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Abstract

In this paper we discuss indezing methods for On-Line Analytical Processing (OLAP) databases.
We start with a survey of existing indering methods and discuss their advantages and shortcom-
ings. We then propose extensions to conventional multidimensional indezing methods to make
them more suitable for indexing OLAP data. We compare and contrast R-trees with bit-mapped
indices which is the most popular choice for indering OLAP data today.

1 Introduction

Decision support applications are increasingly relying on data warehouses to understand and analyze
their businesses. These applications often require fast interactive response time to a wide variety of large
aggregate queries on huge amounts of data. Current relational database systems have been designed
and tuned for On-Line Transaction Processing (OLTP) and are inadequate for these applications. On-
Line Analytical Processing (OLAP) [CCS93] databases have been designed to close this gap and meet
the needs of decision support applications. As a result, several OLAP products have appeared on the
market (see [Rad95], [Gri96] for a survey). These systems provide fast response time by pre-computing
a large number of anticipated aggregate queries [GBLP96, AAD*96, HRU96] and making extensive
use of specialized indexing methods on multiple attributes of the data. In this paper, we will discuss
the problem of indexing OLAP data.
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Contents We first consider an example OLAP database and review relevant terminologies in Sec-
tion 1.1. We then discuss the desired features of a good OLAP indexing method and highlight why
indexing OLAP data is different from indexing OLTP data in Section 1.2. We then briefly discuss in
Section 2 some of the popular indexing methods in use today. One alternative that has not been ex-
plored is using conventional multidimensional indexing methods like R-trees for indexing OLAP data.
In Section 3 we discuss how R-trees can be modified to take advantage of the special characteristics of
OLAP data and thus be more useful for indexing OLAP data. We argue how, in many cases, R-trees
could out-perform the popularly used bit-mapped indexing methods.

1.1 Terminology

Consider a database that contains point of sale data about the sales price of products, the date of sale
and the store which made the sale. Conceptually, this cube can be viewed as a multidimensional cube.
In this cube, attributes like product, date, store which together form a key are referred to as dimen-
stons, while the attributes like sales are referred to as measures. There can be multiple measures like,
quantity, projected sales, profit associated with a given record. Dimensions usually have associ-
ated with them hierarchies that specify aggregation levels and hence granularity of viewing data. Thus,
day — month — quarter — year is a hierarchy on date. Similarly, product name — type — category
is a hierarchy on the product dimension. In addition to hierarchies, dimensions can have other at-
tributes (called non-dimension attributes) like “color of product” and “owner of store” associated
with them. There are two implementation approaches for OLAP data: MOLAP (multidimensional
OLAP) where data is stored as a multidimensional data cube with the dimensions forming the axis of
the cube and ROLAP (relational OLAP) where data is stored in tables. ROLAP systems often organize
data using the star-schema where a central fact table stores the encoded dimension values (like 4-byte
product-id, store-id, data-id) and all the measures and individual dimension tables store hierarchies
and other associated non-dimension attributes for each dimension. See [CD96] for a detailed survey.

1.2 Requirements on an indexing method

Example 1: We give below some queries to provide a flavor of multidimensional queries. These queries
use the cube from the previous section.

e Give the total sales for each product in each quarter of 1995.
e In 1995, for each store give the products with the top 5 sales.

e For store “Ace” and for each product, give difference in sales between Jan. 1995 and Jan. 1994.

Select top b stores for each product category for last year, based on total sales.

For each product category, select total sales this month of the product that had highest sales
in that category last month.
e Select stores that currently sell the highest selling product of last month.

e Select stores for which the total sale of every product increased in each of last 5 years.

Based on these queries, we can enlist the following requirements on a good OLAP indexing method.

Symmetric partial match queries Most of the OLAP queries can be expressed conceptually as a
partial range query where associated with one or more dimensions of the cube is a union of range of
values and we need to efficiently retrieve data corresponding to this range. The extreme case is where
the size of the range is one for all dimensions giving us a point query. The range could be continuous,
for instance, “time between Jan “94 to July “94” or discontinuous, for instance, “first month of



every year” and “product IN {soap, shirts, shoes}”. It is desirable to extend the index traversal
techniques to allow a collection of key values to be searched simultaneously instead of doing the search
one value at a time. Typically, the cardinality of the range is one for most dimensions except a few.
Also, there is no fixed set of dimensions on which the predicates are applied: therefore, ideally we
would like to symmetrically index all dimensions of the cube.

Sometimes, it might be necessary to index the non-dimension attributes of a dimension too. The
measure attributes can also be treated as dimensions in some cases and it is useful to index them.
For instance, an analyst might be interested only in products whose total sales is greater than some
amount. Queries of the form: “top-5 selling products in each category” are also common in OLAP
and could benefit from a combined index on product category and sales.

OLTP queries differ from the OLAP queries discussed above in that most OLTP queries typically
access small amounts of data. In OLTP databases, point queries are more common. Also, multiple
predicates on many attributes at the same time is less common than in OLAP application.

Indexing at multiple levels of aggregation Most OLAP databases pre-compute multiple group-
bys corresponding to different levels of aggregations of the base cube. For instance, groupbys could
be computed at the <product-store> level, <product-time> and <time> level for a base cube
with dimensions product, store and time. It is equally important to index the summarized data.
An issue that arises here is whether to build separate index trees for different levels of aggregation or
whether to add special values to the dimension and index precomputed summaries along with the base
level data. For instance, if we index sales for <product-year>, then we can store total-sales at
the <product> level by simply adding an additional value for the year dimension corresponding to
“ALL” years and storing total-sales for each product there. Similarly values along hierarchies can
be handled by extending the domain of the dimensions.

Multiple traversal orders B-trees are commonly used in OLTP systems to retrieve data sorted on
the indexed attribute. This is often a cheaper alternative to doing external sorts. OLAP databases,
because of the large number of group-bys that they perform, can also benefit from using indices to sort
data fast. The challenge is in allowing such a feature over multiple attributes instead of a single one
and also for any permutation of any subset of the attributes.

Efficient batch update OLAP databases have the advantage that frequent point updates as in
OLTP data is uncommon. However, the update problem cannot be totally ignored. Making batch
updates eflicient is absolutely necessary. It is not uncommon for multinational organizations to update
data as high as four times a day since daily data from different locations of the world appear at
different times. On the other hand, these updates are clustered by region and time. This property can
be exploited in localizing changes and making updates faster.

Handle sparse data Colliat in [Col96] states that typically 20% of the data in the logical OLAP
cube are non-zero. However, as the OLAP model is finding newer applications, it is desirable to have
an indexing method that is not tied to any fixed notions of sparsity. Therefore, the ideal method should
scale well with increasing sparsity.

2 Existing methods

We classify existing indexing methods into four classes. The first class consists of methods that are based
on using multidimensional arrays. The methods of the second class are based on bit-mapped indices.



The third class consists of hierarchical methods and finally the fourth class includes conventional
multidimensional indices originally designed for spatial data.

2.1 Multidimensional array-based methods

Logically, the OLAP data cube can be viewed as a multidimensional array with the key attributes
forming the axis of the array. The ideal indexing scheme for this logical view of the data would
have been a multidimensional array if the data cube were dense. Any exact or range query on any
combination of attributes could have been easily answered by algebraically computing the right offsets
and fetching the required data. But since most OLAP data is not dense, several alternatives have been
proposed that attempt to handle sparsity while staying as close as possible to the array model. A good
example of this is Essbase’s proprietory indexing scheme [Ear94] that we discuss next.

In Essbase [Ear94], the user identifies a set of dimensions of the cube that are dense meaning that
each combination of values formed out of the dense dimensions has high likelihood of data associated
with it. These are the dense dimensions D, the remaining dimensions belong to the sparse set S. A
index tree is constructed on the combination of values of the sparse dimensions. Each entry in the
leaf of the index tree points to a multidimensional array formed by the dense dimensions D. This
array, called a block, stores in its cells all the measure values. The dimension fields (which are often
arbitrary strings) are mapped to continuous integers which determine the contiguous positions of the
multidimensional arrays. The arrays of dense dimensions may not all be dense. Therefore, they are
further compressed where necessary.

Consider an example of a four dimensional cube where product and store are identified as sparse
dimensions and time and scenarios belong to the dense set. A B-tree index is built on the product-
store pair and for each pair of values where data is present, a 2-dimensional array of time and
scenarios is stored. When a query arrives with a restriction on one or more sparse dimensions the
index tree is searched on the sparse dimension, and for each matching block, the restrictions if any, on
the dense dimensions are used to get the right offsets in the block. Before searching the index tree the
mapping tables are used to convert required values to their integer maps.

We will now evaluate how this method meets the requirements of Section 1.2. Assume that a B-tree
is used to index a concatenation of fields from the sparse dimensions. A point query is fast since we first
search the B-tree on the sparse dimensions and then calculate the array offsets to reach the data in the
dense dimension. The hope is that the sparse index is small and can fit in memory [Col96]. Thus, we
go to the disk only for data. When the sparse index does not fit in memory, the performance of a query
that retrieves a range of values on a dimension that is not one of the outermost dimension will result
in multiple searches. In the above example, if we built a B-tree on the concatenation of product and
store, then a query of the form, “store = Ace” will require us to make multiple searches for different
values of products. Note that other methods like R-trees will be better in this regard. If there are
predicates only on the dense dimensions, one can directly calculate the right offsets in the blocks and
visit the linked array blocks in turn. It is not clear, how non-dimension and summary attributes are
indexed. Batch updates with this method is efficient because the data can be first sorted in the index
order (the sparse dimensions first in the same order as the compound key, the dense dimensions later
in the same order as the array storage order) and then the index structure can be updated as a batch.
Precomputed summaries are stored in the same index as the base cube. The success of this method
depends on the ability to find enough dense dimensions, failing which, this reduces to B-tree on multiple
attributes and inherits are its disadvantages [LS90].



2.2 Bit-mapped indices and variations

When data is sparse, a good option is not to index the multidimensional data space but index each
of the dimension space separately as in bit-mapped indices. This is a popular method used by several
vendors. Different vendors have different variants of the basic method [OG95] that we discuss next.

Each dimension of the cube has associated with it a bit-mapped index. In the simplest form, a
bit-mapped index is a B-tree where instead of storing RIDs for each key-value at the leaf, we store a
bit-map. The bit-map for value “v” of attribute “A” is an array of bits where each bit corresponds to
a row of the fact table (or a non-empty cell of the data cube). The bit is a “1” only at those positions
where the corresponding row has value “v” for attribute A.

Exact match queries on one or more dimension can be answered by intersecting the bit maps from
multiple dimensions. Limited kinds of range queries can also be answered by ORing the bit-maps
for different values of the same dimension and finally ANDing them with the bit-map of the other
dimension as suggested in [OG95].

Major advantages of this method is that: (1) for low cardinality data, bit maps are both space and
retrieval efficient. Bit-operations like AND/OR/NOT/COUNT are more efficient than doing the same
operations on RID lists. (2) Access to data is clustered since the bit-map order corresponds to the
data storage order. (3) All dimensions are treated symmetrically and sparse data can be handled the
same way as dense data. (4) If required, data can also be retrieved in any arbitrary sorting order of
dimensions by traversing the bit-maps in a certain order. However, using the indices to retrieve data
in a particular order, can result in a loss of the clustered data access property discussed in item (2).

The major disadvantages of bit-mapped indices is: (1) ORing bit maps for range queries might be
expensive. The number AND operations is limited to the number of dimensions and is therefore small
in most cases. However, the number of OR operations can be large for many queries since each value
in a range of a dimension will incur a OR operation. (2) the increased space overhead of storing the
bit-maps especially for high cardinality data. (3) Batch updates can also be expensive since all bit-map
indices will have to modified for even a single new row insertion.

In short, this approach is only viable when the domain of each attribute is small. Otherwise, the
space overhead and the bit processing overhead could be probatively large. We next discuss some of
the techniques used by vendors to deal with these disadvantages.

Compression Bit-maps are often compressed to reduce space overhead. But, this implies that the
overhead of decompression has to be incurred during retrieval or one has to rely on methods of doing
“AND” and “OR” operations on compressed bit-maps [GDCG91]. For simple compression schemes
like run-length encoding it is easy to design AND/OR algorithms that work on compressed data.
However, it is necessary to keep the cost of these operations low since one of the main reasons for using
bit-mapped indices is that it enable fast bit operations.

Hybrid methods Since bit-maps are not appropriate for high cardinality data, some products [Ede95]
follow a hybrid approach where a plain B-tree is used when the list of qualifying RIDs per entry is
small, otherwise a bit-mapped index is used.

Dynamic bit-maps Another approach (used by some vendors) to handle high cardinality data and
large range queries is to construct the bit-maps dynamically from vertically partitioned fact table as
follows. Each column stores a compressed representation of the values in the column attribute. For
instance, if there are n different values of a particular attribute, we map the values to continuous
integers and represent each value in the column by only logn bits which represents its integer map.
When a predicate requires a subset of values in that column, the required values are converted to



their integer maps and represented in an in-memory array or hash-table. Now, the column partition is
scanned and for each value, the in-memory array is probed. Depending on whether a match is found
or not, a 1 or a 0 is stored at the row position of a bit-map that is constructed dynamically. This
process is repeated for predicates on other columns. At the end of scanning all queried columns we
have a bit-map with a 1 at the row positions that satisfied all predicates. This bit-map can be further
AND-ed with a bit-map obtained from a bit-mapped B-tree index on a low-cardinality column.

2.3 Hierarchical indexing methods

Both of the above schemes index data aggregated at different levels of detail the same way. Thus,
measures summarized at the product level are indexed the same way, in the same indexing structure
as measures at the product-store level. A different approach is followed by hierarchical indexing
methods as proposed by Dimensional Insight [Pow93] and Johnson and Shasha [JS96]. In these schemes,
we first build an index tree on the product dimension and store summaries at the product level. Each
product value, contains a separate index at the store level and stores summaries at the product-store
level and so on. Summaries at the store level are kept in a separate index tree on store. In general,
the number of such index trees can grow exponentially, [JS96] discusses how to cut down the number
of trees based on commonly asked queries.

The main advantage of the hierarchical indexing schemes is that data at higher levels of aggrega-
tions that is typically accessed more frequently can be retrieved faster than the larger detailed data.
Also, dimensions are symmetrically handled and data can be retrieved in a sorted order for several
permutation of dimensions. The main disadvantage is the widely increased index storage overhead
and thus a decrease in update efficiency. The average retrieval efficiency can also suffer because large
indexing structures often implies poor caching and disk performance.

2.4 Multidimensional indices

Another alternative for indexing OLAP data is to apply one of the many existing multi-dimensional
indexing methods designed for spatial data (see [Gut94] for an overview). This alternative is not well
explored in the commercial arena. The widely cited reasons being that these schemes do not scale well
with increasing dimensionality and that for predicates on multiple categorical attributes a cartesian
product of the keys will need to be searched. However, some of these indexing methods offer certain
advantages which should be deployed in indexing OLAP data, albeit with some modifications. One of
the key features of several indexing schemes like R-trees and Grid files is symmetric treatment of all
dimensions without incurring the space overhead of the hierarchical indexing methods or processing
overhead of doing bit operations as in bit-mapped indices. We discuss in Section 3 how some OLAP-
specific optimizations can be applied to such indexing methods. This is a summary of the results being
reported in [Sar97].

3 Optimizing R-trees for efficient access to OLAP data

The OLAP matrix is sparse but not uniformly so. There are typically rectangular shaped regions of
density. For instance, a supplier might be selling to stores only in a particular region. Hence, for
that supplier all other regions will have NULL values. Ideally, we do not want to explicitly index
dense regions since we can directly compute the array offset. We propose extending the indexing
method to allow nodes of two types: 1. rectangular dense regions that contain more than a threshold
number of points in that region and 2. points in sparse regions. For the dense clusters we only store
the boundaries. It is like doing run-length encoding on points in multidimensional space. The dense



cluster itself is stored as a multi-dimensional sub-array elsewhere. For instance, if we can find a 10 by
10 rectangular dense cluster of 100 points in an otherwise sparse two-dimensional array, we can index
all 100 points in that sub-array using a single rectangle instead of inserting 100 individual points in
the index. The index entry for the rectangle would point to the 100-point sub-array stored elsewhere.
Searching the index for a point in the sub-array would first return the boundaries of the rectangle
and then we use array offset calculations to reach to the exact point in the sub-array. This idea of
indexing dense regions generalizes the approach used by Arbor software for indexing OLAP data. Their
approach is to manually identify dense and sparse dimensions. We believe that, one is more likely to
find dense regions rather than dense dimensions. For instance, if we have a 2-D data cube with the
bottom-right quarter dense and the rest of the region sparse, the Arbor approach will not be able to
extract any dense dimensions.

3.1 Storing Dense clusters

The issues that arise in storing the dense clusters are similar to the ones used for storing duplicates
in a B-tree access method as discussed in [GR94]. Each dense-cluster entry in the R-tree contains
the boundary of the dense cluster and a pointer to a variable length array. The array itself can be
organized in one of two ways. Each entry of the array can either be (1) a TID (tuple identifier) or (2)
the tuple itself. In either case, the entries of all sub-arrays can be concatenated one after another and
stored as a single tuple stream as discussed in [GR94]. The advantage of the second approach is lower
storage overhead and fewer I/Os during retrieval. But the disadvantage is that, the indexed relation
has to be organized in the order determined by each dense clusters. An advantage of the first approach
is that missing combinations in any dense cluster will incur smaller storage overhead than with the
second approach. In either case, we can use array clustering techniques as discussed in [SS94, Jag90]
to improve spatial locality instead of storing the array in the linear fortran order that destroys spatial
locality.

3.2 Finding Dense clusters

In many cases, the dense clusters can be identified at the high level by a domain expert. For instance,
it might be possible for the DBA, to infer that certain stores sell all products or that some collection
of products are sold everyday in every store or that woolen clothes are sold in all store in all winter
months and so on. In the absence of such knowledge, one can use clustering algorithms to automate
the search for dense regions. The requirements on the clustering algorithms are slightly different in our
case because we require that each cluster be rectangular. Hence, our goal is to find rectangular shaped
regions so that the fraction of points present in any such regions is more than such fixed threshold.
Such algorithms [BR91, SB95] are common-place in image analysis and other applications of similar
flavor. It is necessary, however, to evaluate how these algorithms scale with input size and how well
they handle arrays of dimensionality greater than two.

3.3 Comparing Bit-mapped indices and R-trees

Multi-dimensional index trees like R-trees have a number of advantages over bit-mapped indexing
schemes. Exact match and range queries on multiple dimensions can be answered by simply searching
the index tree. The overhead of bit ANDing/ORing operations can thus be avoided. The space overhead
will be smaller because R-trees only index the region where points are present and hence do not index
the “0”s as in the bit-mapped techniques. R-trees also can be expected to be more space-efficient than
bit-mapped indices especially when the bit-maps are not compressed. When they are compressed, the



overhead of ANDing/ORing will increase and thus the retrieval performance could suffer. R-trees also
are more efficient to update than bit-mapped indices.

However, there could be situations where a search on the R-tree could take longer than bit AND-
ing/ORing operations on an index tree especially when the query rectangle is large. R-trees are better
when most of the dimensions have predicates on them. Their performance can be expected to be worse
when only a few dimensions are restricted, this may not be a big handicap since most OLAP queries
leave at most two dimensions unspecified since cross-tabular presentations are cumbersome for larger
than two dimensions. The exact difference will depend on the number of such dense clusters one can
find.

Thus, in conclusion, we can state that, R-trees should be preferred when partial search queries
have few unspecified dimensions, the dense regions are large, overhead of bit operations are high, and
updates more common. Bit-maps should be prefered when dimensions have low cardinality, queries
have few restricted dimensions and data is very sparse so that the chance of finding dense regions is
small.
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