the most noteworthy
differences is that node splitting is based on multiple attributes. As a result, nodes
no longer correspond to d-dimensional intervals, but to intervals from which smaller
intervals have been excised. Similar to the BANG file, the result is a somewhat fractal
structure (a holey brick) with an external enclosing region and several cavities called
extracted regions. As we will see later, this technique avoids the cascading of splits that
is typical for many other structures.

In order to minimize redundancy, the k-d-tree corresponding to an interior node
can have several leaves pointing to the same child node. Strictly speaking, the hB-tree
is therefore no longer a tree but a directed acyclic graph. With regard to the geometry,
this corresponds to the union of the corresponding regions. Once again, the resulting
region is typically no longer box-shaped. This peculiarity is illustrated in Figure 22,
which shows an hB-tree for the running example. Here the root node contains two
pointers to its left descendant node. Its corresponding region w is the union of two
rectangles: the one to the left of 1 and the one above y1. The remaining space (the
right lower quadrant) is excluded from u, which is made explicit by the entry ezt in
the corresponding k-d-tree. A similar observation applies to region GG, which is again
L-shaped: it corresponds to the NW, the SE, and the NE quadrant of the rectangle
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Figure 22: hB-Tree

Searching is similar to the k-d-B-tree; each internal k-d-tree is traversed as usual.
The search performance of the one-dimensional hB-tree is competitive with the B-tree.
Insertions are also carried out analogously to the k-d-B-tree until a leaf node reaches its
capacity and a split is required. Instead of using just one single hyperplane to split the
node, the hB-tree split is based on more than one attribute and on the internal k-d-tree
of the data node to be split. Lomet and Salzberg (1989) show that this policy guarantees
a worst-case data distribution between the two resulting two nodes of 1/3 : 2/3. This
observation is not restricted to the hB-tree but generalizes to other access methods
such as the BD-tree and the BANG file.

The split of the leaf node causes the introduction of an additional k-d-tree node
to describe the resulting subspace. This may in turn lead to the split of the ancestor
node and its k-d-tree. Since k-d-trees are not height-balanced, splitting the tree at its
root may lead to an unbalanced distribution of the nodes. The tree is therefore usually
split at a lower level, which corresponds to the excision of a convex region from the
space corresponding to the node to be split. The entries belonging to that subspace
are extracted and moved to a new hB-tree node. To reflect the absence of the excised
region, the hB-tree node is assigned an external marker, which indicates that the region
is no more a simple interval. With this technique the problem of forced splits is avoided,
i.e., splits are local and do not have to be propagated downwards.

In summary, the leaf nodes of the internal k-d-trees are used to

e reference a collection of data records;
e reference other hB-tree nodes;

e indicate that a part of this tree has been extracted.
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In a recent Ph.D. thesis (Evangelidis 1994 ), the hB-tree has been extended to allow
for concurrency and recovery by modifying the hB-tree in such a way that it becomes
a special case of the Il-tree (Lomet and Salzberg 1992). Consequently, the new struc-
ture is called hB-tree (Evangelidis, Lomet, and Salzberg 1995). As a result of these
modifications, the new structure can immediately take advantage of the Il-tree node
consolidation algorithm. The lack of such an algorithm has been one of the major
weaknesses of the hB-tree. Furthermore, the hBM-tree corrects a flaw in the split-
ting/posting algorithm of the hB-tree that may occur for more than three index levels.
The essential idea of the correction is to impose restrictions on the splitting/posting
algorithms, which in turn affects the space occupancy.

One minor problem remains: As mentioned, the hB-tree may store several references
to the same child node. While the number of nodes may in principle expose a growth
behavior that is superlinear in the number of regions, this observation seems of mainly
theoretical interest. According to the authors of the hBI-tree (Evangelidis, Lomet, and
Salzberg 1995), it is quite rare that more than one leaf of the underlying k-d tree refers
to any given child. In their experiments, more than 95% of the index nodes had only
one reference and all of the data nodes had only one reference.

4.2.7 The BV-Tree (Freeston 1995)

The BV-tree represents a recent attempt to solve the d-dimensional B-tree problem,
i.e., to find a generic generalization of the B-tree to higher dimensions. The BV-tree is
not meant to be a concrete access method. It represents a conceptual framework that
can be applied to a variety of existing access methods, including the BANG file or the
hB-tree.

Freeston’s proposal is based on the conjecture that one can maintain the major
strengths of the B-tree in higher dimensions, provided one relaxes the strict require-
ments concerning tree balance and storage utilization. The BV-tree is not completely
balanced. Furthermore, while the B-tree guarantees a worst-case storage utilization
of 50%, Freeston argues that such a comparatively high storage utilization cannot be
ensured for higher dimensions for topological reasons. However, the BV-tree manages
to achieve the 33% lower bound suggested by Lomet and Salzberg (1989).

To achieve a guaranteed worst-case search performance, the BV-tree combines the
excision concept (Freeston 1987) with a technique called promotion. Here, intervals
from lower levels of the tree are moved up the tree, i.e., closer to the root. To keep
track of the resulting changes, with each promoted region we store a level number
(called a guard) that denotes the region’s original level.

The search algorithms are based on a notional backtracking technique. While de-
scending the tree, we store possible alternatives (relevant guards of the different index
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levels) in a guard set. The entries of this set act as backtracking points and represent
a single path from the root to the level currently inspected; for point queries, they can
be maintained as a stack. To answer a point query, we start at the root and inspect
all node entries whether the corresponding regions overlap the search point. Among
those entries inspected, we choose the best-matching entry to investigate next. Pos-
sibly we also store some guards in the guard set. At the next level this procedure is
repeated recursively, this time taking the stored guards into account. Before following
the best-matching entry down to the next level, the guard set is updated by merging
the matching new guards with the existing ones. Two guards at the same level are
merged by discarding the poorer match. This search continues recursively until we
reach the leaf level. Note that for point queries, the length of the search path is equal
to the height of the BV-tree because each region in space is represented by a unique
node entry.

Figure 23 shows the BV-tree and the corresponding space partitioning for the run-
ning example. For illustration purposes we do not confine the grouped regions or objects
by a tight polyline, but by a loosely wrapped boundary. In this example, the region
DO acts as a guard. It is clear from the space partitioning that DO originally belongs
to the bottom index level (that is, the middle level in the figure). Since it functions
as a guard for the enclosed region S1, however, it has been promoted to the root level.
Suppose we are interested in all objects intersecting the black rectangle X. Starting at
the root, we place D0 in the guard set and investigate S1. Because the inspection of S1
reveals that the search region is neither included in PO, nor in NO or M0, we backtrack
to DO and inspect the entries for D0. In our example, no entry satisfies the query.

A1]po| s1

nolEo/Fo  r10|pofra  Po|NO|MO
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Figure 23: BV-Tree
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5 Spatial Access Methods

5.1 Managing Extended Objects

All multidimensional access methods presented in the previous section have been de-
signed to handle sets of data points and to support spatial searches on them. None of
those methods is directly applicable to databases containing objects with a spatial ex-
tension. Typical examples include geographic databases, containing mostly polygons,
or mechanical CAD data, consisting of three-dimensional polyhedra. In order to han-
dle such extended objects, point access methods have been modified using one of the
following four techniques:

1. Transformation (Object Mapping)

2. Overlapping Regions (Object Bounding)
3. Clipping (Object Duplication)

4. Multiple Layers

A simpler version of this classification was first introduced by Seeger and Kriegel
(1988). Later on, Kriegel et al. (1991) added another dimension to this taxonomy:
a spatial access method’s base type, i.e., the spatial data type it supports primarily.
Table 2 shows the resulting classification of spatial access methods. Note that most
structures use the interval as a base type.

5.1.1 Transformation

One-dimensional access methods (Section 3.1) and PAMs (Section 4) can often be used
to manage spatially extended objects, provided the objects are first transformed into
a different representation. There are essentially two options: one can either transform
each object into a higher-dimensional point (Hinrichs 1985; Seeger and Kriegel 1988),
or transform it into a set of one-dimensional intervals. A priori, both approaches are
restricted to simple geometric shapes such as circles or rectangles. We discuss the two
techniques in turn.

On the one hand, simple geometric shapes can be represented as points in a higher-
dimensional space. For example, it takes four real numbers to represent a (two-
dimensional) rectangle in E2. Those numbers may be interpreted as coordinates of a
point in E4. One possibility is to take the z- and y-coordinates of two diagonal corners
(endpoint transformation), another option is based on the centroid and two additional
parameters for the extension of the object in z- and y-direction (midpoint transfor-
mation). Any such transformation maps a database of rectangles onto a database of
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technique base type
grid cell interval (box) sphere polyhedron
transfor- zkdBT-tree | all PAMs described in Sec- P-tree  (Ja-
mation (Oren- tion 4 except of the BANG gadish 1990c)
stein 1986), | file and the hB-tree
BANG file
(Free-
ston 1987),
hB-tree
(Lomet and
Salzberg
1989)
overlapping R-tree (Guttman 1984), R*- | sphere tree P-tree (Schi-
regions tree (Beckmann et al. 1990), | (Oosterom wietz  1993),
skd-tree (Ooi et al. 1987), | 1990) KD2B-tree
GBD-tree  (Ohsawa  and (Oosterom
Sakauchi 1990), Hilbert R- 1990)
tree (Kamel and Faloutsos
1994), buddy tree with over-
lapping (Seeger 1991)
clipping EXCELL (Tamminen 1982), cell tree
extended k-d-tree (Mat- (Giinther
suyama et al. 1984), R*-tree 1988)
(Sellis et al. 1987), buddy
tree with clipping (Seeger
1991)
multiple multi-layer grid file (Six
layers and Widmayer 1988), R-file
(Hutflesz et al. 1990)

Table 2: Classification of SAMs Based on Kriegel et al. (1991)

4-dimensional points, which can then be managed by one of the PAMs discussed in the
previous section. Search operations can be expressed as point and region queries in this

dual space.

If the original database contains more complex objects, they have to be approxi-
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mated - e.g. by a rectangle or a sphere - before transformation. In this case, the point
access method can only lead to a partial solution (cf. Figure 2 on page 10).

Figure 24 shows the dual space equivalents of some common queries. For presenta-
tion purposes, the figure shows a mapping from intervals in E'! to points in E2. The
upper part depicts the results for the endpoint transformation, the lower for the mid-
point transformation. Figure 24a shows the transformation result for the range query
with the search range [/, u]. In dual space this range query maps into a general region
query. Any point in dual space that lies in the shaded area corresponds to an interval
in original space that overlaps the search interval [/, u], and vice versa. Enclosure and
containment queries with the interval [/, u] as argument also map into general region
queries (Figure 24b). A point query, finally, maps into a range query for the endpoint
transformation. If the midpoint transformation has been employed, however, the point
query translates into a general region query as well. Figure 24c gives an example with
p as the (one-dimensional) query point.

Despite its conceptual elegance, this approach has several disadvantages. First,
as the examples above already indicate, the formulation of point and range queries
in dual space is usually much more complicated than in original space (Nievergelt
and Hinrichs 1987). Finite search regions may map into infinite search regions in
dual space, and some more complex queries involving spatial predicates may not be
expressible at all anymore (Henrich et al. 1989; Orenstein 1990; Pagel et al. 1993).
Second, depending on the chosen mapping, the distribution of points in dual space may
be highly non-uniform even though the original data is uniformly distributed. With
the endpoint transformation, for example, there are no image points below the main
diagonal (Faloutsos et al. 1987). Third, the images of two objects that are close in
original space may be arbitrarily far apart from each other in dual space.

To overcome some of these problems, Henrich et al. (1989), Faloutsos and Rong
(1991), as well as Pagel et al. (1993) have proposed special transformation and split
strategies. A structure that was designed explicitly to be used in connection with the
transformation technique is the LSD-tree (Henrich et al. 1989) described in Section
4.2.2. Performance studies by Henrich and Six (1991) confirm the claim that the LSD-
tree adapts well to non-uniform distributions, which is of particular relevance in this
context. It also contains a mechanism to avoid searching large empty query spaces,
which may occur as a result of the transformation.

Space-filling curves (Sagan 1994), on the other hand, are a very different type of
transformation approach that seems to suffer less from some of these drawbacks. We
already mentioned the main reason why the design of multidimensional access methods
is so difficult compared to the one-dimensional case: There is no total order that
preserves spatial proximity. One way out of this dilemma is to find heuristic solutions,
i.e., to look for total orders that preserve spatial proximity at least to some extent.
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Figure 24: Search Queries in Dual Space

The idea is that if two objects are located close together in original space, there should
at least be a high probability that they are close together in the total order, i.e., in the
one-dimensional image space. For the organization of this total order one could then
use a one-dimensional access method (such as a BT-tree), which may provide good
performance at least for some spatial queries.

Research on the underlying mapping problem goes back well into the last century;
see (Sagan 1994) for a survey. With regard to its relevance for spatial searching, Samet
(1989) provides a good overview of the subject. One thing all proposals have in common
is that they first partition the universe with a grid. Each of the grid cells is labeled with
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a unique number that defines its position in the total order (the space-filling curve).
An extended object is then represented by a list of grid cells or, equivalently, a list
of one-dimensional intervals that define the position of the grid cells concerned. Note
that while the labeling is independent of the given data, it is obviously critical for the
preservation of proximity in one-dimensional address space. That is, the way we label
the cells determines how clustered adjacent cells are stored on secondary memory.
Figure 25 shows four common labelings. Figure 25a corresponds to a row-wise
enumeration of the cells (Samet 1989). Figure 25b shows the cell enumeration imposed
by the Peano curve (Morton 1966), also called quad codes (Finkel and Bentley 1974),
locational codes (Abel and Smith 1983), or z-ordering (Orenstein and Merrett 1984).
Figure 25¢ shows the Hilbert curve (Faloutsos and Roseman 1989; Jagadish 1990a), and
Figure 25d depicts Gray ordering (Faloutsos 1986; Faloutsos 1988), which is obtained
by interleaving the Gray codes of the z- and y-coordinates in a bitwise manner. Gray

codes of successive cells differ in exactly one bit.
1 2
o 3

N AN] I

(d)

(a) (b)

Figure 25: Four Space-Filling Curves

Based on several experiments, Abel and Mark (1990) conclude that z-ordering and
the Hilbert curve are most suitable as a spatial access method. Jagadish (1990a)
and Faloutsos and Rong (1991) all prefer the Hilbert curve among those two. An
important advantage of all space-filling curves is that they are practically insensitive
to the number of dimensions. Everything is mapped into one-dimensional space, and
one’s favorite one-dimensional access method can be applied to manage the data. An
obvious disadvantage of space-filling curves is that incompatible index partitions cannot
be joined without recomputing the codes of at least one of the two indexes.

5.1.2 Overlapping Regions

The key idea of the overlapping regions technique is to allow different data buckets in
an access method to correspond to mutually overlapping subspaces. With this method
we can assign any extended object directly and as a whole to one single bucket region.
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Consider, for instance, the k-d-B-tree for the running example, depicted in Figure 18
(page 31), and one of the polygons given in the scenario (Figure 9, page 16), say r10.
r10 overlaps two bucket regions, the one containing p10, cl, and c2, and the other
one containing c10 and p9. If we extend one of those regions to accommodate r10,
this polygon could be stored in the corresponding bucket. Note, however, that this
extension inevitably leads to an overlap of regions.

Search algorithms can be applied almost unchanged. The only differences are due
to the fact that the overlap may increase the number of search paths we have to follow.
Even a point query may require the investigation of multiple search paths because there
may be several subspaces at any index level that include the search point. For range
and region queries, the average number of search paths increases as well.

Hence, while functionality is not a problem when using overlapping regions, perfor-
mance can be. This is particularly relevant when the spatial database contains objects
whose size is large relative to the size of the universe. Typical examples are known
from geographic applications where one has to represent objects of widely varying size
(such as buildings and states) in the same spatial database. Each insertion of a new
data object may increase the overlap and therefore the average number of search paths
to be traversed per query. Eventually, the overlap between subspaces may become
large enough to render the index ineffective because one ends up searching most of the
index for a single point query. A well-known example where this degenerate behavior
has been observed is the R—tree (Guttman 1984; Greene 1989). Several modifications
have been presented to mitigate these problems, including a technique to minimize the
overlap (Roussopoulos and Leifker 1985); see Section 5.3.1 for a detailed discussion.

A minor problem with overlapping regions concerns ambiguities during insertion.
If we insert a new object, we could in principle enlarge any subspace to accommodate
it. To optimize performance, there exist several strategies (Pagel, Six, Toben, and
Widmayer 1993). For example, we could try to find the subspace that causes minimal
additional overlap, or the one that requires the least enlargement. If it takes too long
to compute the optimal strategy for every insertion, some heuristic may be used.

When a subspace needs to be split, one also tries to find a split that leads to minimal
overall overlap. Guttman (1984), Greene (1989), and Beckmann et al. (1990) suggest
some heuristics for this problem.

5.1.3 Clipping

Clipping—based schemes do not allow any overlaps between bucket regions; they have
to be mutually disjoint. A typical example is the Rt—tree (Stonebraker, Sellis, and
Hanson 1986; Sellis, Roussopoulos, and Faloutsos 1987), a variant of the R-tree that
allows no overlap between regions corresponding to nodes at the same tree level. As
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a result, point queries follow a single path starting at the root, which means efficient
searches.

The main problems with clipping-based approaches relate to the insertion and dele-
tion of data objects. During insertion, any data object that spans more than one
bucket region has to be subdivided along the partitioning hyperplanes. FEventually,
several bucket entries have to be created for the same object. Each bucket stores either
the geometric description of the complete object (object duplication), or the geomet-
ric description of the corresponding fragment with an object reference. In any case,
data about the object is dispersed among several data pages (spanning property). The
resulting redundancy (Orenstein 1989a; Orenstein 1989b; Giinther and Gaede 1996)
may cause not only an increase in the average search time, but also an increase in the
frequency of bucket overflows.

A second problem applies to clipping-based access methods that do not partition
the complete data space. In that case, the insertion of a new data object may lead
to the enlargement of several bucket regions. Whenever the object (or a fragment
thereof) is passed down to a bucket (or, in the case of a tree structure, an interior node)
whose region does not cover it, the region has to be extended. In some cases, such an
enlargement is not possible without getting an overlap with other bucket regions; this
is sometimes called the deadlock problem of clipping. Because overlap is not allowed,
we have to redesign the region structure, which can become very complicated. It may
in particular cause further bucket overflows and insertions, which can lead to a chain
reaction and, in the worst case, a complete breakdown of the structure (Giinther and
Bilmes 1991). Access methods partitioning the complete data space do not suffer from
this problem.

A final problem concerns the splitting of buckets. There may be situations where a
bucket (and its corresponding region) has to be split but there is no splitting hyperplane
that splits none (or only a few) of the objects in that bucket. The split may then trigger
other splits, which may become problematic with increasing size of the database. The
more objects are inserted, the higher the probability of splits and the smaller the average
size of the bucket regions. New objects are therefore split into a larger number of smaller
fragments, which may in the worst case once again lead to a chain reaction. To alleviate
these problems, Giinther and Noltemeier (1991) suggest storing large objects (which
are more likely to be split into a large number of fragments) in special buckets called
oversize shelves, instead of inserting them into the structure.

5.1.4 Multiple Layers

The multiple layer technique can be regarded as a variant of the overlapping regions
approach, because data regions of different layers may overlap. However, there are
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several important differences: First, the layers are organized in a hierarchy. Second,
each layer partitions the complete universe in a different way. Third, data regions
within a layer are disjoint, i.e., they do not overlap. Fourth, the data regions do not
adapt to the spatial extensions of the corresponding data objects.

In order to get a better understanding of the multi-layer technique, we shall discuss
how to insert an extended object. First, we try to find the lowest layer in the hierarchy
whose hyperplanes do not split the new object. If there is such a layer, we insert the
object into the corresponding data page. If the insertion causes no page to overflow, we
are done. Otherwise, we must split the data region by introducing a new hyperplane
and distribute the entries accordingly. Objects intersecting the hyperplane have to be
moved to a higher layer or an overflow page. As the database becomes populated, the
data space of the lower layers becomes more and more fragmented. As a result, large
objects keep accumulating on higher layers of the hierarchy or even worse, it is no more
possible to insert objects without intersecting existing hyperplanes.

The multi-layer approach seems to offer one advantage compared to the overlapping
regions technique: a possibly higher selectivity during searching due to the restricted
overlap of the different layers. However, there are also several disadvantages: First,
the multi-layer approach suffers from fragmentation, which may render the technique
inefficient for some data distributions. Second, certain queries require the inspection of
all existing layers. Third, it is not clear how to cluster objects that are spatially close
to each other but in different layers. Fourth, there is some ambiguity in which layer to
place the object.

5.2 Methods Based on Transformation

In this section, we concentrate on z-ordering, which is one of the few methods that has
found its way into commercial database products. In particular, Oracle has adapted
and integrated the technique into its database system (Oracle Inc. 1995).

5.2.1 Z-Ordering (Orenstein and Merrett 1984)

A simple algorithm to obtain the z-ordering representation of a given extended object
can be described as follows. Starting from the (fixed) universe containing the data
object, space is split recursively into two subspaces of equal size by (d — 1)-dimensional
hyperplanes. As in the k-d-tree, the splitting hyperplanes are iso-oriented, and their
directions alternate in fixed order among the d possibilities. The subdivision continues
until one of the following three conditions holds:

1. The current subspace does not overlap the data object.
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2. The current subspace is fully enclosed in the data object.

3. Some given level of accuracy has been reached.

The data object is now represented by a set of cells, here called Peano regions. Each
Peano region corresponds to a unique bit-string, the Peano code or z-value, which we
obtain as follows. For simplicity we restrict this presentation to the two-dimensional
case; we also assume that the first splitting hyperplane is a vertical line. If the Peano
region in question lies to the left of that line, the first bit of the Peano code is 0,
otherwise it is 1. In the next step we partition the subspace containing the Peano
region by a horizontal line. If the Peano region lies below that line, the second bit of
the Peano code is 0, otherwise it is 1. As this decomposition progresses, we obtain
one bit per splitting line. Bits at odd positions refer to vertical lines, and bits at even
positions to horizontal lines, which explains why this scheme is often referred to as
bit-interleaving.

Figure 26 shows a simple example. Figure 26a shows the polygon to be approxi-
mated, with the frame representing the universe. After several splits, starting with a
vertical split line, we obtain Figure 26b. Nine Peano regions of different shapes and
sizes approximate the object. The labeling of each region is shown in Figure 26¢c. As
an example consider the Peano region Z in the lower left part of the given polygon. It
lies to the left of the first vertical hyperplane and below the first horizontal hyperplane,
resulting in the first two bits being 00. As we further partition the lower left quadrant,
Z lies on the left of the second vertical hyperplane, but above the second horizontal
hyperplane. The complete bit-string accumulated so far is therefore 0001. In the next
round of decompositions, Z lies to the right of the third vertical hyperplane and above
the third horizontal hyperplane, resulting in two additional 1’s. The complete bit-string
describing z is therefore 000111.

Figures 26b and 26¢ also give some bit-strings along the coordinate axes, which
describe only the splits orthogonal to the given axis. The string 01 on the z-axis, for
example, describes the subspace that lies to the left of the first vertical split and to the
right of the second vertical split. By bit-interleaving the bit-strings that one finds when
projecting a Peano region onto the coordinate axes, we obtain its Peano code. Note
that if a Peano code z; is the prefix of some other Peano code z3, the Peano region
corresponding to z; encloses the Peano region corresponding to z3. The Peano region
corresponding to 00, for example, encloses the regions corresponding to 0001 and 000.
Leading 0’s are therefore significant. This is an important observation, since it can be
used for query processing (Gaede and Riekert 1994).

As z-ordering is based on an underlying grid, the resulting set of Peano regions is
usually only an approximation of the original object. The termination criterion depends
on the accuracy or granularity (maximum number of bits) desired. More cells obviously
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Figure 26: Z-Ordering of a Polygon
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yvield more accuracy, but they also increase the overhead, which affects the overall
performance of the resulting data structure. As pointed out by Orenstein (1989b)
there are two possibly conflicting objectives: First, the number of Peano regions to
approximate the object should be small, since this results in less index entries. Second,
the accuracy of the approximation should be high, since this reduces the expected
number of false drops (i.e., objects that are paged in from secondary memory, only to
find out that they do not satisfy the search predicate). For a detailed discussion of this
problem, see (Orenstein 1989a), (Orenstein 1989b), and (Gaede 1995b). By enhancing
the z-ordering encoding with a single bit that reflects for each Peano region whether
it is enclosed in the extended object or not, it is possible to improve the performance
of z-ordering even further (Gaede 1995a). Figure 27 shows the Peano regions for the
running example.

5.3 Methods Based on Overlapping Regions
5.3.1 The R-Tree (Guttman 1984)

An R-tree corresponds to a hierarchy of nested d-dimensional intervals (boxes). Each
node v of the R-tree corresponds to a disk page and a d-dimensional interval I¢(v). If
v is an interior node then the intervals corresponding to the descendants v; of v are
contained in [ d(l/). Intervals at the same tree level may overlap. If v is a leaf node,
I(v) is the d-dimensional minimum bounding box (MBB) of the objects stored in v.
For each object in turn, v only stores its MBB and a reference to the complete object
description. Other properties of the R-tree include (Guttman 1984):

49

001 001 010 011 100 101 110 111



7
‘p

‘

) p8
p9 Y
pl0 @ @
|

p2
® P
pl . p3 ‘
® p4 P5@
°

Figure 27: 7Z-Ordering

e Every node contains between m and M entries unless it is the root. The lower
bound m prevents the degeneration of trees and ensures an efficient storage uti-
lization. Whenever the number of a node’s descendants drops below m, the node
is deleted and its descendants are distributed among the sibling nodes (tree con-
densation). The upper bound M can be derived from the fact that each tree node
corresponds to exactly one disk page.

e The root node has at least two entries unless it is a leaf.

e The R-tree is height-balanced, i.e., all leaves are at the same level. The height of
an R-tree is at most [log,,(N)] for N index records (N > 1).

Searching in the R-tree is similar to the B-tree. At each index node v, all index
entries are tested whether they intersect the search interval I;. We then visit all child
nodes v; with I%(v;) N Iy # 0. Due to the overlapping region paradigm, there may be
several intervals Id(l/i) that satisfy the search predicate. Thus, there exists no non-
trivial worst-case bound for the number of pages we have to visit. An example is given
in Figure 28 that shows an R-tree for the running example. Remember that the ms
denote the MBBs of the polygonal data objects r¢. A point query with search point X
results in two paths: R8 — R4 — m7 and R7 — R3 — mb.
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Because the R-tree only manages MBBs, it cannot solve a given search problem
completely unless, of course, the actual data objects are interval-shaped. Otherwise
the result of an R-tree query is a set of candidate objects, whose actual spatial extent
then has to be tested for intersection with the search space (cf. Fig. 2, p. 10). This
step, which may cause additional disk accesses and considerable computations, has
not been taken into account in most published performance analyses (Guttman 1984;
Greene 1989).

To insert an object o, we insert the minimum bounding interval I d(o) and an object
reference into the tree. In contrast to searching, we traverse only a single path from the
root to the leaf. At each level we choose the child node v whose corresponding interval
I%(v) needs the least enlargement to enclose the data object’s interval I%(o). If several
intervals satisfy this criterion, Guttman proposes to select the descendant associated
with the smallest (d-dimensional) interval. As a result, we insert the object only once,
i.e., the object is not dispersed over several buckets. Once we have reached the leaf
level, we try to insert the object. If this requires an enlargement of the corresponding
bucket region, we adjust it appropriately and propagate the change upwards. If there
is not enough space left in the leaf, we split it and distribute the entries among the old
and the new page. Once again, we adjust each of the new intervals accordingly and
propagate the split up the tree.

As for deletion, we first perform an exact match query for the object in question. If
we find it in the tree, we delete it. If the deletion causes no underflow we check whether
the bounding interval can be reduced in size. If so, we perform this adjustment and
propagate it upwards. On the other hand, if the deletion causes node occupation to
drop below m, we copy the node content into a temporary node and remove it from
the index. We then propagate the node removal up the tree, which typically results
in the adjustment of several bounding intervals. Afterwards we reinsert all orphaned
entries of the temporary node. Alternatively, we can merge the orphaned entries with
sibling entries. In both cases, one may again have to adjust bounding intervals further
up the tree.

In his original paper, Guttman (1984) discusses various policies to minimize the
overlap during insertion. For node splitting, for example, Guttman suggests several
algorithms, including a simpler one with linear time complexity and a more elaborate
one with quadratic complexity. Later work by other researchers led to the development
of more sophisticated policies. The packed R-tree (Roussopoulos and Leifker 1985),
for example, computes an optimal partitioning of the universe and a corresponding
minimal R-tree for a given scenario. However, it requires all data to be known a priori.

Other interesting variants of the R-tree include the sphere tree by Oosterom (1990)
and the Hilbert R-tree by Kamel and Faloutsos (1994). The sphere tree corresponds
to a hierarchy of nested d-dimensional spheres rather than intervals. In the Hilbert
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Figure 28: R-Tree

R-tree, the important feature is that interior nodes also store the largest Hilbert value
(cf. Section 5.2) of the data rectangles in the corresponding subtree (in addition to
the MBB and a pointer). This enhancement facilitates the insertion of new objects
considerably. Together with a revised splitting policy, Kamel and Faloutsos are able to
report good performance results for both searches and updates. However, since their
splitting policy takes only the Hilbert values of the objects’ centroids into account,
the performance of the Hilbert R-tree is likely to deteriorate in the presence of large
extended objects.

Ng and Kameda (1993, 1994) discuss how to support concurrency and recovery in
R-trees.

5.3.2 The R*-Tree (Beckmann, Kriegel, Schneider, and Seeger 1990)

Based on a careful study of the R-tree behavior under different data distributions,
Beckmann et al. (1990) identified several weaknesses of the original algorithms. In
particular, they confirmed the observation of Roussopoulos and Leifker (1985) that the
insertion phase is critical for search performance. The design of the R*-tree therefore
introduces a policy called forced reinsert: If a node overflows, they do not split it right
away. Rather, they first remove p entries from the node and reinsert them into the
tree. The parameter p may vary; Beckmann et al. suggest p to be about 30% of the
maximal number of entries per page.

Another issue investigated by Beckmann et al. concerns the node splitting policy.
While Guttman’s R-tree algorithms only tried to minimize the area that is covered
by the bucket regions, the R*-tree algorithms also take the following objectives into
account:

e Overlap between bucket regions at the same tree level should be minimized. The
less overlap, the smaller the probability that one has to follow multiple search
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paths.

e Region perimeters should be minimized. The most preferable rectangle is the
square, since this is the most compact rectangular representation.

e Storage utilization should be maximized.

The improved splitting algorithm of Beckmann et al. (1990) is based on the plane-
sweep paradigm (Preparata and Shamos 1985). In d dimensions, its time complexity
is O(d - n -logn) for a node with n intervals.
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Figure 29: R*-Tree

In summary, the R*-tree differs from the R-tree mainly in the insertion algorithm;
deletion and searching are essentially unchanged. Beckmann et al. report performance
improvements of up to 50% compared to the basic R-tree. Their implementation also
shows that reinsertion may improve storage utilization. In broader comparisons, how-
ever, both Hoel and Samet (1992) and Giinther and Gaede (1996) found that the CPU
time overhead of reinsertion can be substantial, especially for large page sizes; see
Section 6 for further details.

One of the major insights of the R*-tree is that node splitting is critical for the
overall performance of the access method. Since a naive (exhaustive) approach has
time complexity O(d-2") for n given intervals, there is a need for efficient and optimal
splitting policies. Becker et al. (1992) proposed a polynomial time algorithm that finds
a balanced split, which also optimizes one of several possible objective functions (e.g.,
minimum sum of areas or minimum sum of perimeters). They assume in their analysis
that the intervals are presorted in some specific order.

Recently, Berchtold et al. (1996) proposed a modification of the R-tree, called
X-tree, that seems to be particularly well suited for indexing high-dimensional data.
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The X-tree reduces overlap among directory intervals by using a new organization: It
postpones node splitting by introducing supernodes, i.e., nodes larger than the usual
block size. In order to find a suitable split, the X-tree also maintains the history of
previous splits.

5.3.3 The P-Tree (Jagadish 1990c)

In many applications, intervals are not a good approximation of the data objects en-
closed. In order to combine the flexibility of polygon-shaped containers with the sim-
plicity of the R-tree, Jagadish (1990c) and Schiwietz (1993) independently proposed
different variations of polyhedral trees or P-trees. To distinguish the two structures, we
refer to the P-tree by Jagadish (1990c) as JP-tree and to the P-tree by Schiwietz (1993)
as SP-tree.

The JP-tree first introduces a variable number m of orientations in the d-dimensional
universe, where m > d. For instance, in two dimensions (d = 2) we may have four
orientations (m = 4): two parallel to the coordinate axes (i.e., iso-oriented), and two
parallel to the two main diagonals. Objects are approximated by minimum bounding
polytopes whose faces are parallel to these m orientations. Clearly, the quality of the
approximations is positively correlated with m. We can now map the original space
into an m-dimensional orientation space, such that each (d-dimensional) approximating
polytope P? turns into an m-dimensional interval I™. Any point inside (outside) P?
maps onto a point inside (outside) I, while the opposite is not necessarily true. To
maintain the m-dimensional intervals, a large selection of SAMs is available; Jagadish
(1990c¢) suggests the R- or RT-tree for this purpose.

An interesting feature of the JP-tree is the ability to add hyperplanes to the at-
tribute space dynamically without having to reorganize the structure. By projecting
the new intervals of the extended orientation space onto the old orientation space,
it is still possible to use the old structure. Consequently, we can obtain an R-tree
from a higher-dimensional JP-tree structure by dropping all hyperplanes that are not
iso-oriented.

The interior nodes of the JP-tree represent a hierarchy of nested polytopes, similar
to the R-tree or the cell tree. Polytopes corresponding to different nodes at the same
tree level may overlap. For search operations we first compute the minimum bounding
polytope of the search region and map it onto an m-dimensional interval. The search
efficiency then depends on the chosen PAM. The same applies for deletion.

While the introduction of additional hyperplanes results in a better approximation,
it increases the size of the entries, thus reducing the fan-out of the interior nodes.
Experiments reported by Jagadish (1990c) suggest that a 10-dimensional orientation
space (m = 10) is a good choice for storing two-dimensional lines (d = 2) with arbitrary
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orientation. This needs to be compared to a simple MBB approach. Although the latter
technique may sometimes render poor approximations, the representation requires only
four numbers per line. Storing a 10-dimensional interval, on the other hand, requires
20 numbers, i.e., five times as much. Another drawback of the JP-tree is the fixed
orientation of the hyperplanes. Figure 30 shows the running example for m = 4.
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Figure 30: P-Tree (Jagadish 1990c)

5.3.4 The P-Tree (Schiwietz 1993)

The P-Tree by Schiwietz, here called SP-tree, chooses a slightly different approach for
storing polygonal objects. It tries to combine the advantages of the cell tree and the
R*-tree for the two-dimensional case, while avoiding the drawbacks of both methods.
Basically, the SP-tree is an R-tree whose interior nodes correspond to a nesting of
polytopes rather than just rectangles. In general, the number of vertices (and therefore
the storage requirements) of a polytope is not bounded. Moreover, when used for ap-
proximating other objects, the accuracy of the approximation is positively correlated
with the number of vertices of the approximating convex polygon. On the other hand,
when used as index entries, there should be an upper bound in order to guarantee a
minimum fan-out of the interior nodes. To determine a reasonably good compromise
between these conflicting objectives, extensive investigations have been conducted by
Brinkhoff et al. (1993) and Schiwietz (1993). According to these studies, pentagons or
hexagons seem to offer the best tradeoff between storage requirements and approxima-
tion quality.

If node splittings or insertions lead to additional vertices, such that some bounding
polygons have more vertices than the threshold, the surplus vertices are removed one
by one. This leads to a larger area and therefore to a decrease of the quality of the
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approximation. To reduce overlap between the convex containers, Schiwietz suggests
using a method similar to the R*-tree. Furthermore, in order to save storage space and
to improve storage utilization, it is possible to restrict the number of orientations for

the polygon edges (similar to the JP-tree).
Figure 31 shows the SP-tree for the running example. To our knowledge, no per-
formance results have been reported so far.
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Figure 31: P-Tree (Schiwietz 1993)

5.3.5 The SKD-Tree (Ooi, Sacks-Davis, and McDonell 1987; Ooi 1990)

A variant of the k-d-tree capable of storing spatially extended objects is the spatial k-
d-tree or skd-tree. The skd-tree allows regions to overlap. To keep track of the mutual
overlap, we store an upper and a lower bound with each discriminator, representing the
maximal extent of the objects in the two subtrees. For example, consider the splitting
hyperplane hx1 depicted in Figure 32 and its upper and lower bounds bx1 and bx2,
respectively. The solid lines are the splitting hyperplanes and the dashed lines represent
the upper and lower bounds of the corresponding subtrees. m3 is the rectangle closest
to the hyperplane hx1 without crossing it, thus determining the maximum extension
bx1 of the objects in the left (lower) subspace. Similarly, m5 determines the minimum
extension bx2 for the right (upper) subspace. If none of the objects placed in the
corresponding subspace crosses the splitting hyperplane, the lower bound of the upper
interval is greater than the discriminator di and the upper bound of the lower interval
is less than dj. Leaf nodes of the binary tree contain the minimal bounds (dotted lines)
of the objects in the corresponding data page.

Prior to inserting an object o, we determine its centroid and its MBB. By comparing
the centroid with the stored discriminators, we determine the child to inspect next.
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Note that there is no ambiguity. During insertion, we have to adjust the upper and
lower bounds for extended objects accordingly. Upon reaching the data node level, we
test whether there is enough space available to accommodate the object. If so, we insert
the object, otherwise we split the data node and insert the new discriminator into the
skd-tree. Likewise, the bounds of the new subspaces need to be adjusted.

As usual, searching starts at the root and corresponds to a top-down tree traversal.
At each interior node we check the discriminator and the boundaries to decide which
child(ren) to visit next.

Deleting an object starts with an exact match query to determine the correct leaf
node. If a deletion causes an underflow, we insert the remaining entries into the sibling
data node and remove the splitting hyperplane. If this insertion results in an overflow,
we split the page and insert the new hyperplane into the skd-tree. If no merge with
a sibling leaf node is possible, we delete that leaf and its parent node. By redirecting
the reference of the latter to its sibling (interior) node, we extend the subspace of the
sibling. All affected entries are reinserted.

According to the results reported in (Ooi 1990; Ooi et al. 1991) the skd-tree is
competitive to the R-tree both in storage utilization and search efficiency.
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Figure 32: SKD-Tree

5.3.6 The GBD-Tree (Ohsawa and Sakauchi 1990)

The GBD-tree (generalized BD-tree) is an extension of the BD-tree (Ohsawa and
Sakauchi 1983) that allows for secondary storage management and supports the man-
agement of extended objects. While the BD-tree is a binary tree, the GBD-tree is a
balanced multiway tree that stores spatial objects as a hierarchy of minimum bounding
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boxes. Fach leaf node (bucket) stores the MBBs of those objects whose centroids are
contained in the corresponding bucket region. Each interior node stores the MBB of
the (usually overlapping) MBBs of its descendants. The intervals are encoded using
Peano codes (Section 5.2.1), here called DZ-expressions.

The only advantage of the GBD-tree over the R-tree is that insertions and deletions
may be processed more efficiently, due to the encoding scheme and the placement by
centroid. The latter point enables the GBD-tree to perform an insertion along a single
path from the root to a leaf. However, no apparent advantage is gained with respect
to search performance. The reported performance experiments (Ohsawa and Sakauchi
1990) compare only storage utilization and insertion performance with the R-tree. The
most important comparison, that of search performance, is omitted.

Figure 33 depicts a GBD-tree for the running example. The partitioning on the left
hand side shows the minimum bounding boxes (dotted or dashed) and the underlying
intervals (Peano regions).
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Figure 33: GBD-Tree

Among the approaches similar to the GBD-tree are an extension of the buddy tree
by Seeger (1991), and the extension of the BANG file to handle extended spatial objects
(Freeston 1990b).

5.3.7 PLOP-Hashing (Kriegel and Seeger 1988; Seeger and Kriegel 1988)

Piecewise linear order preserving (PLOP) hashing (Seeger and Kriegel 1988) is a variant
of hashing that allows the storage of extended objects without transforming them to
points. An earlier version of this structure (Kriegel and Seeger 1988) was only capable
of handling multidimensional point data. = We shall focus on the former proposal.
PLOP-hashing partitions the universe similarly to the grid file; extended objects may
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span more than one directory cell. Hyperplanes extend along the axes of the data
space. For the organization of these hyperplanes, PLOP-hashing uses d binary trees,
where d is the dimension of the universe. Each interior node of such a binary tree
corresponds to a (d — 1)-dimensional iso-oriented hyperplane. The leaf nodes represent
d-dimensional subspaces forming slices of the universe.

Figure 34 depicts the binary trees for both axes together with the slices formed by
them. By using the index entries that are stored in the leaf nodes, we can easily identify
the data page we are looking for. To do this efficiently, we have to keep the d binary
trees in main memory, similar to the scales of the grid file. For further speed-up, the
leaf nodes of each binary tree are linked to each other. In Figure 34 this is suggested by
the arrows attached to the leaves of the trees. To handle extended objects, we enlarge
the storage representation of each slice by a lower and an upper bound. These bounds
indicate the minimum and the maximum extension along the current dimension of all
objects stored in the slice at hand.

Insertion is straightforward and similar to the grid file. To avoid ambiguities, PLOP-
hashing uses the centroid of the object to determine the data bucket in which to place
the object. In the case of node splitting and deletion we have to adjust the respective
upper and lower bounds. It should further be noted that PLOP-hashing can easily be
modified so that it supports clipping rather than overlapping regions.

Analytical experiments indicate that PLOP-hashing is superior to the R-tree and
R*-tree for uniform data distributions (Seeger and Kriegel 1988).

5.4 Methods Based on Clipping
5.4.1 The Extended K-D-Tree (Matsuyama, Hao, and Nagao 1984)

One of the earliest extensions of the adaptive k-d-tree that was capable of handling
extended objects was the extended k-d-tree. In contrast to the skd-tree (Section 5.3.5),
the extended k-d-tree is based on clipping. Each interior tree node corresponds to
a (d — 1)-dimensional partitioning hyperplane, represented by the dimension (e.g., =
or y) and the splitting coordinate (the discriminator). A leaf node corresponds to a
rectangular subspace and contains the address of the data page describing that sub-
space. Data pages may be referenced by multiple leaf nodes. The extended k-d-tree
uses clipping to handle extended objects.

To insert an object, we start at the root of the k-d-tree. At each interior node,
we test for intersection with the stored hyperplane. Depending on the location of the
object relative to the hyperplane, we either move on to the corresponding child node,
or we clip the object by the hyperplane and follow both branches. This procedure
guarantees that we insert the object in all overlapping bucket regions. If a data page
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Figure 34: PLOP-Hashing

cannot accommodate the additional object, we split the page by a new hyperplane.
The splitting dimension is perpendicular to the dimension with the greatest extension.
After distributing the entries of the data page among the two new pages, we insert
the hyperplane into the k-d-tree. Note that this may in turn cause some objects to be
split, which may lead to further page overflows. To delete an object, we have to visit
all subspaces intersecting the object and delete the stored object identifier. If a data
page is empty due to deletion, we remove it and mark all leaf nodes pointing to that
page as NIL. No merging of sibling nodes is performed.

Figure 35 depicts an extended k-d-tree for the running example. Rectangle m7 has
been clipped and inserted into two nodes. Most partitions contain one or two additional
bounding hyperplanes (dotted lines) to provide a better localization of the objects in
the corresponding subspace.
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Figure 35: Extended K-D-Tree

5.4.2 The R*-Tree (Stonebraker, Sellis, and Hanson 1986; Sellis, Rous-
sopoulos, and Faloutsos 1987)

To overcome the problems associated with overlapping regions in the R-tree, Sellis
et al. introduced an access method called RT-tree. Unlike the R-tree, the R*-tree
uses clipping, i.e., there is no overlap between index intervals /¢ at the same tree level.
Objects that intersect more than one index interval have to be stored on several different
pages. As a result of this policy, point searches in R*-trees correspond to single-path
tree traversals from the root to one of the leaves. They therefore tend to be faster than
the corresponding R-tree operation. Range searches will usually lead to the traversal
of multiple paths in both structures.

When inserting a new object o, we may have to follow multiple paths, depending
on the number of intersections of the MBB I%(0) with index intervals. During the tree
traversal, I%(0) may be split into n disjoint fragments I¢(0) (U™, I?(0) = I%(0)). Fach
fragment is then placed in a different leaf node v;. Provided that there is enough space,
the insertion is straightforward. If the bounding interval 7%(0) overlaps space that has
not yet been covered, we have to enlarge the intervals corresponding to one or more leaf
nodes. Each of these enlargements may require a considerable effort because overlaps
have to be avoided. In some rare cases, it may not be possible to increase the current
intervals in such a way that they cover the new object without some mutual overlap
(Giinther 1988; Ooi 1990). In case of such a deadlock, some data intervals have to be
split and reinserted into the tree.

If a leaf node overflows it has to be split. Node splittings work similarly as in the
case of the R-tree. An important difference, however, is that splits may propagate
not only up the tree, but also down the tree. The resulting forced split of the nodes
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below may lead to several complications, including further fragmentation of the data
intervals; see for example the rectangles m5 and m8 in Figure 36.
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Figure 36: Rt-Tree

For deletion, we first locate all the data nodes where fragments of the object are
stored and remove them. If storage utilization drops below a given threshold, we try
to merge the affected node with its siblings or to reorganize the tree. This is not
always possible, which is the reason why the RT-tree cannot guarantee a minimum
space utilization.

5.4.3 The Cell Tree (Gunther 1988)

The main goal during the design of the cell tree (Ginther 1988; Giinther 1989) was to
facilitate searches on data objects of arbitrary shapes, i.e., especially on data objects
that are not intervals themselves. The cell tree uses clipping to manage large spatial
databases that may contain polygons or higher-dimensional polyhedra. It corresponds
to a decomposition of the universe into disjoint convex subspaces. The interior nodes
correspond to a hierarchy of nested polytopes and each leaf node corresponds to one of
the subspaces (Figure 37). Each tree node is stored on one disk page.

To avoid some of the disadvantages resulting from clipping, the convex polyhedra
are restricted to be subspaces of a BSP (Binary Space Partitioning). Therefore we can
view the cell tree as a combination of a BSP - and an Rt—tree, or as a BSP-tree mapped
on paged secondary memory. In order to minimize the number of disk accesses that
occur during a search operation, the leaf nodes of a cell tree contain all the information
required for answering a given search query; we have to load no pages other than those
containing relevant data. This is an important advantage of the cell tree over the R—tree
and related structures.

Before inserting a non-convex object, we decompose it into a number of convex
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Figure 37: Cell Tree

components whose union is the original object. The components do not have to be
mutually disjoint. All components are assigned the same object identifier and inserted
into the cell tree one by one. Due to clipping, we may have to subdivide each component
into several cells during insertion, because it overlaps more than one subspace. Fach
cell is stored in one leaf node of the cell tree. If an insertion causes a disk page to
overflow, we have to split the corresponding subspace and cell tree node and distribute
its descendants among the two resulting nodes. Each split may propagate up the tree.

For point searches, we start at the root of the tree. Using the underlying BSP
partitioning, we identify the subspace that includes the search point and continue the
search in the corresponding subtree. This step is repeated recursively until we reach
a leaf node, where we examine all cells whether they contain the search point. The
solution consists of those objects that contain at least one of the cells that qualify. A
similar algorithm exists for range searches. A performance evaluation of the cell tree
(Giinther and Bilmes 1991) shows that it is competitive with other popular spatial
access methods.

Figure 37 shows our running example with five partitioning hyperplanes H1, each of
them stored in the interior nodes. Even though the partitioning by means of the BSP-
tree offers more flexibility compared to rectilinear hyperplanes, it may be inevitable to
clip objects. In Figure 37, we had to split r2 and insert the resulting cells into two
pages.

As all structures based on clipping, the cell tree has to cope with the fragmentation
of space, which is becoming increasingly problematic as more objects are inserted into
the tree. After some time, most new objects will be split into fragments during insertion.
To avoid the negative effects resulting from this fragmentation, Giinther and Noltemeier
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(1991) proposed the concept of oversize shelves. Oversize shelves are special disk pages
that are attached to the interior nodes of the tree and that accommodate objects which
would have been split into too many fragments if they had been inserted regularly. The
authors propose a dynamically adjusting threshold for choosing between placing a new
object on an oversize shelf or inserting it regularly. Performance results of Giinther
and Gaede (1996) show substantial improvements compared to the cell tree without
oversize shelves.

5.5 Methods Based on Multiple Layers
5.5.1 The Multi-Layer Grid File (Six and Widmayer 1988)

Yet another variant of the grid file capable of handling extended objects is the multi-
layer grid file (not to be confused with the multilevel grid file of Whang and Krishna-
murthy (1985)). The multi-layer grid file consists of an ordered sequence of grid layers.
Each of these layers corresponds to a separate grid file with freely positionable splitting
hyperplanes that covers the whole universe. A new object is inserted into the first grid
file in the sequence that does not imply any clipping of the object. This is an important
difference to the twin grid file (see Section 4.1.4), where objects can be moved freely
between the two layers. If one of the grid files is extended by adding another splitting
hyperplane, those objects that would be split have to be moved to another layer. Figure
38 illustrates a multi-layer grid file with two layers for the running example.
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Figure 38: Multi-Layer Grid File
In the multi-layer grid file, the size of the bucket regions typically increases within

the sequence, i.e., larger objects are more likely to find their final location in later
layers. If a new object cannot be stored in any of the current layers without clipping, a
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new layer has to be allocated. An alternative is to allow clipping only for the last layer.
Six and Widmayer claim that d + 1 layers are sufficient to store a set of d-dimensional
intervals without clipping if the hyperplanes are cleverly chosen.

For an exact match query, we can easily determine from the scales which grid file
in the sequence is supposed to hold the search interval. Other search queries, in partic-
ular point and range queries, are answered by traversing the sequence of layers and by
performing a corresponding search on each grid file. The performance results reported
by Six and Widmayer (1988) suggest that the multi-layer grid file is superior to the
conventional grid file, using clipping to handle extended objects. Possible disadvan-
tages of the multi-layer grid file include low storage utilization and expensive directory
maintenance.

5.5.2 The R-File (Hutflesz, Six, and Widmayer 1990)

To overcome some of the problems of the multi-layer grid file, Hutflesz et al. (1990)
proposed an alternative structure for managing sets of rectangles, called the R-file; see
Figure 39 for an example. In order to avoid the low storage utilization of the multi-layer
grid file, the R-file uses a single directory. The universe is partitioned similarly to the
BANG file: Splitting hyperplanes cut the universe recursively into equal parts, and
z-ordering is used to encode the resulting bucket regions. In contrast to the BANG file,
however, there are no excisions. Bucket regions may overlap, and there is no clipping.
Each data interval is stored in the bucket with the smallest region that contains it
entirely; overflow pages may be necessary in some cases.

An interesting feature of the R-file is its splitting algorithm. Rather than cutting
a bucket region into two halves, we retain the original bucket region and create a new
bucket for one of the two halves of that original region. Data intervals are then assigned
to the new bucket if and only if they are completely contained in the corresponding
region. The half is chosen in such a way that the distribution of data intervals between
the two resulting buckets is most even. Once a region has been split, it may subsequently
be split again, using the same algorithm. Since objects that are located near the
middle of the universe are likely to intersect the partitioning hyperplanes, they are
often assigned to the cell region corresponding to the whole universe. Thus objects in
that cell tend to cluster near the splitting hyperplanes (cf. rectangle r5 in Figure 39).

To avoid searching dead space, the R-file maintains minimum enclosing boxes of
the stored objects, called search regions. As shown by Hutflesz et al. (1990), this
feature, together with the z-encoding of the partitions, make the R-file competitive to
the R-tree. One drawback of the R-file is the fact that it partitions the entire space,
whereas the R-tree only indexes the part of the universe that contains objects. For data
distributions that are non-uniform, the R-file will therefore often perform poorly. This
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Figure 39: R-File

disadvantage is something that the R-file shares with the grid file. Widmayer (1991)
also notes that the R-file is “algorithmically complicated.”

6 Comparative Studies

In this section, we give a brief overview of theoretical and experimental results on the
comparison of different access methods. Unfortunately, the number of such evaluations,
especially theoretical analyses, is rather limited.

Greene (1989) compares the search performance of the R-tree, the k-d-B-tree, and
the R*-tree for 10,000 uniformly distributed rectangles of varying size. Query param-
eters include the size of the query rectangles and the page size. Greene’s study shows
that the k-d-B-tree can never really compete with the two R-tree variants. On the other
hand, there is not much difference between the R*-tree and the R-tree, even though
the former is significantly more difficult to code. As expected, the RT-tree performs
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better when there is less overlap between the data rectangles.

Kriegel et al. (1990) present an extensive experimental study of access method
performance for a variety of point distributions. The study involves four point access
methods: the hB-tree, the BANG file, the two-level grid file, and the buddy tree. The
authors decided not to include PLOP-hashing since its performance suffers consider-
ably for non-uniform data. The zkdB*-tree by Orenstein and Merrett (1984) was also
not included since the authors considered both the BANG file and the hB-tree as im-
provements of that strategy. Finally, Kriegel et al. did not include quantile hashing
although they claim in (Kriegel and Seeger 1987; Kriegel and Seeger 1989) that this
structure is very efficient for non-uniform data.

According to the benchmarks, the buddy tree and, to some degree, the BANG file
outperform all other structures. The reported results show in an impressive way how
the performance of the studied access methods varies with different data distributions
and query range sizes. For clustered data and a range query with a volume of 10 % of
the universe, for example, there is almost no performance difference between the buddy
tree and the BANG file, whereas for a volume of 0.1 % the buddy tree performs about
twice as fast.

For extended objects, Kriegel et al. compared the R-tree and PLOP-hashing with
the buddy tree and the BANG file. The latter two techniques were enhanced by the
transformation technique to handle rectangles. Once again, the buddy tree and the
BANG file outperformed the other two access methods for nearly all data distributions.
Note that the benchmarks measured only the number of page accesses but not the CPU
time.

Beckmann et al. (1990) compare the R*-tree with several variants of the R-tree
for a variety of data distributions. Besides the performance of the different structures
for point, intersection and enclosure queries for varying query region sizes, they also
compared spatial join performance. The R*-tree is the clear winner for all data dis-
tributions and queries, and it also has the best storage utilization and insertion times.
A comparison for point data confirms these results. Similar to previous performance
measurements, only the number of disk accesses is measured. A related study by Kamel
and Faloutsos (1994) finds even better search results for the Hilbert R-tree, while up-
dates take about the same time as for the R*-tree. The impact of global clustering
on the search performance of the R*-tree was investigated by Brinkhoff and Kriegel
(1994).

Seeger (1991) studied the relative performance of clipping, overlapping regions and
transformation techniques, implemented on top of the buddy tree. He also included the
two-level grid file and the R*-tree in the comparison. The buddy tree with clipping and
the grid file failed completely for certain distributions, since they produced unmanage-
ably large files. The transformation technique supports fast insertions at the expense
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of low storage utilization. The R*-tree, on the other hand, requires fairly long insertion
times, but offers good storage utilization. For intersection and containment queries,
the buddy tree combined with overlapping regions is superior to the buddy tree with
transformation. The performance advantage of the overlapping regions technique de-
creases for larger query regions, even though the buddy tree with transformation never
outperforms the buddy tree with overlapping regions. When the data set contains uni-
formly distributed rectangles of varying size, the buddy tree with clipping outperforms
the other techniques for intersection and enclosure queries. For some queries the buddy
tree with overlapping performs slightly better than the R*-tree.

Ooi (1990) compares a static and a dynamic variant of the skd-tree with the packed
R-tree described by Roussopoulos and Leifker (1985). For large page sizes, the skd-tree
clearly outperforms the R-tree in terms of page accesses per search operation. The
space requirements of the skd-tree, however, are higher than those of the R-tree. Since
the skd-tree stores the extended objects by their centroid, containment queries are
answered more efficiently than by the R-tree. This behavior is clearly reflected in the
performance results. A comparison with the extended k-d-tree, enhanced by overflow
pages, suggests that the skd-tree is superior, although the extended k-d-tree (which is
based on clipping) performs rather well for uniformly distributed data.

Giinther and Bilmes (1991) compare the R-tree to two clipping-based access meth-
ods, the cell tree and the RT-tree. Different from most studies, the data sets consist
of convex polygons instead of just rectangles. The cell tree requires up to two times
more space than its competitors. On the other hand, the average number of page ac-
cesses per search operation is less than for the other two access methods. Moreover,
this advantage tends to increase with the size of the database and the size of the query
regions. The first observation can be explained by the used data and does not hold in
general. Besides measurements on the number of page faults, CPU time measurements
are also given.

Giinther and Gaede (1996) compare the original cell tree as presented in (Giinther
1989) with the cell tree with oversize shelves (Giinther and Noltemeier 1991), the R*-
tree (Beckmann et al. 1990) and the hB-tree (Lomet and Salzberg 1989) for some
real cartographic data. There is a slight performance advantage of the cell tree with
oversize shelves compared to the R*-tree and the hB-tree, but a major difference to the
original cell tree. An earlier comparison using artificially generated data can be found
in (Giinther 1991). Both studies suggest that oversize shelves may lead to significant
improvements for access methods with clipping.

Oosterom (1990) compares the query times of his KD2B-tree and the sphere tree
with the R-tree for different queries. The KD2B-tree is a paged version of the KD2-
tree, which in turn is a variant of the k-d-tree. The two structures differ in two aspects:
First, each interior node stores two iso-oriented lines to allow for overlap and gaps.
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Second, the corresponding partition lines do not clip, i.e., an object is handled as a
unit. The KD2B-tree outperforms the R-tree for all queries, whereas the sphere tree is
inferior to the R-tree.

Hoel and Samet (1992) compare the performance of the PMR-quadtree (Nelson and
Samet 1987), the R*-tree, and the R*-tree for indexing line segments. The R*-tree
shows the best insertion performance, whereas the R*-tree occupies the least space.
However, the insertion behavior of the RT-tree heavily depends on the page size as
opposed to the PMR-quadtree. The performance of all compared structures is about
the same, even though the PMR-quadtree shows some slight performance benefits.
Although the R*-tree is more compact than the other structures, its search performance
is not as good as that of the R*-tree for line segments. Unfortunately, Hoel and Samet
do not report the overall performance times for the different queries.

Peloux, de St Michel, and Scholl (1994) carried out a similar performance compar-
ison of two quadtree variants, a variant of an RT-tree, and the R*-tree. What makes
their study different is that all structures have been implemented on top of a com-
mercial object-oriented system using the application programmer interface. A further
difference to Hoel and Samet (1992) is that Peloux et al. (1994) used polyons rather
than line segments as test data. Furthermore, they report the various times for index
traversal, loading polygons, etc. Besides showing that the R*-tree and a quadtree vari-
ant based on Hierarchical EXCELL (Tamminen 1983) outperform the R*-tree for point
queries, they clearly demonstrate that the database system must provide some means
for physical clustering. Otherwise reading a single index page may induce several page
faults.

Smith and Gao (1990) compare the performance of a variant of the zkdB¥-tree, the
grid file, the R-tree, and the R*-tree for insertions, deletions and search operations.
They also measured storage utilization. The conclusion of their experiments is that
z-ordering and the grid file perform well for insertions and deletions, but deliver a poor
search performance. R- and R*-trees, in contrast, offer moderate insertion and deletion
performance but superior search performance. Although the R*-tree performs slightly
better than the R-tree for search operations, the authors conclude that the R*-tree is
not a good choice for general purpose applications due to its potentially poor space
utilizaton.

Hutflesz et al. (1990) showed that the R-file has a 10-20 % performance advantage
over the R-tree on a data set containing 48,000 rectangles with a high degree of overlap
(each point in the database was covered by 5.78 rectangles on the average).

Further experimental studies on the R-tree and related structures can be found in
(Frank and Barrera 1989; Kamel and Faloutsos 1992; Kolovson and Stonebraker 1991).

Since splitting of data buckets is an important operation in many structures, Henrich
and Six (1991) studied several split strategies. Their theoretical analysis is verified by
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means of the LSD-tree. They also provide some performance results for the R-tree,
which uses their splitting strategy in comparison to the otherwise unchanged R-tree. An
empirical performance comparison of the R-tree with an improved variant of z-hashing,
called layered z-hashing or lz-hashing (Hutflesz et al. 1988a), can be found in (Hutflesz,
Widmayer, and Zimmermann 1991). The proposed structure needs significantly less
seek operations than the R-tree; average storage utilization is higher.

Jagadish (1990a) studies the properties of different space-filling curves (z-ordering,
Gray-coding, and Hilbert-curve). By means of theoretical considerations as well as by
experimental tests, he concludes that the Hilbert mapping from multidimensional space
to a line is superior to other space-filling curves. These results are in accordance with
those of Abel and Mark (1990)

In trying to summarize all those experimental comparisons, the following multidi-
mensional access methods seem to be among the best performing ones (in alphabetical
order):

e buddy (hash) tree (Seeger and Kriegel 1990)

e cell tree with oversize shelves (Giinther and Gaede 1996)
e Hilbert R-tree (Kamel and Faloutsos 1994)

e KD2B-tree (Oosterom 1990)

e PMR-quadtree (Nelson and Samet 1987)

e RT-tree (Sellis, Roussopoulos, and Faloutsos 1987)

e R*-tree (Beckmann, Kriegel, Schneider, and Seeger 1990)

It cannot be emphasized enough, however, that any such “hit list” needs to be used
with great care. Clever programming can often make up for inherent deficiencies of an
access method. Other factors of unpredictable impact include the hardware used, the
settings of the operating system, and the data sets. Note also that our list does not take
into account access methods for which no comparative analyses have been published.

As the preceding discussion shows, although numerous experimental studies exist,
they are hardly comparable. Theoretical studies may bring some more objectivity to
this discussion. The problem with such studies is that they are usually very hard to
perform if one wants to stick to realistic modeling assumptions. For that reason, there
are only few theoretical results on the comparison of multidimensional access methods.

Regnier (1985) and Becker (1992) investigated the grid file and some of its variants.
The most complete theoretical analysis of range trees can be found in (Overmars et al.
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1990; Smid and Overmars 1990). Giinther and Gaede (1996) present a theoretical
analysis of the cell tree. Recent analyses show that the theory of fractals seems to
be particularly suitable for modeling the behavior of SAMs if the data distribution is
non-uniform (Faloutsos and Kamel 1994; Belussi and Faloutsos 1995; Faloutsos and
Gaede 1996).

Some more analytical work exists on the R-tree and related methods. A comparison
of the R-tree and the R*-tree has been published by Faloutsos et al. (1987). Recently,
Pagel et al. (1993) presented an interesting probabilistic model of window query perfor-
mance for the comparison of different access methods independent of implementation
details. Among other things, their model reveals the importance of the perimeter as
a criterion for node splitting, which has been intuitively anticipated by the inventors
of the R*-tree (Beckmann, Kriegel, Schneider, and Seeger 1990). The central formula
of Pagel et al. (1993) to compute the number of disk accesses in an R-tree has been
found independently by Kamel and Faloutsos (1993). Faloutsos and Kamel (1994) later
refined this formula by using properties of the data set. More recently, Theodoridis and
Sellis (1996) proposed a theoretical model to determine the number of disk accesses in
an R-tree that only requires two parameters: the amount of data and the density in
the data space. Their model also extends to non-uniform distributions.

In pursuit of an implementation-independent comparison criterion for access meth-
ods, Pagel et al. (1995) suggest to use the degree of clustering. As a lower bound they
assume the optimal clustering of the static situation, i.e., if the complete data set has
been exposed beforehand. Incidentally, the significance of clustering for access methods
has been demonstrated in numerous empirical investigations as well (Jagadish 1990a;
Kamel and Faloutsos 1993; Brinkhoff and Kriegel 1994; Kumar 1994b; Ng and Han
1994).

7 Conclusions

As we have demonstrated, research in spatial database systems has resulted in a mul-
titude of spatial access methods. Even for experts it becomes more and more difficult
to recognize their merits and faults, since every new method seems to claim superiority
to at least one access method that has been published previously. This survey did not
try to resolve this problem but rather to give an overview of the pros and cons of a
variety of structures. It will come as no surprise to the reader that at present no access
method has proven itself to be superior to all its competitors in whatever sense. Even
if one benchmark declares one structure as the clear winner, another benchmark may
prove the same structure as inferior.

But why are such comparisons so difficult? Because there are so many different cri-
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teria to define optimality, and so many parameters that determine performance. Both
time and space efficiency of an access method strongly depend on the data to be pro-
cessed and the queries to be asked. An access method that performs reasonably well for
iso-oriented rectangles may fail for arbitrarily oriented lines. Strongly correlated data
may render an otherwise fast access method irrelevant for any practical application. An
index that has been optimized for point queries may be highly inefficient for arbitrary
region queries. Large numbers of insertions and deletions may deteriorate a structure
that is efficient in a more static environment.

The initiative of Kriegel et al. (1990) to set up a standardized testbed for bench-
marking and comparing access methods under different conditions is an important step
into the right direction. But note that clever programming can often make up for inher-
ent deficiencies of a structure (and vice versa). Other factors of unpredictable impact
are the programming language used, the hardware, buffer size, page size, data set, etc.
Hence, it is far from easy to compare or rank different access methods. Experimental
benchmarks need to be studied with care and can only be a first indicator for usability.

When it comes to technology transfer, i.e. to the use of access methods in com-
mercial products, most vendors resort to structures that are easy to understand and
implement. Z-ordering (Oracle Inc. 1995) and R-trees (Illustra Inc. 1996) are typi-
cal examples. Performance seems to be of minor importance for the selection, which
comes as no surprise given the relatively small differences among methods in virtually
all published analyses. The tendency is rather to take a structure that is simple and
robust, and to optimize its performance by a highly tuned implementations and tight
integration with other system components.

Nevertheless, the implementation and experimental evaluation of access methods
is essential as it often reveals deficiencies and problems that are not obvious from the
design or a theoretical model. In order to make such comparative evaluations both
easier to perform and easier to verify, it is essential to provide platform-independent
access to the implementations of a broad variety of access methods. Some extensions
of the World Wide Web, including our own MMM project (Giinther et al. 1995), may
provide the right technological base for such a paradigm change. Once every published
paper includes a URL (Uniform Resource Locator), i.e., an Internet address that points
to an implementation, possibly with a standardized user interface, transparency will
increase substantially. Until then, most users will have to rely on general wisdom and
their own experiments to select an access method that provides the best fit for their
current application.
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