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Abstract

This paper introduces the Generalized Search Tree (GiST), an index
structure supporting an extensible set of queries and data types. The
GiST allows new data types to be indexed in a manner supporting
queries natura to the types; thisisin contrast to previous work on
tree extensibility which only supported the traditional set of equality
and range predicates. In a single data structure, the GiST provides
all the basic search treelogic required by a database system, thereby
unifying disparate structures such as B+-treesand R-treesin asingle
piece of code, and opening the application of search trees to general
extensibility.

To illustrate the flexibility of the GiST, we provide simple method
implementationsthat allow it to behave like aB+-tree, an R-tree, and
an RD-tree, anew index for data with set-valued attributes. We also
present apreliminary performance analysis of RD-trees, which leads
to discussion on the nature of tree indices and how they behave for
various datasets.

1 Introduction

An efficient implementation of search treesis crucial for any
database system. In traditional relationa systems, B+-trees
[Com79] were sufficient for the sorts of queries posed on the
usua set of alphanumeric data types. Today, database sys-
tems are increasingly being deployed to support new appli-
cations such as geographic information systems, multimedia
systems, CAD tools, document libraries, sequence databases,
fingerprint identification systems, biochemical databases, etc.
To support the growing set of applications, search trees must
be extended for maximum flexibility. This requirement has
motivated two major research approachesin extending search
tree technology:

1. Specialized Search Trees: A largevariety of search trees
has been developed to solve specific problems. Among
the best known of thesetreesare spatial searchtreessuch
as R-trees [Gut84]. While some of this work has had
significant impact in particular domains, the approach of
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developing domain-specific search treesis problematic.
The effort required to implement and maintain such data
structuresis high. As new applications need to be sup-
ported, new tree structures have to be developed from
scratch, requiring new implementations of the usual tree
facilities for search, maintenance, concurrency control
and recovery.

2. Search Trees For Extensible Data Types: As an ater-
native to developing new data structures, existing data
structures such as B+-trees and R-trees can be made ex-
tensible in the data types they support [Sto86]. For ex-
ample, B+-trees can be used to index any datawith alin-
ear ordering, supporting equality or linear range queries
over that data. While this provides extensibility in the
data that can be indexed, it does not extend the set of
gueries which can be supported by the tree. Regardless
of the type of data stored in a B+-tree, the only queries
that can benefit from the tree are those containing equal -
ity and linear range predicates. Similarly in an R-tree,
the only queries that can use the tree are those contain-
ing equality, overlap and containment predicates. This
inflexibility presents significant problemsfor new appli-
cations, since traditional queries on linear orderings and
spatial location are unlikely to be apropos for new data

types.

In this paper we present a third direction for extending
search tree technology. We introduce a new data structure
called the Generalized Search Tree (GiST), whichiseasily ex-
tensible both in the datatypesit canindex andin the queriesit
can support. Extensibility of queriesis particularly important,
since it allows new data types to be indexed in a manner that
supports the queries natural to the types. In addition to pro-
viding extensibility for new data types, the GiST unifies pre-
vioudly disparate structures used for currently common data
types. For example, both B+-trees and R-trees can be imple-
mented as extensions of the GiST, resulting in a single code
base for indexing multiple dissimilar applications.

The GiST is easy to configure: adapting the tree for dif-
ferent uses only requires registering six methods with the
database system, which encapsulate the structure and behav-
ior of the object class used for keys in the tree. As an il-
lustration of this flexibility, we provide method implemen-
tations that allow the GiST to be used as a B+-tree, an R-
tree, and an RD-tree, a new index for data with set-valued
attributes. The GiST can be adapted to work like a variety
of other known search tree structures, e.g. partial sum trees
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[WES8Q], k-D-B-trees [Rob81], Ch-trees [KKD89], Exodus
large objects[CDGT90], hB-trees[LS90], V-trees[MCD94],
TV-trees [LIF94], etc. Implementing a new set of methods
for the GiST isasignificantly easier task than implementing a
new tree package from scratch: for example, the POSTGRES
[Gro94] and SHORE [CDF*94] implementations of R-trees
and B+-trees are on the order of 3000 lines of C or C++ code
each, while our method implementationsfor the GiST are on
the order of 500 lines of C code each.

In addition to providing an unified, highly extensible data
structure, our general treatment of search trees sheds someini-
tial light on a more fundamental question: if any dataset can
beindexedwith aGiST, doestheresulting treealways provide
efficient lookup? The answer to this question is “no”, and in
our discussion weillustrate some issuesthat can affect the ef-
ficiency of a search tree. This leads to the interesting ques-
tion of how and when one can build an efficient search tree
for queries over non-standard domains— a question that can
now be further explored by experimenting with the GiST.

1.1 Structureof the Paper

In Section 2, we illustrate and generalize the basic nature of
database search trees. Section 3 introduces the Generalized
Search Tree object, with its structure, properties, and behav-
ior. In Section 4 we provide GiST implementations of three
different sorts of search trees. Section 5 presents some per-
formance results that explore the issues involved in building
an effective search tree. Section 6 examines some details that
need to be considered when implementing GiSTs in a full-
fledged DBMS. Section 7 concludeswith a discussion of the
significance of the work, and directionsfor further research.

1.2 Related Work

A good survey of search treesis provided by Knuth [Knu73],
though B-trees and their variants are covered in more detail
by Comer [Com79]. There are avariety of multidimensional
search trees, such as R-trees [Gut84] and their variants: R*-
trees [BKSS90] and R+-trees [SRF87]. Other multidimen-
sional search trees include quad-trees [FB74], k-D-B-trees
[Rob81], and hB-trees [LS90]. Multidimensional data can
also be transformed into unidimensional data using a space-
filling curve [Jag90]; after transformation, a B+-tree can be
used to index the resulting unidimensional data.
Extensible-key indices were introduced in POSTGRES
[Sto86, Aok91], and are included in Illustra [11194], both of
which have distinct extensible B+-tree and R-tree implemen-
tations. These extensibleindices allow many types of datato
be indexed, but only support a fixed set of query predicates.
For example, POSTGRES B+-trees support the usual order-
ing predicates (<, <,=, >, >), while POSTGRES R-trees
support only the predicates Left, Right, OverLeft, Overlap,
OverRight, Right, Contains, Contained and Equal [Gro94].
Extensible R-trees actually provide a sizable subset of the
GiST'sfunctionality. To our knowledge this paper represents
the first demonstration that R-trees can index data that has
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Figure 1: Sketch of adatabase search tree.

not been mapped into a spatial domain. However, besides
their limited extensibility R-trees lack a number of other fea-
tures supported by the GiST. R-trees provide only one sort
of key predicate (Contains), they do not allow user specifica-
tion of the PickSplit and Penalty algorithms described below,
and they lack optimizationsfor datafrom linearly ordered do-
mains. Despite these limitations, extensible R-trees are close
enough to GiSTs to allow for the initial method implementa-
tions and performance experiments we describe in Section 5.

Analyses of R-tree performance have appeared in [FK94]
and [PSTW93]. Thiswork is dependent on the spatial nature
of typical R-tree data, and thusis not generally applicable to
the GiST. However, similar ideas may prove relevant to our
guestions of when and how one can build efficient indicesin
arbitrary domains.

2 TheGist of Database Search Trees

Asanintroductionto GiSTs, it isinstructive to review search
trees in a simplified manner. Most people with database ex-
perience have an intuitive notion of how search trees work,
so our discussion hereis purposely vague: the goal is simply
to illustrate that this notion leaves many details unspecified.
After highlighting the unspecified details, we can proceed to
describe a structure that |eaves the detail s open for user spec-
ification.

The canonical rough picture of a database search tree ap-
pearsin Figure 1. It isabalanced tree, with high fanout. The
internal nodes are used as adirectory. Theleaf nodes contain
pointers to the actual data, and are stored as a linked list to
allow for partial or complete scanning.

Within each internal node is a series of keys and point-
ers. To search for tupleswhich match aquery predicateq, one
starts at the root node. For each pointer on the node, if the as-
sociated key is consistent with ¢, i.e. the key doesnot rule out
the possibility that data stored below the pointer may match
q, then one traverses the subtree below the pointer, until all
the matching datais found. As an illustration, we review the
notion of consistency in some familiar tree structures. In B+-
trees, queries are in the form of range predicates (e.g. “find
al i suchthat ¢; < i < ¢2"), and keyslogically delineate a
range in which the data below a pointer is contained. If the
guery range and a pointer’s key range overlap, then the two
are consistent and the pointer istraversed. In R-trees, queries
are in the form of region predicates (e.g. “find all ¢ such that
(z1,y1, 2, y2) Overlapsi”), and keys delineate the bounding
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box in which the data below a pointer is contained. If the
query region and the pointer’s key box overlap, the pointer is
traversed.

Note that in the above description the only restriction on
akey is that it must logically match each datum stored be-
low it, so that the consistency check does not miss any valid
data. In B+-trees and R-trees, keys are essentialy “con-
tainment” predicates: they describe a contiguous region in
which all the data below a pointer are contained. Contain-
ment predicates are not the only possible key constructs,
however. For example, the predicate “elected_official(i) A
has_criminal_record(i)” is an acceptable key if every data
item i stored below the associated pointer satisfies the pred-
icate. Asin R-trees, keys on a node may “overlap”, i.e. two
keys on the same node may hold simultaneoudly for some tu-
ple.

This flexibility allows us to generaize the notion of a
search key: a search key may be any arbitrary predicate that
holds for each datum below the key. Given a data structure
with such flexible search keys, a user isfreeto form atree by
organizing datainto arbitrary nested sub-categories, labelling
each with some characteristic predicate. Thisin turn lets us
capture the essential nature of a database search tree: itisa
hierarchy of partitions of a dataset, in which each partition
has a categorization that holds for all data in the partition.
Searches on arbitrary predicates may be conducted based on
the categorizations. In order to support searches on a predi-
cate ¢, the user must provide a Boolean method to tell if ¢ is
consistent with agiven search key. When thisis so, the search
proceeds by traversing the pointer associated with the search
key. The grouping of datainto categories may be controlled
by auser-supplied node splitting algorithm, and the character-
ization of the categoriescan bedonewith user-supplied search
keys. Thus by exposing the key methods and the tree's split
method to the user, arbitrary search trees may be constructed,
supporting an extensible set of queries. These ideas form the
basis of the GiST, which we proceed to describe in detail.

3 TheGeneralized Search Tree

In this section we present the abstract data type (or “ object™)
Generalized Search Tree (GiST). We define its structure, its
invariant properties, its extensible methods and its built-in al-
gorithms. As a matter of convention, we refer to each in-
dexed datum as a “tuple”; in an Object-Oriented or Object-
Relational DBMS, each indexed datum could be an arbitrary
data object.

3.1 Structure

A GIST is a balanced tree of variable fanout between kM
and M, 2 < k < 1, with the exception of the root node,
which may have fanout between 2 and M. The constant & is
termed the minimumfill factor of thetree. Leaf hodes contain
(p, pt r) pairs, where p is a predicate that is used as a search
key, and pt r isthe identifier of some tuple in the database.
Non-leaf nodescontain (p, pt r ) pairs, wherep isapredicate

used asasearch key and pt r isapointer to another tree node.
Predicates can contain any number of free variables, as long
as any single tuple referenced by the leaves of thetree canin-
stantiate all the variables. Note that by using “key compres-
sion”, agiven predicate p may take as little as zero bytes of
storage. However, for purposes of exposition we will assume
that entriesin the tree are al of uniform size. Discussion of
variable-sized entriesis deferred to Section 6. We assumein
animplementationthat givenanentry £ = (p,pt r ), onecan
access the node on which E currently resides. Thiscan prove
helpful in implementing the key methods described bel ow.

3.2 Properties

Thefollowing propertiesare invariant in a GiST:

1. Every node contains between kM and M index entries
unlessit is the root.

2. For each index entry (p,pt r) in aleaf node, p is true
when instantiated with the values from the indicated tu-
ple(i.e. p holdsfor the tuple.)

3. For each index entry (p,pt r) in a non-leaf node, p is
truewhen instanti ated with the values of any tuplereach-
able from pt r. Note that, unlike in R-trees, for some
entry (p', pt r') reachable from pt r , we do not require
that p’ — p, merely that p and p’ both hold for all tuples
reachablefromptr’.

4. Theroot has at |east two children unlessit is aleaf.

5. All leaves appear on the same level.

Property 3 is of particular interest. An R-tree would re-
quirethat p’ — p, since bounding boxes of an R-tree are ar-
rangedin acontainment hierarchy. The R-tree approachisun-
necessarily restrictive, however: the predicatesin keys above
anode N must hold for databelow /V, and therefore one need
not have keyson NV restate those predicatesin amore refined
manner. One might choose, instead, to have the keys at N
characterizethe sets bel ow based on some entirely orthogonal
classification. This can be an advantage in both the informa-
tion content and the size of keys.

3.3 Key Methods

In principle, the keys of a GiST may be arbitrary predicates.
In practice, the keys come from a user-implemented object
class, which provides a particular set of methods required by
the GiST. Examples of key structures include ranges of inte-
gersfor datafrom Z (as in B+-trees), bounding boxes for re-
gionsin R (asin R-trees), and bounding sets for set-valued
data, e.g. datafrom P(Z) (asin RD-trees, described in Sec-
tion 4.3.) The key class is open to redefinition by the user,
with the following set of six methods required by the GiST:

e Consistent(E,q): givenanentry E = (p,ptr), anda
query predicateq, returnsfalseif p A g can be guaranteed
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unsatisfiable, and true otherwise. Note that an accurate
test for satisfiability isnot required here: Consistent may
return true incorrectly without affecting the correctness
of the tree algorithms. The penalty for such errorsisin
performance, since they may result in exploration of ir-
relevant subtrees during search.

e Union(P): given a set P of entries (py,ptr), ...
(pn, ptr,), returns some predicate r that holds for all
tuples stored below pt r; through pt r,,. This can be
doneby findinganr suchthat (p; V...V p,) = r.

e Compress(E): givenanentry E = (p,pt r) returnsan
entry (w,pt r ) where 7 is a compressed representation
of p.

e Decompress(E): given a compressed representation
E = (m,ptr), wherem = Compress(p), returns an en-
try (r,ptr) suchthat p — r. Notethat thisis a poten-
tialy “lossy” compression, since we do not require that
pET.

e Penalty(E1, E»): giventwo entries By = (p1,ptr,),
E5 = (p2,ptr ), returns a domain-specific penalty for
inserting E> into the subtree rooted at F. Thisis used
to aid the Split and Insert algorithms (described below.)
Typically the penalty metricissomerepresentation of the
increase of size from E;.p; to Union({Ey, E»}). For
example, Penalty for keys from R? can be defined as

area(Union({E1, E2})) — area(E; .p1 ) [Gut84].

e PickSplit(P): givenaset P of M + 1 entries (p,ptr),
splits P into two sets of entries Py, P>, each of size at
least kM. The choice of the minimum fill factor for a
tree is controlled here. Typically, it is desirable to split
in such away asto minimize some badness metric akin
to amulti-way Penalty, but thisis left open for the user.

The above are the only methods a GiST user needsto sup-
ply. Note that Consistent, Union, Compress and Penalty have
to be ableto handle any predicatein their input. In full gener-
ality this could become very difficult, especially for Consis-
tent. But typically alimited set of predicatesis used in any
onetree, and this set can be constrained in the method imple-
mentation.

Thereareanumber of optionsfor key compression. A sim-
ple implementation can let both Compress and Decompress
betheidentity function. A more complex implementation can
have Compress((p, pt r )) generate avalid but more compact
predicater, p — r, and let Decompress be the identity func-
tion. Thisisthe technique used in SHORE's R-trees, for ex-
ample, which upon insertion take a polygon and compress it
to its bounding box, which isitself avalid polygon. It isalso
used in prefix B+-trees [Com79], which truncate split keys
toaninitia substring. More involved implementations might
use complex methods for both Compress and Decompress.

3.4 TreeMethods

The key methodsin the previous section must be provided by
the designer of the key class. The tree methods in this sec-
tion are provided by the GiST, and may invoke the required
key methods. Notethat keys are Compressed when placed on
anode, and Decompressed when read from a node. We con-
sider thisimplicit, and will not mentionit further in describing
the methods.

3.4.1 Search

Search comes in two flavors. The first method, presented in
this section, can be used to search any dataset with any query
predicate, by traversing asmuch of thetreeasnecessary to sat-
isfy the query. It isthe most general search technique, analo-
gousto that of R-trees. A more efficient techniquefor queries
over linear ordersis described in the next section.

Algorithm Search(R, q)

Input: GiST rooted at R, predicate q
Output: all tuplesthat satisfy ¢

Sketch: Recursively descend all paths in tree whose
keys are consistent with g.

S1: [Search subtrees] If R is not a leaf, check
each entry £ on R to determine whether
Consistent(E, q). For al entriesthat are Con-
sistent, invoke Search on the subtree whose
root nodeisreferenced by E.ptr.

S2: [Search leaf node] If R is a ledf,
check each entry £ on R to determinewhether
Consistent(E, ¢). If E is Consistent, it is a
qualifying entry. At this point E.ptr could
be fetched to check ¢ accurately, or this check
could be l€eft to the calling process.

Notethat the query predicate ¢ can beeither an exact match
(equality) predicate, or a predicate satisfiable by many val-
ues. The latter category includes“range” or “window” pred-
icates, asin B+ or R-trees, and also more general predicates
that are not based on contiguous areas (e.g. set-containment
predicateslike “all supersets of {6, 7, 68}".)

3.4.2 SearchIn Linearly Ordered Domains

If the domain to be indexed has alinear ordering, and queries
aretypically equality or range-containment predicates, then a
more efficient search method is possible using the FindMin
and Next methods defined in this section. To makethisoption
available, the user must take some extra steps when creating
the tree:

1. The flag 1sOrdered must be set to true. IsOrdered is a
static property of thetreethat isset at creation. It defaults
to fase.
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2. Anadditional method Compare(E;, E->) must beregis-
tered. Giventwo entries By = (py,ptr,) and E; =
(p2, pt r 5), Comparereportswhether p; precedesps, p;
follows p,, or p; and p, are ordered equivalently. Com-
pareisused to insert entriesin order on each node.

3. The PickSplit method must ensure that for any entries
E, on P, and E, on P,, Compare(E, , E») reports*pre-
cedes’.

4. The methods must assure that no two keys on a node
overlap, i.e. for any pair of entries E;, E5 on a node,
Consistent(E, , E».p) = false.

If these four steps are carried out, then equality and range-
containment queries may be evaluated by calling FindMin
and repeatedly calling Next, while other query predicatesmay
still be evaluated with the general Search method. Find-
Min/Next is more efficient than traversing the tree using
Search, since FindMin and Next only visit the non-leaf nodes
along one root-to-leaf path. This technique is based on the
typical range-lookup in B+-trees.

Algorithm FindMin(R, q)

Input: GiST rooted at R, predicate ¢
Output: minimum tuple in linear order that satisfies ¢

Sketch: descend leftmost branch of tree whose keys
are Consistent with ¢. When a leaf node is
reached, return the first key that is Consistent
with ¢.

FM1: [Search subtrees] If R is not a leaf, find the
first entry E in order such that
Consistent(E, ¢)*. If such an E can befound,
invoke FindMin on the subtree whose root
nodeis referenced by E.pt r. If no such en-
try isfound, return NULL.

FM2: [Search leaf node] If R is a ledf, find the
first entry E on R such that Consistent(E, q),
and return E. If no such entry exists, return
NULL.

Given one element E that satisfies a predicate ¢, the Next
method returns the next existing element that satisfies ¢, or
NULL if thereis none. Next is made sufficiently general to
find the next entry on non-leaf levels of the tree, which will
proveuseful in Section 4. For search purposes, however, Next
will only be invoked on leaf entries.

L The appropriate entry may be found by doing a binary search of the en-
tries on the node. Further discussion of intra-node search optimizations ap-
pearsin Section 6.

Algorithm Next(R, ¢, E)

Input: GiST rooted at R, predicate ¢, currententry £
Output: next entry in linear order that satisfies ¢

Sketch: return next entry on the same level of the tree
if it satisfies ¢q. Else return NULL.

N1: [next on node] If E isnot the rightmost entry
onitsnode, and NV isthe next entry to theright
of E in order, and Consistent(XV, ¢), then re-
turn N. If =Consistent(NNV, ¢), return NULL.

N2: [next on neighboring node] If E is the righ-
most entry on its node, let P be the next node
to theright of R on the same level of the tree
(this can be found via tree traversal, or via
sideways pointersin the tree, when available
[LY81].) If P isnon-existent, return NULL.
Otherwise, let NV be the leftmost entry on P.
If Consistent(V, ¢), thenreturn IV, elsereturn
NULL.

3.4.3

The insertion routines guarantee that the GiST remains bal-
anced. They are very similar to the insertion routines of R-
trees, which generalize the simpler insertion routines for B+-
trees. Insertion allows specification of the level at which to
insert. Thisallows subsequent methodsto use Insert for rein-
serting entriesfrominternal nodesof thetree. Wewill assume
that level numbersincrease as one ascends the tree, with leaf
nodes being at level 0. Thus new entries to the tree are in-
serted at level [ = 0.

Insert

Algorithm Insert(R, E, 1)

Input: GiST rooted at R, entry E = (p,ptr), and
level [, wherep isapredicate such that p holds
for al tuplesreachable from pt r .

Output: new GiST resulting frominsert of E at level .

Sketch: find where E' should go, and add it there, split-
ting if necessary to make room.

I1. [invoke ChooseSubtree to find where E
should go] Let L = ChooseSubtree(R, E, 1)

12. If thereisroom for E on L, install E on L
(in order according to Compare, if IsOrdered.)
Otherwiseinvoke Split(R, L, E).

I3. [propagate changes upward]
AdjustKeys(R, L).

ChooseSubtree can be used to find the best node for in-
sertion at any level of the tree. When the IsOrdered property
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holds, the Penalty method must be carefully written to assure
that ChooseSubtree arrives at the correct leaf node in order.
An example of how this can be doneis givenin Section 4.1.

Algorithm ChooseSubtree(R, E, )

Input: subtreerootedat R, entry E = (p, ptr ), level
l

Output: node at level | best suited to hold entry with
characteristic predicate E.p

Sketch: Recursively descend tree minimizing Penalty
CSL. If Risat level [, return R;

CS2. Else among al entries ¥ = (g,ptr’) on R
find the one such that Penalty(F’, E) is mini-
mal. Return ChooseSubtree(F.ptr’, E,1).

The Split algorithm makes use of the user-defined Pick-
Split method to choose how to split up the elements of anode,
including the new tuple to be inserted into the tree. Once the
elements are split up into two groups, Split generates a new
node for one of the groups, insertsit into the tree, and updates
keys above the new node.

Algorithm Split(R, N, E)

Input: GiST R with node N, and anew entry £ =
(p,ptr).

Output: the GiST with N split intwo and E inserted.

Sketch: split keysof NV along with E into two groups
according to PickSplit. Put one group onto a
new node, and Insert the new node into the
parent of V.

SP1: Invoke PickSplit on the union of the elements
of N and {E'}, put oneof thetwo partitionson
node IV, and put the remaining partition on a
new node N'.

SP2: [Insert entry for N’ in parent] Let En: =
(g, pt r"), where ¢ is the Union of all entries
on N', and ptr’ isapointer to N'. If there
isroomfor En: on Parent(V), install En: on
Parent(V) (in order if 1sOrdered.) Otherwise
invoke Split(R, Parent(N ), Ex+)>.

SP3: Modify theentry F' which pointsto IV, so that
F.pistheUnion of all entrieson V.

2Weintentionally do not specify what technique is used to find the Parent
of anode, since this implementation interacts with issues related to concur-
rency control, which are discussed in Section 6. Depending on techniques
used, the Parent may be found viaa pointer, astack, or viare-traversal of the
tree.

Step SP3 of Split modifies the parent node to reflect the
changes in N. These changes are propagated upwards
through the rest of the tree by step 13 of the Insert algorithm,
which also propagates the changes due to the insertion of N'.

The AdjustKeys algorithm ensures that keys above a set
of predicates hold for the tuples below, and are appropriately
specific.

Algorithm AdjustKeys(R, N)
Input: GiST rooted a R, tree node N

Output: the GiST with ancestors of N containing cor-
rect and specific keys

Sketch: ascend parentsfrom IV in the tree, making the
predicates be accurate characterizations of the
subtrees. Stop after root, or when a predicate
isfound that is already accurate.

PR1: If N istheroot, or the entry which pointsto N
has an already-accurate representation of the
Union of theentrieson N, then return.

PR2: Otherwise, modify theentry E which pointsto
N sothat E.pistheUnion of al entrieson NV.
Then AdjustKeys(R, Parent(V).)

Note that AdjustKeys typicaly performs no work when
IsOrdered = true, since for such domains predicates on each
node typicaly partition the entire domain into ranges, and
thus need no modification on simpleinsertion or deletion. The
AdjustKeys routine detects this in step PR1, which avoids
calling AdjustKeys on higher nodes of the tree. For such do-
mains, Adjustkeys may be circumvented entirely if desired.

3.44 Delete

The deletion algorithms maintain the balance of the tree, and
attempt to keep keys as specific as possible. When there is
alinear order on the keys they use B+-tree-style “borrow or
coalesce” techniques. Otherwise they use R-tree-style rein-
sertion techniques. The deletion algorithms are omitted here
due to lack of space; they are givenin full in [HNP95].

4 TheGiST for Three Applications

In this section we briefly describe implementations of key
classes used to make the GiST behave like a B+-treg, an R-
tree, and an RD-tree, anew R-tree-like index over set-valued
data.

4.1 GiSTsOver Z (B+-trees)

In this example we index integer data. Before compression,
each key in thistreeisa pair of integers, representing the in-
terval contained below the key. Particularly, a key <a, b>
represents the predicate Contains([a, b),v) with variable v.
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The query predicates we support in this key class are Con-
tains(interval, v), and Equal(number, v). Theinterval in the
Contains query may be closed or open at either end. The
boundary of any interval of integerscan betrivially converted
to be closed or open. So without loss of generality, we assume
below that all intervals are closed on the left and open on the
right.

The implementations of the Contains and Equal query
predicates are as follows:

e Containy([z,y),v) If z < v < y, returntrue. Otherwise
return false.

e Equal(x,v) If x = v returntrue. Otherwisereturn false.
Now, the implementations of the GiST methods:

e Consistent(Z, q) Givenentry E = (p,pt r ) and query
predicateq, weknow that p = Contains([z,, y,), v), and
either ¢ = Contains([z4,y,),v) Or ¢ = Equal(z,,v).
In the first case, return true if (z, < y,) A (yp > x,)
and false otherwise. In the second case, return true if
zp < x4 < yp, and false otherwise.

e Union({Es,...,E,}) Given

E1 = ([$1’y1)7ptr1)7"'7En = ([wnayn)aptrn))’
return [MIN(z1, . .., ), MAX(Y1, -, Yn)).

e Compress(E = ([z,y),ptr)) If Eistheleftmost key
on anon-leaf node, return a0-byte object. Otherwisere-
turn .

e Decompress(E = (m,ptr)) We must construct an in-
tervel [z,y). If E istheleftmost key on anon-leaf node,
let = —oo. Otherwiselet x = 7. If E isthe rightmost
key on anon-leaf node, let y = co. If £ isany other
key on a non-leaf node, let y be the value stored in the
next key (asfound by the Next method.) If E ison aleaf
node, let y = = + 1. Return ([z,y),ptr).

o Penalty(E = ([z1,y1),ptr 1), F = ([z2,92),pt r5))
If E istheleftmost pointer onitsnode, return MAX (y2 —
y1,0). If E isthe rightmost pointer on its node, return
MAX(z1 — 22, 0). Otherwisereturn MAX (y2 — y1,0) +
MAX(z1 — x2,0).

e PickSplit(P) Let thefirst LJ%J entriesin order gointhe
left group, and the last ['%‘] entriesgo intheright. Note
that this guarantees a minimum fill factor of %

Finally, the additions for ordered keys:

e |SOrdered = true

e Compare(E; = (p1,ptry),Es = (p2,ptry)) Given
p1 = [z1,y1) ad py = [z2,y2), return “precedes’ if

1 < a2, “equivaent” if x; = x5, and“follows” if z; >
9.

There are a number of interesting features to note in this
set of methods. First, the Compressand Decompress methods
produce the typical “split keys’ found in B+-trees, i.e.n — 1
stored keys for n pointers, with the leftmost and rightmost
boundarieson anodeleft unspecified (i.e. —oo and 0o0). Even
though GiSTs use key/pointer pairsrather than split keys, this
GiST uses no more space for keys than atraditional B+-tree,
sinceit compressesthefirst pointer on each nodeto zero bytes.
Second, the Penalty method allows the GiST to choose the
correct insertion point. Inserting (i.e. Unioning) a new key
value k into ainterval [z, y) will cause the Penalty to be pos-
itive only if k& is not already contained in the interval. Thus
in step CS2, the ChooseSubtree method will place new data
in the appropriate spot: any set of keys on a node partitions
theentiredomain, so in order to minimizethe Penalty, Choos-
eSubtree will choose the one partition in which & is already
contained. Finally, observe that one could fairly easily sup-
port more complex predicates, including disjunctionsof inter-
valsin query predicates, or ranked intervalsin key predicates
for supporting efficient sampling [WES8Q].

4.2 GiSTsOver Polygonsin R? (R-trees)

In this example, our data are 2-dimensional polygons on
the Cartesian plane. Before compression, the keys in this
tree are 4-tuples of reas, representing the upper-left and
lower-right corners of rectilinear bounding rectanglesfor 2d-
polygons. A Key (Zui, Yui, Zir, Yir) represents the predicate
Contains((xui, Yul, Tir, Yir),v), Where (z.;, y.u1) iSthe upper
left corner of the bounding box, (z..,y.) is the lower right
corner, and v is the free variable. The query predicates we
support in this key class are Contains(box, v), Overlap(box,
v), and Equal (box, v), where box is a 4-tuple as above.

The implementations of the query predicates are as fol-
lows:

° Contains((xlld,y}d,xllr,yllr), (le,yil,x%r,yl?r)) Return

trueif
Otherwisereturn false.

i Overlap((a:}d,y}d,m}r,y}r),(mil,yil,mfr,yﬁ)) Return
trueif

('rzll.l S xl2r) A (xil S xllr) A (yllr S yil) A (yZQT' S yzll,l)
Otherwise return false.

d Equal((mzld’ yzlll7 ml1r7 yllr)7 (mih yi“ 1'127,, yl2r)) Re{urn

trueif
Otherwise return false.

Now, the GiST method implementations:
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e Consistent((E,q) Given entry E = (p,ptr), we
know that p = Contains((zl,;,yl,, z}.,v;.),v), and
q is either Contains, Overlap or Equal on the argu-
ment (z2,,y2,, z}.,y7.). For any of these queries, return

true If Overlap(('rzldv y’lll,l7 $l1r7 yllr)7 (xib yil’ 'rl2r7 yl2r))’
and return fal se otherwise.

e Union({Es,...,E,}) Given
El = (('qulhyzl;lv'rllrvyllr)vptr1)7 e
E, = (z,y",z, ), return (MIN(zL,, ..., ™),

U
MAX(yL, oo,y MAX (2, -, ]t), MIN(YL, - - -,
Yir))-

e Compress(E = (p,ptr)) Form the bounding box
of polygon p, i.e, given a polygon stored as a set
of line segments I; = (xi,y!, 2%, 4%), fom 7 =
(ViMIN(2,), ViMAX(yiy), ViMAX(af,), YiMIN(y,)).
Return (7, ptr).

° Da:ompr%(E = ((:I;ulv Yul, Llr, ylr)7 pt r )) Theiden-
tity function, i.e,, return E.

e Penalty(E;, E») Given E; = (p1,ptr,) and E; =
(p2,pt r,), compute g = Union({Ey, E»}), and return
area(q) — area(E; .p). Thismetric of “changein aread’ is
the one proposed by Guttman [Gut84].

e PickSplit(P) A variety of agorithms have been pro-
posed for R-tree splitting. We thus omit this method im-
plementation from our discussion here, and refer the in-
terested reader to [Gut84] and [BK SS90].

The above implementations, along with the GiST algo-
rithms described in the previous chapters, give behavior iden-
tical to that of Guttman's R-tree. A series of variationson R-
trees have been proposed, notably the R* -tree [BK SS90] and
the R+-tree [SRF87]. The R*-tree differs from the basic R-
treein three ways: inits PickSplit algorithm, which hasava-
riety of small changes, in its ChooseSubtree algorithm, which
varies only dlightly, and in its policy of reinserting a number
of keys during node split. 1t would not be difficult to imple-
ment the R*-tree in the GiST: the R*-tree PickSplit algorithm
can be implemented as the PickSplit method of the GiST, the
modifications to ChooseSubtree could be introduced with a
careful implementation of the Penalty method, and the rein-
sertion policy of the R*-tree could easily be added into the
built-in GiST tree methods (see Section 7.) R+-trees, on the
other hand, cannot be mimicked by the GiST. Thisisbecause
the R+-tree places duplicate copies of dataentriesin multiple
leaf nodes, thus violating the GiST principle of a search tree
being a hierarchy of partitions of the data.

Again, observe that one could fairly easily support more
complex predicates, including n-dimensional analogs of the
digunctive queries and ranked keys mentioned for B+-
trees, as well as the topological relations of Papadias, et
al. [PTSEQ5] Other examples include arbitrary variations of
the usual overlap or ordering queries, e.g. “find al polygons
that overlap morethan 30% of thisbox”, or “find al polygons

that overlap 12to 1 o' clock” , whichfor agiven point p returns
all polygonsthat are in the region bounded by two rays that
exit p a angles 90° and 60° in polar coordinates. Note that
thisinfinite region cannot be defined as a polygon made up of
line segments, and hencethisquery cannot be expressed using
typical R-tree predicates.

4.3 GiSTsOver P(Z) (RD-trees)

In the previous two sections we demonstrated that the GiST
can provide the functionality of two known data structures:
B+-treesand R-trees. In this section, we demonstrate that the
GiST can provide support for a new search tree that indexes
set-valued data.

The problem of handling set-valued data is attracting in-
creasing attention in the Object-Oriented database commu-
nity [KG94], and is fairly natural even for traditiona rela-
tional database applications. For example, one might have a
university database with atable of students, and for each stu-
dent an attribute courses_passed of type setof (integer). One
would like to efficiently support containment queries such as
“find al students who have passed all the coursesin the pre-
requisite set {101, 121, 150}.”

We handle this in the GiST by using sets as containment
keys, much as an R-tree uses bounding boxes as containment
keys. We call the resulting structure an RD-tree (or “ Russian
Doall” tree)) The keysin an RD-tree are sets of integers, and
the RD-treederivesitsnamefromthefact that asonetraverses
abranch of thetree, each key containsthe key below it in the
branch. We proceed to give GiST method implementations
for RD-trees.

Before compression, the keys in our RD-trees are sets of
integers. A key S representsthe predicate Contains(S, v) for
set-valued variable v. The query predicates allowed on the
RD-tree are Contains(set, v), Overlap(set, v), and Equal (set,
V).

The implementation of the query predicatesis straightfor-
ward:

e Contains(S,T) Return trueif S O T, and false other-
wise.

e Overlap(S, T) Returntrueif SNT # (), falseotherwise.
e Equal(S,T) Returntrueif S = T, false otherwise.
Now, the GiST method implementations:

e Consistent(E = (p,ptr ), q) Given our keys and pred-
icates, we know that p = Contains(S, v), and either ¢ =
Contains(T',v), ¢ = Overlap(T,v) or ¢ = Equa (T, v).
For all of these, return true if Overlap(S,T'), and false
otherwise.

e Union({Ey = (Si,ptry),....,E, = (Sn,ptr,)})
Return S; U ... U S,.

e Compress(E = (S,ptr)) A variety of compression
techniques for sets are given in [HP94]. We briefly
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describe one of them here. The elements of S are
sorted, and then converted to a set of n digoint ranges
{ll1, hal, Iz, 2], - . . [In, hn]} Where l; < h;, and by <
l;+1. The conversion uses the following agorithm:

Initialize: consider each elenent a,, €5
to be a range [am,an].
while (nmore than n ranges remain) {
find the pair of adjacent ranges
with the | east interval
bet ween t hem
forma single range of the pair;
}
The resulting structure is called a rangeset. It can be
shown that this algorithm producesarangeset of n items

with minimal addition of elementsnot in S [HP94].

e Decompress(E = (rangeset, pt r )) Rangesets are eas-
ily converted back to sets by enumerating the elements
in the ranges.

e Penalty(E; = (Si,ptrq),E2 = (Sa,ptr,) Return
|Ey.S1 U E5.S2| — |E1.S1|. Alternatively, return the
changein aweighted cardinality, where each element of
Z has aweight, and | S| is the sum of the weights of the
elementsin S.

e PickSplit(P) Guttman's quadratic algorithm for R-tree
split works naturally here. The reader is referred to
[Gut84] for details.

This GiST supportsthe usual R-tree query predicates, has
containment keys, and uses a traditional R-tree algorithm for
PickSplit. Asaresult, wewere ableto implement these meth-
ods in lllustra’s extensible R-trees, and get behavior identi-
cal to what the GiST behavior would be. This exercise gave
us a sense of the complexity of a GiST class implementation
(c.500linesof C code), and allowed usto do the performance
studies described in the next section. Using R-trees did limit
our choices for predicates and for the split and penalty algo-
rithms, which will merit further exploration when we build
RD-treesusing GiSTs.

5 GiST Performance | ssues

In baanced trees such as B+-trees which have
non-overlapping keys, the maximum number of nodes to be
examined (and hence 1/O’s) is easy to bound: for a point
query over duplicate-free data it is the height of the tree, i.e.
O(logn) for a database of n tuples. This upper bound can-
not be guaranteed, however, if keys on a node may overlap,
as in an R-tree or GiST, since overlapping keys can cause
searches in multiple paths in the tree. The performance of a
GiST varies directly with the amount that keys on nodestend
to overlap.

There are two major causes of key overlap: data overlap,
and information loss due to key compression. The first issue
is straightforward: if many data objects overlap significantly,
then keys within the tree are likely to overlap as well. For

Data Overlap

Compression Loss
Figure 2: Space of Factors Affecting GiST Performance

example, any dataset made up entirely of identical itemswill
produce an inefficient index for queries that match the items.
Such workloads are simply not amenable to indexing tech-
niques, and should be processed with sequential scansinstead.

Lossdueto key compression causes problemsin aslightly
more subtle way: even though two sets of data may not
overlap, the keys for these sets may overlap if the Com-
press'Decompress methods do not produce exact keys. Con-
sider R-trees, for example, where the Compress method pro-
duces bounding boxes. If objects are not box-like, then the
keys that represent them will be inaccurate, and may indi-
cate overlaps when none are present. In R-trees, the prob-
lem of compression loss has been largely ignored, since most
spatial data objects (geographic entities, regions of the brain,
etc.) tend to be relatively box-shaped.® But this need not be
the case. For example, consider a 3-d R-tree index over the
dataset corresponding to aplate of spaghetti: although nosin-
gle spaghetto intersects any other in three dimensions, their
bounding boxeswill likely all intersect!

Thetwo performanceissues described above are displayed
asagraphinFigure2. Attheorigin of thisgrapharetreeswith
no data overlap and lossless key compression, which havethe
optimal logarithmic performance described above. Note that
B+-treesover duplicate-freedataare at the origin of thegraph.
As one moves towards 1 along either axis, performance can
be expected to degrade. In the worst case on the x axis, keys
are consistent with any query, and the whole tree must be tra-
versed for any query. Inthe worst case onthey axis, al the
dataareidentical, and thewholetree must betraversedfor any
guery consistent with the data.

In this section, we present some initial experiments we
have donewith RD-treesto explorethe space of Figure 2. We
chose RD-trees for two reasons:

1. We were able to implement the methods in Illustra R-
trees.

2. Set data can be “ cooked” to have almost arbitrary over-

3Better approximations than bounding boxes have been considered for
doing spatia joins [BKSS94]. However, this work proposes using bound-
ing boxes in an R*-tree, and only using the more accurate approximations in
main memory during post-processing steps.
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Figure 3: Performancein the Parameter Space

This surface was generated from data presented
in [HNP95]. Compression loss was caculated as
(numranges — 20) /numranges, while data overlap
was calculated as overlap/10.

lap, as opposed to polygon data which is contiguous
within its boundaries, and hence harder to manipulate.
For example, itistrivial to construct n distant “ hot spots”
shared by all setsin an RD-tree, but isgeometrically dif-
ficult to do the same for polygonsin an R-tree. We thus
believe that set-valued data is particularly useful for ex-
perimenting with overlap.

To validate our intuition about the performance space, we
generated 30 datasets, each corresponding to a point in the
space of Figure 2. Each dataset contained 10000 set-valued
objects. Each object was a regularly spaced set of ranges,
much like a comb laid on the number line (e.g. {[1,10],
[100001,100010], [200001,200010], ...}). The “teeth” of
each comb were 10 integers wide, while the spaces between
teeth were 99990 integers wide, large enough to accommo-
date one tooth from every other object in the dataset. The 30
datasets were formed by changing two variables: numranges,
the number of ranges per set, and overlap, the amount that
each comb overlapped its predecessor. Varying numranges
adjusted the compression loss: our Compressmethod only al-
lowed for 20 ranges per rangeset, so a comb of ¢ > 20 teeth
had t — 20 of itsinter-tooth spaces erroneously included into
its compressed representation. The amount of overlap was
controlled by the left edge of each comb: for overlap 0, the
first comb was started at 1, the second at 11, the third at 21,
etc., so that no two combs overlapped. For overlap 2, thefirst
comb was started at 1, the second at 9, the third at 17, etc.
The 30 datasets were generated by forming al combinations
of numrangesin {20, 25, 30, 35, 40}, and overlapin {0, 2, 4,
6, 8, 10}.

For each of the 30 datasets, five queries were performed.
Each query searched for objects overlapping a different tooth
of the first comb. The query performance was measured in
number of 1/Os, and the five numbers averaged per dataset. A
chart of the performance appearsin [HNP95]. Moreillustra-

tiveisthe 3-d plot shown in Figure 3, where the x and y axes
arethesameasin Figure 2, and the z axisrepresentsthe aver-
age number of 1/0s. The landscape is much as we expected:
it slopes upwards as we move away from O on either axis.

While our general insights on data overlap and compres-
sion loss are verified by this experiment, a number of perfor-
mance variables remain unexplored. Two issues of concern
are hot spots and the correlation factor across hot spots. Hot
spots in RD-trees are integers that appear in many sets. In
general, hot spots can bethought of as very specific predicates
satisfiable by many tuplesin a dataset. The correlation factor
for two integers j and k in an RD-tree is the likelihood that
if one of j or k appearsin a set, then both appear. In general,
the correlation factor for two hot spots p, ¢ is the likelihood
that if p v ¢ holdsfor atuple, p A ¢ holdsaswell. An inter-
esting question is how the GiST behaves as one denormalizes
data setsto produce hot spots, and correl ations between them.
This question, along with similar issues, should proveto bea
rich area of future research.

6 Implementation |ssues

In previous sections we described the GiST, demonstrated its
flexibility, and discussed its performance as an index for sec-
ondary storage. A full-fledged database system is more than
just asecondary storage manager, however. Inthissectionwe
point out some important database system issues which need
to be considered when implementing the GiST. Due to space
congtraints, these are only sketched here; further discussion
can befound in [HNP95].

e In-Memory Efficiency: The discussion above shows
how the GiST can be efficient in terms of disk access.
To streamline the efficiency of its in-memory computa-
tion, we open the implementation of the Node object to
extensibility. For example, the Nodeimplementation for
GiSTs with linear orderings may be overloaded to sup-
port binary search, and the Node implementation to sup-
port hB-trees can be overloaded to support the special-
ized internal structure required by hB-trees.

e Concurrency Control, Recovery and Consistency:
High concurrency, recoverability, and degree-3 consis-
tency are critical factors in afull-fledged database sys-
tem. We are considering extending the results of Kor-
nacker and Banks for R-trees [KB95] to our implemen-
tation of GiSTs.

e Variable-Length Keys: It is often useful to alow
keysto vary in length, particularly given the Compress
method availablein GiSTs. Thisrequires particular care
in implementation of tree methods like Insert and Split.

e Bulk Loading: Inunordereddomains,itisnot clear how
to efficiently build an index over a large, pre-existing
dataset. An extensible BulkLoad method should be im-
plemented for the GiST to accommodate bulk loading
for various domains.
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e Optimizer Integration: To integrate GiSTs with a
query optimizer, one must let the optimizer know which
query predicates match each GiST. The question of esti-
mating the cost of probing a GiST is more difficult, and
will require further research.

e Coding Details: We proposeimplementing the GiST in
two ways. The Extensible GiST will be
runtime-extensiblelike POSTGRES or Illustrafor max-
imal convenience; the Template GiST will compilation-
extensible like SHORE for maximal efficiency. With a
little care, these two implementations can be built off of
the same code base, without replication of logic.

7 Summary and Future Work

The incorporation of new data types into today’s database
systems requires indices that support an extensible set of
queries. To facilitate this, we isolated the essential nature of
search trees, providing a clean characterization of how they
are all alike. Using this insight, we developed the General-
ized Search Tree, which unifiespreviously distinct search tree
structures. The GiST is extremely extensible, alowing arbi-
trary data sets to be indexed and efficiently queried in new
ways. This flexibility opens the question of when and how
one can generate effective search trees.

Since the GiST unifies B+-trees and R-trees into a single
structure, it is immediately useful for systems which require
the functionality of both. In addition, the extensibility of the
Gi ST aso opensup anumber of interesting research problems
which we intend to pursue:

¢ Indexability: The primary theoretical question raised by
the GiST is whether one can find a general characteri-
zation of workloads that are amenable to indexing. The
Gi ST providesameansto index arbitrary domainsfor ar-
bitrary queries, but as yet we lack an “indexability the-
ory” to describe whether or not trying to index a given
data set is practical for agiven set of queries.

e Indexing Non-Standard Domains: As a practical mat-
ter, we are interested in building indices for unusual do-
mains, such as sets, terms, images, sequences, graphs,
video and sound clips, fingerprints, molecular structures,
etc. Pursuit of such applied results should providean in-
teresting feedback loop with the theoretical explorations
described above. Our investigation into RD-trees for
set data has already begun: we have implemented RD-
trees in SHORE and Illustra, using R-trees rather than
the GiST. Once we shift from R-trees to the GiST, we
will also be ableto experiment with new PickSplit meth-
ods and new predicatesfor sets.

e Query Optimization and Cost Estimation: Cost esti-
mates for query optimization need to take into account
the costs of searching a GiST. Currently such estimates
are reasonably accurate for B+-trees, and less so for R-
trees. Recently, some work on R-tree cost estimation

has been done [FK94], but more work is required to
bring this to bear on GiSTsin general. As an additional
problem, the user-defined GiST methods may be time-
consuming operations, and their CPU cost should bereg-
istered with the optimizer [HS93]. The optimizer must
then correctly incorporate the CPU cost of the methods
into its estimate of the cost for probing aparticular GiST.

e Lossy Key Compression Techniques. As new data do-
mains areindexed, it will likely be necessary to find new
lossy compression techniques that preserve the proper-
tiesof aGiST.

o Algorithmic Improvements: The GiST agorithmsfor in-
sertion are based on those of R-trees. Asnoted in Sec-
tion 4.2, R*-trees use somewhat modified algorithms,
which seem to provide some performance gain for spa-
tial data. In particular, the R*-treepolicy of “forcedrein-
sert” during split may be generally beneficial. Aninves
tigation of the R*-tree modifications needsto be carried
out for non-spatial domains. If thetechniquesproveben-
eficial, they will beincorporated into the GiST, either as
an option or asdefault behavior. Additional work will be
required to unify the R* -tree modifications with R-tree
techniquesfor concurrency control and recovery.

Finally, we believe that future domain-specific search tree
enhancements should take into account the generality issues
raised by GiSTs. Thereisno good reason to develop new, dis-
tinct search tree structures if comparable performance can be
obtained in a unified framework. The GiST provides such a
framework, and we plan to implement it in an existing exten-
sible system, and aso as a standalone C++ library package,
so that it can be exploited by avariety of systems.
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