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Abstract 

Automatically selecting an appropriate set of 
materialized views and indexes for SQL 
databases is a non-trivial task. A judicious choice 
must be cost-driven and influenced by the 
workload experienced by the system. Although 
there has been work in materialized view 
selection in the context of multidimensional 
(OLAP) databases, no past work has looked at 
the problem of building an industry-strength tool 
for automated selection of materialized views 
and indexes for SQL workloads. In this paper, 
we present an end-to-end solution to the problem 
of selecting materialized views and indexes. We 
describe results of extensive experimental 
evaluation that demonstrate the effectiveness of 
our techniques. Our solution is implemented as 
part of a tuning wizard that ships with Microsoft 
SQL Server 2000.  

1. Introduction 
In addition to indexes, today’s commercial SQL database 
systems also support creation and use of materialized 
views. The presence of the right materialized views can 
significantly improve performance, particularly for 
decision support applications. However, to realize this 
potential, a judicious selection of materialized views is 
crucial. 

Conceptually, both indexes and materialized views are 
physical structures that can significantly accelerate 
performance.  An effective physical database design tool 
must therefore take into account the interaction between 
indexes and materialized views by considering them 
together to optimize the physical design for the workload 
on the system. Ignoring this interaction can significantly 
compromise the quality of recommendations. Despite a 

large number of recent papers in this area, most of the 
prior work considers the problems of index selection and 
materialized view selection in isolation.  

Although indexes and materialized views are similar, 
a materialized view is much richer in structure than an 
index since a materialized view may be defined over 
multiple tables, and can have selections and GROUP BY 
over multiple columns. In fact, an index can logically be 
considered as a special case of a single-table, projection 
only materialized view. This richness of structure of 
materialized views makes the problem of selecting 
materialized views significantly more complex than that 
of index selection. We therefore need innovative 
techniques for dealing with the large space of potentially 
interesting materialized views that are possible for a given 
set of SQL queries and updates over a large schema. 
Previous papers on materialized view selection typically 
ignore this problem. Rather, they focus only on the 
“search” problem of picking an attractive set of 
materialized views from a given set. Thus, they implicitly 
assume that the given set is the set of all potentially 
interesting materialized views for the workload. Such an 
approach is simply not scalable in the context of SQL 
workloads. Finally, to be an effective solution, it is 
important to ensure that the solution to this problem is 
robust and takes into account the complexities of full SQL 
as a query language, as well as pragmatic issues such as 
the fact that in today’s commercial database systems, it is 
often the case that the language of materialized views is a 
restricted subset of the language of queries. For example, 
a materialized view may not be allowed to contain nested 
sub-queries. 

In this paper, we present an architecture and novel 
algorithms for addressing each of the above problems. 
Our work leverages previous work we did in building an 
index selection tool for Microsoft SQL Server [4,5], but 
requires several significant innovations. We establish that 
in order to pick a physical design consisting of indexes 
and materialized views, it is critical to search over the 
combined space of indexes and materialized views 
(Section 5). We quantify the impact on quality of not 
enumerating this space together, particularly in the 
presence of storage constraints or updates. Second, we 
present a principled way to identify a much smaller set of 
candidate materialized views such that searching over the 
reduced space of candidate materialized views preserves 
most of the gains of searching the entire space of possible 
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materialized views, at a fraction of the enumeration cost 
(Section 4). We introduce two key techniques that form 
the basis of a scalable approach for candidate materialized 
view selection. First, we show how to identify interesting 
sets of tables such that we need to consider materialized 
views only over such sets of tables. Next, we present a 
view merging technique that identifies candidate 
materialized views that while not optimal for any single 
query, can be beneficial to multiple queries in the 
workload. The techniques presented in this paper are 
designed to be robust for handling the generality of SQL 
as well as other pragmatic issues arising in index and 
materialized view selection. These techniques have 
enabled us to build an industry-strength physical database 
design tool that can determine an appropriate set of 
indexes, materialized views (and indexes on materialized 
views) for a given database and workload consisting of 
SQL queries and updates. This tool is now part of 
Microsoft SQL Server 2000’s upcoming release. The 
extensive experimental results in this paper (Section 6) 
demonstrate the value of our proposed techniques. This 
work was done as part of the AutoAdmin [1] research 
project at Microsoft, which explores novel techniques to 
make databases self-tuning. 

2. Architecture for Index and Materialized 
View Selection 

An architectural overview of our approach to index 
and materialized view selection is shown in Figure 1. We 
assume that we are given a representative workload for 
which we need to recommend indexes and materialized 
views.  One way to obtain such a workload is to use the 
logging capability of modern database systems to capture 
a trace of queries and updates faced by the system. 
Alternatively, customer or organization specific 
benchmarks may be used.  As in our previous work on 
index selection [4], the key components of the 
architecture are: syntactic structure selection, candidate 
selection, configuration enumeration, and configuration 
simulation and cost estimation.  

Given a workload, the first step is to identify 
syntactically relevant indexes, materialized views and 
indexes on materialized views that can potentially be used 
to answer the query. For example, consider a query Q: 
SELECT Sum(Sales) FROM Sales_Data WHERE City = 
‘Seattle’. For the query Q, the following materialized 
views (among others) are syntactically relevant: v1: 
SELECT Sum(Sales) FROM Sales_Data WHERE City = 
‘Seattle’. v2: SELECT City, Sum(Sales) FROM 
Sales_Data GROUP BY City. v3: SELECT City, Product, 
Sum(Sales) FROM Sales_Data GROUP BY City, 
Product. Optionally, we can consider additional indexes 
on the columns of the materialized view. Like indexes on 
base tables, indexes on materialized views can be single-
column or multi-column, clustered or non-clustered, with 
the restriction that a given materialized view can have at 
most one clustered index on it. In this paper, we focus on 
the class of single-block materialized views consisting of 
selection, join, grouping and aggregation. The workload 
however, may consist of arbitrary SQL statements. In this 
paper, we do not consider materialized views that can be 
exploited using back-joins by the optimizer.  

As mentioned in the introduction, searching the space 
of all syntactically relevant indexes and materialized 
views for a workload is infeasible in practice, particularly 
when the workload is large or complex. Therefore, it is 
crucial to eliminate spurious indexes and materialized 
views from consideration early, thereby focusing the 
search on a smaller, and interesting subset. The candidate 
selection module is responsible for identifying a set of 
traditional indexes, materialized views and indexes on 
materialized views for the given workload that are worthy 
of further exploration. Efficient selection of candidate 
materialized views is a key contribution of our work. For 
the purposes of this paper, we assume that candidate 
indexes have already been picked. For details on how 
candidate indexes may be chosen for a workload, we refer 
the reader to [4].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
Once we have chosen a set of candidate indexes and 

candidate materialized views, we need to search among 
these structures to determine the ideal physical design, 
henceforth called a configuration. In our context, a 
configuration will consist of a set of traditional indexes, 
materialized views and indexes on materialized views. In 
this paper we will not discuss issues related to selection of 
indexes on materialized views due to lack of space. 
Despite the remarkable pruning achieved by the candidate 
selection module, searching through this space in a naïve 
fashion by enumerating all subsets of structures is 
infeasible. We adopt the same greedy algorithm for 
configuration enumeration as was used in [4]: 
Greedy(m,k). This algorithm returns a configuration 
consisting of a total of k indexes and materialized views. 
It first picks an optimal configuration of size up to m (� k) 
by exhaustively enumerating all configurations of size up 
to m. It then picks the remaining (k-m) structures 
greedily. As will be shown in Section 6.2.4, this algorithm 
works well even when the set of candidates contains 
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materialized views in addition to indexes. An important 
characteristic of our approach is that configuration 
enumeration is over the joint space of indexes and 
materialized views. 

The configurations considered by the configuration 
enumeration module are compared for quality by taking 
into account the expected impact of the proposed 
configurations on the sum of the cost of queries in the 
workload. The configuration simulation and cost 
estimation module is responsible for providing this 
support. We have extended Microsoft SQL server to 
simulate the presence of indexes and materialized views 
that do not exist (referred to as “what-if” indexes and 
materialized views) to the query optimizer, and have also 
extended the optimizer costing module, so that given a 
query Q and a configuration C, the cost of Q when the 
physical design is the configuration C, may be computed. 
A detailed discussion of simulation of what-if structures is 
beyond the scope of this paper (see [5]). Finally, we note 
that index and materialized view maintenance costs are 
accounted for in our approach by the inclusion of 
updates/inserts/deletes statements in the workload. 

3. Related Work 
Recently, there have been several papers on selection 

of materialized views in the OLAP/Data Cube context 
[9,10,11,12,18]. These papers assume that the set of 
candidate materialized views is identical to the set of 
syntactically relevant materialized views for the 
workload1. As argued earlier, such a technique is not 
scalable for reasonably large SQL workloads since the 
space of syntactically relevant materialized views is very 
large. The focus of the above papers is almost exclusively 
on the configuration enumeration problem. In principle, 
their proposed enumeration schemes may be adopted in 
our architecture by simply substituting Greedy(m,k). 
Thus, we view the work presented in the above papers to 
be complementary to the work presented in this paper. 
Although one of the papers [11] studies the interaction of 
materialized views with indexes on materialized views, 
none of the papers consider interaction among selection of 
indexes on base tables and selection of materialized 
views. Thus, they implicitly assume that indexes are 
either already picked, or will be picked after selection of 
materialized views. As will be shown in this paper, both 
these alternatives severely impact quality of the solution. 

The work by Baralis et al. [3] is also set in the context 
of OLAP/Data Cube and does not consider traditional 
indexes on base tables. For a given workload, they 
consider materialized views that exactly match queries in 
the workload, as well as a set of additional views that can 
leverage commonality among queries in the workload. 
Our technique for exploiting commonality among queries 
in the workload for candidate materialized view selection 
(Section 4.3) is different. Further, our techniques can also 
deal with arbitrary SQL workloads and materialized 
views with selection. 

In the context of SQL databases and workloads, the 
work by [22] picks materialized views by examining the 

                                                 
1 Typically, these are aggregation views over subsets of 
dimensions. For each subset of dimensions, multiple aggregate 
views are possible in the presence of dimension hierarchy.  

plan information of queries. However, since the plan is an 
artifact of the existing physical design, such an approach 
can lead to sub-optimal recommendations. The paper also 
suggests an alternative of examining all possible query 
plans of a query. However, the latter technique is not 
scalable for even moderately sized workloads.  

There is a substantial body of work in the area of 
index selection that describes how to pick a good set of 
indexes for a given workload [4,8,16]. More recently, 
other commercial systems have also added support for 
automatically picking indexes [14,20]. The architecture 
adopted in our scheme is in the spirit of [4].  However, as 
noted above, the candidate materialized view selection as 
well as the comparison of alternative strategies to pick 
indexes on base tables along with materialized views, 
constitute novel and important contributions of this paper. 
Rozen [15] presents a framework for choosing a physical 
design consisting of various “feature sets” including 
indexes and materialized views. The space of materialized 
views considered in Rozen’s thesis is restricted to single-
table aggregation views with GROUP BY, whereas we 
allow materialized views to consist of join, selection, 
grouping and aggregation operators,  

Some commercial systems (e.g., Redbrick/Informix 
[16] and Oracle 8i [14]) provide tools to tune the selection 
of materialized views for a workload. As with the body of 
the work referenced above, these tools exclusively 
recommend materialized views. In contrast, we present an 
integrated tool that can recommend indexes on base tables 
as well as materialized views (and indexes on them) by 
weighing in the impact of both on the performance of the 
workload. Finally, our paper is concerned with selection 
of materialized views but not with techniques to rewrite 
queries in the presence of materialized views.  

4. Candidate Materialized View Selection 
Considering all syntactically relevant materialized 

views for a workload in the configuration enumeration 
phase (see Figure 1) is not scalable since it would explode 
the space of configurations that must be searched. The 
space of syntactically relevant materialized views for a 
query (and hence a workload) is very large, since in 
principle, a materialized view can be proposed on any 
subset of tables in the query. Furthermore, even for a 
given table-subset (a table-subset is a subset of tables 
referenced in a query in the workload.), there is an 
explosion in the space of materialized views arising from 
selection conditions and group by columns in the query. If 
there are m selection conditions in the query on a table-
subset T, then materialized views containing any subset of 
these selection conditions are syntactically relevant. 
Therefore, the goal of candidate materialized view 
selection is to quickly eliminate materialized views that 
are syntactically relevant for one or more queries in the 
workload but are never used in answering any query from 
entering the configuration enumeration phase. 

We observe that the obvious approach of selecting one 
candidate materialized view per query that exactly 
matches each query in the workload does not work since 
in many database systems the language of materialized 
views may not match the language of queries. For 
example, nested sub-queries can appear in the query but 
may not be part of the materialized view language. 



     

Moreover, in storage-constrained environments, ignoring 
commonality across queries in the workload can result in 
sub-optimal quality.  This problem is even more severe in 
large workloads. The following simplified example of Q1 
from the TPC-H benchmark illustrates this point: 
Example 1. Consider a workload consisting of 1000 
queries of the form: SELECT l_returnflag, l_linestatus, 
SUM(l_quantity) FROM lineitem WHERE l_shipdate 
BETWEEN <Date1> and <Date2> GROUP BY 
l_returnflag, l_linestatus. Assume that each of the 1000 
queries has different constants for <Date1> and <Date2>. 
Then, rather than recommending 1000 materialized views, 
the following materialized view that can service all 1000 
queries may be more attractive for the entire workload: 
SELECT l_shipdate, l_returnflag, l_linestatus, 
SUM(l_quantity) FROM lineitem GROUP BY l_shipdate, 
l_returnflag, l_linestatus. 

A second observation that influences our approach to 
candidate materialized view selection is that there are 
certain table-subsets such that, even if we were to propose 
materialized views on those subsets it would only lead to 
a small reduction in cost for the entire workload. This can 
happen either because the table-subsets occur infrequently 
in the workload or they occur only in inexpensive queries.  
Example 2. Consider a workload of 100 queries whose 
total cost is 10,000 units. Let T be a table-subset that 
occurs in 25 queries whose combined cost is 50 units. 
Then even if we considered all syntactically relevant 
materialized views on T, the maximum possible benefit of 
those materialized views for the workload is 0.5%.  

Furthermore, even among table-subsets that occur 
frequently or occur in expensive queries, not all table-
subsets are likely to be equally useful. 
Example 3. Consider the TPC-H 1GB database and the 
workload specified in the benchmark. There are several 
queries in which the tables, lineitem, orders, nation, and 
region co-occur. However, it is likely that materialized 
views proposed on the table-subset {lineitem, orders} are 
more useful than materialized views proposed on {nation, 
region}. This is because the tables lineitem and orders 
have 6 million and 1.5 million rows respectively, but 
tables nation and region are very small (25 and 5 rows 
respectively). Hence, the benefit of pre-computing the 
portion of the queries involving {nation, region} is 
insignificant compared to the benefit of pre-computing 
the portion of the query involving {lineitem, orders}. 

Based on these observations, we approach the task of 
candidate materialized view selection using three steps: 
(1) From the large space of all possible table-subsets for 
the workload, we arrive at a smaller set of interesting 
table-subsets (Section 4.1).  (2) Based on these interesting 
table-subsets, we propose a set of materialized views for 
each query in the workload, and from this set we select a 
configuration that is best for that query. This step uses a 
cost-based analysis for selecting the best configuration for 
a query (Section 4.2). (3) Starting with the views selected 
in (2), we generate an additional set of “merged” 
materialized views in a controlled manner such that the 
merged materialized views can service multiple queries in 
the workload (Section 4.3). The new set of merged 
materialized views, along with the materialized views 
selected in (2) is the set of candidate materialized views 
that enters configuration enumeration. We now present 
the details of each of these steps. 

4.1. Finding Interesting Table-Subsets 
Our goal is to find “interesting” table-subsets from 

among all possible table-subsets for the workload, and 
restrict the space of materialized views considered to only 
those table-subsets. Intuitively, a table-subset T is 
interesting if materializing one or more views on T has 
the potential to reduce the cost of the workload 
significantly, i.e., above a given threshold. Thus, the first 
step is to define a metric that captures the relative 
importance of a table-subset.  

Consider the following metric: TS-Cost(T) = total 
cost2 of all queries in the workload (for the current 
database) where table-subset T occurs. The above metric, 
while simple, is not a good measure of relative 
importance of a table-subset. For example, in the context 
of Example 3, if all queries in the workload referenced the 
tables lineitem, orders, nation, and region together, then 
using the TS-Cost(T) metric, the table-subsets T1 = 
{lineitem, orders} would have the same importance as the 
table-subset T2 = {nation, region} even though a 
materialized view on T1 is likely to be much more useful 
than a materialized view on T2. Therefore, we propose the 
following metric that better captures the relative 
importance of a table-subset: TS-Weight(T) = �i 
Cost(Qi)�(sum of sizes of tables in T)/ (sum of sizes of all 
tables referenced in Qi)), where the summation is only 
over queries in the workload where T occurs. Observe 
that TS-Weight is a simple function that can discriminate 
between table-subsets even if they occur in exactly the 
same queries in the workload. A complete evaluation of 
this and alternative functions, and their relationship to 
cost estimation by the query optimizer is part of our 
ongoing work. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Although TS-Weight(T) is a reasonable metric for 
relative importance of a table-subset, there does not 
appear to be an obvious efficient algorithm for finding all 
table subsets whose TS-Weight exceeds a given threshold.  
In contrast, the TS-Cost metric has the property of 
“monotonicity” since for table subsets T1, T2, T1 � T2 � 
TS-Cost(T1) � TS-Cost(T2). This is because in all queries 
where T2 occurs, T1 (and likewise all other subsets of T2) 

                                                 
2 The cost of a query  (or update statement) Q, denoted by 
Cost(Q) can be obtained from the configuration simulation 
and cost estimation shown in Figure 1. 

1. Let S1 = {T | T is a table-subset of size 1 satisfying TS-
Cost(T) � C}; i = 1 

2. While i � MAX-TABLES and |Si| > 0 
3.   i = i + 1; Si = {} 
4.   Let G =�T | T is a table-subset of size i, and 	 s 
 Si-1

such that s � T} 
5.   For each T 
 G 
             If TS-Cost (T) � C Then Si = Si � {T}  
6.   End For 
7. End While 
8. S = S1 � S2 � … SMAX-TABLES 
9. R = {T | T 
 S and TS-Weight(T) � C} 
10. Return R 

Figure 2. Algorithm for finding interesting table-
subsets in the workload. 



     

also occur. This monotonicity property of TS-Cost allows 
us to leverage efficient algorithms proposed for 
identifying frequent itemsets, e.g., as in [2], to identify all 
table-subsets whose TS-Cost exceeds the specified 
threshold. Fortunately, it is also the case that if TS-
Weight(T) � C (for any threshold C), then TS-Cost(T) � 
C. Therefore, our algorithm (shown in Figure 2) for 
identifying interesting table-subsets by the TS-Weight 
metric has two steps: (a) Prune table-subsets not 
satisfying the given threshold using the TS-Cost metric. 
(b) Prune the table-subsets retained in (a) that do not 
satisfy the given threshold using the TS-Weight metric. 
We note that the efficiency gained by the algorithm is due 
to reduced CPU and memory costs by not having to 
enumerate all table-subsets. 

In Figure 2, we define the size of a table-subset T to 
be the number of tables in T. MAX-TABLES is the 
maximum number of tables referenced in any query in the 
workload. A lower threshold C leads to a larger space 
being considered and vice versa. Based on experiments on 
various databases and workloads, we found that using C = 
10% of the total workload cost had a negligible negative 
impact on the solution compared to the case when there is 
no cut off (C = 0), but was significantly faster (see 
Section 6.2.1 for details).  

4.2. Exploiting the Query Optimizer to Prune 
Syntactically Relevant Materialized Views 

The algorithm for identifying interesting table-subsets 
presented in Section 4.1 significantly reduces the number 
of syntactically relevant materialized views that must be 
considered for a workload. Nonetheless, many of these 
views may still not be useful for answering any query in 
the workload.  This is because the decision of whether or 
not a materialized view is useful in answering a query is 
made by the query optimizer using cost estimation. 
Therefore, our goal is to prevent syntactically relevant 
materialized views that are not used in answering any 
query from being considered during configuration 
enumeration. We achieve this goal using the algorithm 
shown in Figure 3, which is based on the intuition that if a 
materialized view is not part of the best solution for even 
a single query in the workload, then it is unlikely to be 
part of the best solution for the entire workload. This 
approach is similar to the one used in [4] for selecting 
candidate indexes. For a given query Q, and a set S of 
materialized views (and indexes on them) proposed for Q, 
Step 4 of our algorithm assumes the existence of the 
function Find-Best-Configuration(Q, S) that returns the 
best configuration for Q from S. Find-Best-Configuration 
has the property that the choice of the best configuration 
for a query is cost based, i.e., it is the configuration that 
the optimizer estimates as having the lowest cost for Q. 
Any suitable search method can be used in this function, 
e.g., the Greedy(m,k) algorithm described in Section 2. 
We also see that in the presence of updates or storage 
constraints, we may need to pick more than one 
configuration for a query (e.g., the n best configurations) 
in Step 4 to maintain quality, at the expense of increased 
running time during configuration enumeration [4]. 

Next we discuss the issue of which syntactically 
relevant materialized views should proposed for a query 
Qi in Step 3. Observe that among the interesting table-

subsets that occur in Qi, it is not sufficient to propose 
materialized views only on the table-subset that exactly 
matches the tables referenced in Qi. One reason for this is 
that the language of views may not match the language of 
queries, e.g., the query may contain a nested sub-query 
whereas the view cannot. Also, for complex queries the 
query optimizer performs algebraic transformations of the 
query to find a better execution plan. In such cases, 
determining which of the interesting table-subsets to 
consider requires analysis of the structure of the query as 
well as knowledge of the transformations considered by 
the query optimizer. We also note that due to the pruning 
of table-subsets in previous step (Section 4.1), the table-
subset that exactly matches the tables referenced in the 
query may not even be deemed interesting. In such cases, 
it again becomes important to consider smaller interesting 
table-subsets that occur in Qi. Fortunately, due to the 
effective pruning achieved by the algorithm for finding 
interesting table-subsets (Figure 2), we are able to take the 
simple approach of proposing syntactically relevant 
materialized views for a query Qi on all interesting table 
subsets that occur in Qi. 
 
 
 
 
 
 
 
 
 

 
For each such interesting table-subset T, we propose 

(in Step 3): (1) A “pure-join”3 materialized view on T 
containing join and selection conditions in Qi on tables in 
T. (2) If Qi has grouping columns, then a materialized 
view similar to (1) but also containing GROUP BY 
columns and aggregate expression from Qi on tables in T. 
It is also possible to propose additional materialized views 
on a table-subset that include only a subset of the 
selection conditions in the query on tables in T, since such 
views may also apply to other queries in the workload. 
However, in our approach, this aspect of exploiting 
commonality across queries in the workload is handled 
via view merging (Section 4.3). For each materialized 
view proposed, we also propose a set of clustered and 
non-clustered indexes on the materialized view. We omit 
the details of this discussion due to lack of space. Our 
experiments (see Section 6.2.3) show that the above 
algorithm is not only efficient, but it dramatically reduces 
the number of materialized views that need to be 
considered in configuration enumeration (Figure 1).  

4.3. View Merging 
We observe that if the materialized views that enter 

configuration enumeration are limited to the ones selected 

                                                 
3 In principle, such a “pure-join” materialized view can also be 
generated via view merging (Section 4.3). We omit this 
discussion due to lack of space. 

1. M = {} /* M is the set of materialized views that is
useful for at least one query in the workload  W*/ 

2. For i = 1 to |W| 
3.    Let Si = Set of materialized views proposed for 
            query Qi. 
4.    C = Find-Best-Configuration (Qi, Si) 
5.    M = M � C; 
6. End For 
7. Return M 

Figure 3. Cost-based pruning of syntactically 
relevant materialized views. 



     

by the algorithm presented in Section 4.2, then we can get 
sub-optimal recommendations for the workload when 
storage is constrained (see Example 1). This observation 
suggests that we need to consider the space of 
materialized views that although are not optimal for any 
individual query, are useful for multiple queries, and 
therefore may be optimal for the workload. However, 
proposing such a set of syntactically relevant materialized 
views by analyzing multiple queries at once could lead to 
an explosion in the number of merged materialized views 
proposed. Instead, our approach is based on the 
observation that M, the set of materialized views returned 
by the algorithm in Figure 2 (Section 4.2), contains 
materialized views selected on a cost-basis and are 
therefore sure (or very likely) to be used by the query 
optimizer. This set M is therefore a good starting point for 
generating additional “merged” materialized views that 
are derived by exploiting commonality among views in 
M. The newly generated set of merged views, along with 
M, are our candidate materialized views. Our approach is 
significantly more scalable than the alternative of 
generated merged views starting from all syntactically 
relevant materialized views. 

An important issue in view merging is characterizing 
the space of merged views to be explored. In our 
approach, we have decided to explore this space using a 
sequence of pair-wise merges. Thus, the two key issues 
that must be addressed are: (1) determining the criteria 
that govern when and how a given pair of views is 
merged (Section 4.3.1), and (2) enumerating the space of 
possible merged views (Section 4.3.2). Architecturally, 
our approach for view merging is similar to the one 
adopted in our prior work on index merging [7]. However, 
the algorithm for merging a pair of views needs to 
recognize the fact that views (unlike indexes) are multi-
table structures that may contain selections, grouping and 
aggregation. These differences significantly influence the 
way in which a given pair of views is merged. 

4.3.1. Merging a Pair of Views 
Our goal when merging a given pair of views, referred 

to as the parent views, is to generate a new view, called 
the merged view, which has the following two properties. 
First, all queries that can be answered using either of the 
parent views should be answerable using the merged 
view. Second, the cost of answering these queries using 
the merged view should not be significantly higher than 
the cost of answering the queries using views in M (the 
set obtained using algorithm in Figure 2). Our algorithm 
for merging a pair of views, called MergeViewPair, is 
shown in Figure 4. Intuitively, the algorithm achieves the 
first property by structurally modifying the parent views 
as little as possible when generating the merged view, i.e., 
by retaining the common aspects of the parent views and 
generalizing only their differences. For simplicity, we 
present the algorithm for SPJ views with grouping and 
aggregation, where the selection conditions are 
conjunctions of simple predicates. The algorithm can be 
generalized to handle complex selection conditions as 
well as account for differences in constants between 
conditions on the same column. 

Note that a merged view v may be derived starting 
from views in M through a sequence of pair-wise merges. 

We define Parent-Closure(v) as the set of views in M 
from which v is derived. The goal of Step 4 in the 
MergeViewPair algorithm is to achieve the second 
property mentioned above by preventing a merged view 
from being generated if it is much larger than the views in 
Parent-Closure(v). Precisely characterizing the factors 
that determine the value of the size increase threshold (x) 
requires further work. In our implementation on Microsoft 
SQL Server, we have found that setting x between 1 and 2 
works well over a variety of databases and workloads. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

We note that in Step 4, MergeViewPair requires 
estimating the size of a materialized view. One way to 
achieve this is to obtain an estimate of the view size from 
the query optimizer. The accuracy of such estimation 
depends on the availability of an appropriate set of 
statistics for query optimization [6]. Alternatively, less 
expensive heuristic techniques have been proposed in [19] 
for more restricted multidimensional scenarios. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3.2. Algorithm for generating merged views 
Our algorithm for generating a set of merged views 

from a given set of views is shown in Figure 5. As 
mentioned earlier, we invoke this algorithm with the set 
of materialized views M (obtained using the algorithm in 
Figure 3). We comment on several properties of the 
algorithm. First, note that it is possible for a merged 
materialized view generated in Step 3 to be merged again 
in a subsequent iteration of the outer loop (Steps 2-7). 
This allows more than two views in M to be combined 
into one merged view even though the merging is done 

1. Let v1 and v2 be a pair of materialized views that 
reference the same tables and the same join conditions. 

2. Let s11, … s1m be the selection conditions that occur in 
v1 but not in v2. Let s21, … s2n be the selection 
conditions that occur in v2 but not in v1. 

3. Let v12 be the view obtained by (a) taking the union of 
the projection columns of v1 and v2 (b) taking the union 
of the GROUP BY columns of v1 and v2 (c) pushing the 
columns s11, … s1m and s21, … s2n into the GROUP BY 
clause of v12 and (d) including selection conditions 
common to v1 and v2. 

4. If ((|v12| > Min Size (Parent-Closure (v1) � Parent-
Closure (v2)) * x) Then Return Null. 

5. Return v12. 

Figure 4. MergeViewPair algorithm 

1. R = M 
2. While (|R| > 1) 
3.    Let M’ = The set of merged views obtained 
          by calling MergeViewPair on each pair of views in R. 
4.    If  M’ = {} Return (R–M) 
5.    R = R � M’ 
6.    For each view v 
 M’, remove both parents  
              of v from R  
7. End While 
8. Return (R–M). 

Figure 5. Algorithm for generating a set of 
merged views from a given set of views M 



     

pair-wise. Second, although the number of new merged 
views explored by this algorithm can be exponential in 
the size of M in the worst case, we observe that much 
fewer merged materialized views are explored in practice 
(see Section 6.2.3) because of the checks built into Step 4 
of MergeViewPair (Figure 4). Third, the set of merged 
views returned by the algorithm does not depend on the 
exact sequence in which views are merged (we omit the 
proof due to lack of space). Furthermore, the algorithm is 
guaranteed to explore all merged views that can be 
generated using any sequence of merges using 
MergeViewPair starting with the views in M. The 
algorithm in Figure 5 has been presented in its current 
form for simplicity of exposition. Note however, that if 
views v1 and v2 cannot be merged to form v12, then no 
other merged view derived from v1 and v2 is possible, 
e.g., v123 is not possible. We can leverage this observation 
to increase efficiency by using techniques for finding 
frequent itemsets, e.g., as in [2]. Finally, we can ensure 
that merged views generated by this algorithm are 
actually useful in answering queries in the workload, by 
performing a cost-based pruning using the query 
optimizer (similar to the algorithm in Figure 3). 

5. Trading Choices of Indexes and 
Materialized Views 

Previous work in physical database design has 
considered the problems of index selection and 
materialized view selection in isolation. However, both 
indexes and materialized views are fundamentally similar 
– both are redundant structures that speed up query 
execution, compete for the same resource – storage, and 
incur maintenance overhead in the presence of updates. 
Not surprisingly, indexes and materialized views can 
interact with one another, i.e., the presence of an index 
can make a materialized view more attractive and vice 
versa. Therefore, as described in Section 2, our approach 
is to consider joint enumeration of the space of candidate 
indexes and materialized views. In this section, we 
compare our approach to alternative approaches and 
quantify the benefit of joint enumeration. 

There are two alternatives to our approach of jointly 
enumerating the space of indexes and materialized views. 
One alternative is to pick materialized views first, and 
then select indexes for the workload given the 
materialized views picked earlier (we denote this 
alternative by MVFIRST). The second alternative 
reverses the above order and picks indexes first, followed 
by materialized views (INDFIRST). We have 
implemented these alternatives on Microsoft SQL Server 
2000, and conducted extensive experiments to compare 
their quality and efficiency. These experiments (see 
Section 6.2.5) support the hypothesis that joint 
enumeration results in significantly better quality 
solutions than the two alternatives, and also shows the 
scalability of our approach.  

5.1. Selecting one feature set followed by the other 
In both MVFIRST and INDFIRST, if the global 

storage bound is S, then we need to determine a fraction f 
(0� f �1), such that a storage constraint of f*S is applied 
to the selection of the first feature set. After selecting the 
first feature set, all the remaining storage can be used 

when picking the second feature set. This raises the issue 
of how to determine the fraction f of the total storage 
bound to be allocated to the first feature set? In practice, 
the “optimal” fraction f depends on several attributes of 
the workload including amount of updates, complexity of 
queries; as well as the absolute value of the total storage 
bound. In our empirical evaluation of MVFIRST and 
INDFIRST we found that the optimal value of f changes 
from one workload to the next. Furthermore, even at this 
optimal data point, the quality of the solution is inferior in 
most cases compared to our approach (JOINTSEL). 
Another problem relevant to both INDFIRST and 
MVFIRST is redundant recommendations if the feature 
selected second is better for a query than the feature 
selected first. This happens since the feature set selected 
first is fixed and cannot be back-tracked subsequently. 

A further drawback of MVFIRST is that selecting 
materialized views first can adversely affect the quality of 
candidate indexes picked. This is because for a given 
query, the best materialized view is likely to be more 
beneficial than the best index since a materialized view 
can pre-compute (parts of) the query (via aggregations, 
grouping, joins etc.). Therefore, when materialized views 
are chosen first, they are likely to preclude selection of 
potentially useful candidate indexes for the workload.  

5.2. Joint Enumeration  
The two attractions of joint enumeration of candidate 

indexes and materialized views are: (a) A graceful 
adjustment to storage bounds, and (b) Considering 
interactions between candidate indexes and candidate 
materialized views that are not possible in the other 
approaches. For example, consider a query Q for which 
indexes I1, I2 and materialized view v are candidates. 
Assume that I1 alone reduces the cost of Q by 25 units and 
I2 reduces the cost by 30 units, but I1 and v together 
reduce the cost by 100 units. Then, using INDFIRST, I2 
would eliminate I1 when indexes are picked, and we 
would not be able to get the optimal recommendation {I1, 
v}. We use the Greedy(m,k) algorithm for enumeration, 
which allows us to treat indexes, materialized views and 
indexes on materialized views on the same footing. We 
demonstrate the quality and scalability of this algorithm 
for index and materialized view selection in Section 6.2.4. 

6. Experiments 
We have implemented the algorithms presented in this 

paper on Microsoft SQL Server 2000. In the first set of 
experiments, we evaluate the quality and running time of 
our algorithm for selecting candidate materialized views 
(Section 4). We demonstrate that: (1) Our algorithm for 
identifying interesting table-subsets for a workload 
(Section 4.1) does not eliminate useful materialized 
views, while substantially reducing the number of 
materialized views that need to be proposed. (2) The 
application of our view merging algorithm (Section 4.3) 
significantly improves quality of the recommendation 
specially when storage is at a premium.  

Our second set of experiments is related to the 
architectural issues in this paper. We show that: (1) Our 
candidate selection module (Figure 1) significantly 
reduces the running time compared to an exhaustive 
scheme that does not use this module, while maintaining 



     

high quality recommendations. (2) Our configuration 
enumeration module Greedy(m,k) gives results 
comparable to an exhaustive algorithm that enumerates 
over all subsets of candidates, and runs significantly 
faster. (3) Our approach for joint enumeration over the 
space of indexes and materialized views (JOINTSEL) 
gives significantly better solutions than MVFIRST or 
INDFIRST. 

6.1. Experimental Setup 
The experiments were run on two Dell Precision 610 
machines with 550 Mhz CPU and 256 MB RAM. The 
databases used for our tests were stored on an internal 
16.9 GB hard drive. 
Databases: The algorithms presented in this paper have 
been extensively tested on several real and synthetic 
databases as part of the shipping process of the tuning 
wizard for Microsoft SQL Server 2000. However, due to 
lack of space and the intrinsic difficulty of comparing our 
algorithms with “optimal” algorithms on large workloads, 
we limit our experiments to relatively small workloads on 
the TPC-H [20] 1GB database as well as one real-world 
database used within Microsoft to track the sales of 
products by the company.  Therefore, the experiments 
presented should be interpreted as illustrative rather than 
exhaustive empirical validation. 

 
 
 
Workloads: The workloads used in our experiments are 
summarized in Table 1. We created the synthetic 
workloads using a program that can generate Select, 
Insert, Delete and Update statements. The queries 
generated by this program are limited to Select, Project, 
Join queries with Group By and Aggregation. Nested sub-
queries connected via an EXISTS clause can also be 
generated. In all experiments we use the cost of the 
workload for the recommended configuration as a 
measure of the quality of that configuration. 

6.2. Experimental Results 

6.2.1. Evaluation of  algorithm for identifying 
interesting table-subsets 

In this experiment, we evaluate the reduction in 
number of syntactically relevant materialized views 
proposed by our algorithm (see Section 4.1) and its 
impact on quality compared to an approach that 
exhaustively proposes all syntactically relevant 
materialized views. We carry out this comparison for 
three workloads: TPCH-22 (the original benchmark), 
WKLD-4TBL, and WKLD-8TBL (see Table 1). We used 

a threshold of C=10%. Figure 6 shows that across all 
three workloads, our algorithm achieves significant 
pruning of the space of syntactically relevant materialized 
views. Furthermore, as seen in Figure 7, we see a small 
drop in quality. This experiment shows that our pruning is 
effective and yet does not miss out on important table-
subsets.  
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6.2.2. Evaluation of view merging algorithm 
Next, we illustrate the importance of view merging 

(Section 4.3) using workload WKLD-VM (see Table 1), 
which consists of 50 real-world queries (SPJ with 
grouping and aggregation). We compare two versions of 
our algorithm – with and without our view merging 
module. Figure 8 shows the improvement in quality of the 
solution as the total storage bound is varied from 2.2GB 
to 3.2 GB. We see that at low storage constraints the 
version with view merging significantly outperforms the 
version without view merging. As expected, when the 

Name #queries Remarks 
TPCH-22 22 TPC-H benchmark 
TCPH-UPD25, 
TCPH-UPD75 

25 
25 

25 % update statements 
75% update statements 

WKLD-4-TBL, 
WKLD-8-TBL 

100 
100 

Max 4-table queries 
Max 8-table queries 

WKLD-VM 50 Real-world workload 

WKLD-SCALE 
(n) 

n = 25, 50, 
75, 100, 125 

Workloads of increasing 
size 

Table 1. Summary of workloads used in experiments. 

Figure 6.  Reduction in syntactically relevant 
materialized views proposed compared to Exhaustive 

Figure 7. Comparison of quality of our 
algorithm to Exhaustive. 

Figure 8. Quality vs. storage bound with and 
without view merging. 



     

storage bound is increased, the two versions converge to 
the same solution. For the above workload the number of 
additional merged views proposed was about 19%, and 
the increase in running time due to view merging was 
about 9%. Finally, we note that yet another positive 
aspect of view merging is that it produces more compact 
recommendations (i.e., having fewer materialized views). 

 
 

6.2.3. Evaluation of Candidate Selection 
Table 2 compares the running time and quality of our 

approach to an exhaustive approach in which the 
candidate selection step (Section 4) is omitted, i.e. all 
syntactically relevant materialized views and indexes are 
considered in the configuration enumeration. In both 
cases, we use Greedy(m,k) as the algorithm for 
configuration enumeration.  Due to the large running time 
of the version without candidate selection, we restrict 
each workload to a small subset of the TPC-H workload. 
The table shows that candidate selection not only reduces 
the running time by several orders of magnitude, but the 
drop in quality resulting from this pruning is very small. 
This experiment emphasizes the importance of restricting 
enumeration to a set of candidates rather than all 
syntactically relevant indexes and materialized views. In 
Figure 9 we evaluate the scalability of our candidate 
materialized view selection technique (Section 4) as the 
workload size (using workloads WKLD-SCALE(n)) is 
increased from 25 to 125. We see that the number of 
candidate materialized views grows approximately 
linearly with the workload size. 

6.2.4. Evaluation of  Enumeration algorithm 
In this experiment, we show that the Greedy(m,k) 
algorithm for configuration enumeration  over the space 
of candidate indexes and materialized views: (a) performs 
well with respect to quality of recommendation compared 
to an exhaustive algorithm that enumerates over all 
subsets of candidates and (b) is significantly faster than 
the exhaustive approach. Table 3 shows that the 
Greedy(m,k) algorithm (with m=2) gives a solution that is 
comparable in quality to exhaustive enumeration, while it 
runs about an order of magnitude faster on both 
workloads. 

6.2.5. JOINTSEL vs. MVFIRST vs. INDFIRST  
We first compare the quality and running time of our 

architecture for selecting indexes and materialized views, 
JOINTSEL (Section 5.2), with the two alternative 

architectures MVFIRST and INDFIRST (Section 5.1). 
We study the quality of these alternatives when they are 
not subject to any storage constraint (i.e., storage = 
). 
Table 4 shows that even with no storage constraint the 
quality of solution using MVFIRST is significantly worse 
than the quality of JOINTSEL, particularly in the 
presence of updates in the workload. This confirms our 
intuition that picking materialized views first adversely 
affects the subsequent selection of indexes (see Section 
5.1) even in a query only workload (TPCH-22). In the 
presence of updates, the solution of MVFIRST 
degenerates rapidly (TPCH-UPD25) compared to 
JOINTSEL. We therefore drop this alternative from 
further experiments. We note that the quality of 
INDFIRST is comparable to JOINTSEL on TPCH-22 
when storage is not an issue. In the presence of updates 
(TPCH-UPD25) however, the INDFIRST 
recommendations are inferior compared to JOINTSEL. 
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Workload Drop in quality of 
MVFIRST 

compared to 
JOINTSEL 

Drop in quality 
of INDFIRST 
compared to 
JOINTSEL 

TPCH-22 8% 0% 
TPCH-UPD25 67% 11% 

 
 
 

Next, we compare the quality of JOINTSEL and 
INDFIRST with varying storage. INDFIRST (f) denotes 
that fraction f of the total additional storage space is 
available for indexes. (with f = 0.25, 0.50, 0.75). We vary 
the additional storage allowed (s) between 25% of the 
current database size to 100% of the current database size. 
Figure 10 shows that JOINTSEL consistently outperforms 
INDFIRST for the TPCH-22 workload. In addition, we 
observe that for s=1, f=0.75 is the optimal partitioning 

Workload Ratio of 
running 
time 

% improv. 
in quality 
Without  

% improv. 
in quality 
With  

TPC-H queries 
Q1, Q2, Q3 

64 98.1% 97.6% 

TPC-H queries 
Q4, Q5 

13 93.6% 93.6% 

TPC-H queries 
Q6, Q7, Q8 

31 73.4% 73.4% 

TPC-H queries 
Q9,Q10,Q11 

14 66.6% 60.1% 

Workload Ratio of 
Running Time: 
Exhaustive to 
Greedy (m, k) 

% improv 
in quality 

with 
Exhaustive  

% improv 
in quality 

withGreedy 
(m, k)  

TPCH-22  11 83% 81% 
TPCH-
UPD25 

9 79% 77% 

Table 2. Comparison of schemes with and without the 
candidate selection module. 

Table 4. Comparison of alternative schemes without 
storage bound (i.e., storage = 
) 

Figure 9. Scalability of candidate materialized view 
selection with workload size 

Table 3. Comparison of Greedy(m,k) and exhaustive 
enumeration algorithms. 



     

fraction whereas for s=0.5, f=0.50 is the right fraction. 
For a given database and a workload, the optimal storage 
partitioning varies with the storage constraint. Finally, 
we study the behavior of INDFIRST vs. JOINTSEL for 
three workloads and a fixed total storage, as the fraction 
of storage allotted to indexes (f) is varied. Figure 11 
shows that the best allocation fraction is different for each 
workload, e.g., f = 0.25 is best for TPC-H and TPCH-
UPD25 but f = 0.50 is optimal for TPCH-UPD75. For a 
given database and a storage space, the “right” partition 
varies with the workload. In contrast, we see the 
consistently high quality of JOINTSEL across various 
workloads. We also note that the running time of 
JOINTSEL and INDFIRST are comparable to one another 
(within approximately 10% of each other for the 
workloads we experimented with). For example, for the 
data point where additional storage allowed = 100%, for 
the TPCH-22 workload, JOINTSEL is slightly faster than 
INDFIRST (f=0.50) by about 4% whereas for the TPCH-
UPD25 workload, INDFIRST is faster by about 6%.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Conclusion 
The architecture and novel algorithms presented in this 
paper are the foundation of a robust physical database 
design tool for Microsoft SQL Server 2000 that can 
recommend both indexes and materialized views. In a 
recent paper, Kotidis et al.[13] present a technique for 
OLAP databases to dynamically determine which 
materialized views should be maintained. Extending this 
paradigm to SQL workloads is a significantly more 
complex problem, but is worth exploring. Another 
challenging task is developing a theoretical framework 
and appropriate abstractions for physical database design 
that is able to capture complexities of the physical design 
problem, and thus enables us to compare properties of 

alternative algorithms. Finally, note that indexes and 
materialized views are only a part of the physical design 
space. In the context of the AutoAdmin project [1], we 
continue to pursue our long-term goal of a complete 
physical design tool for SQL databases.  
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Figure 11. Quality of INDFIRST vs. JOINTSEL 
with varying storage partitioning (f). 
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Figure 10.  Quality of INDFIRST vs. 
JOINTSEL with varying storage bound. 
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