
1

1

Recent Advances in 
Query Optimization

Tutorial by:

S. Sudarshan
IIT Bombay
sudarsha@cse.iitb.ernet.in
www.cse.iitb.ernet.in/~sudarsha

S. Sudarshan: Recent Advances in Query Optimization 2

Talk Outline

aSystem R, Volcano 
aRecent extensions (including OODBs, ORDBs)
aOLAP
aMaterialized views: 
` maintenance, use and selection, continuous queries

aCaching of Query Results
aData Warehouses and Virtual Warehouses



2

S. Sudarshan: Recent Advances in Query Optimization 3

System R

aJoin order selection
`A1     A2       A3       ..      An
`Left deep join trees 

`Dynamic programming
⌧Best plan computed for each subset of relations

• Best plan (A1, .., An) = min cost plan of(
A1        Best plan(A2, .., An)
A2        Best plan(A1, A3, .., An)
….
An        Best plan(A1, .., An-1)) 

Ai

Ak

S. Sudarshan: Recent Advances in Query Optimization 4

System R (cont)

aSelects and projects pushed down to lowest 
possible place

aSort order
`join may be cheaper if inputs are sorted on join attr
`=> Best plan(set-of-relations, sort-order)

aStarburst (successor to System R)
`retains single query block-at-a-time cost based 

optimization
`+ heuristic Query Rewrite 
⌧including decorrelation of nested queries



3

S. Sudarshan: Recent Advances in Query Optimization 5

Decorrelation

aIdea: convert nested subqueries to joins
aConsider

select * from emp E
where  E.numchildren <> 

(select  count(*)  from person
where person.parent = E.name

aCan’t always express using basic rel. algebra
aLong history: 
`special cases: Kim 88, Dayal 88, Muralikrishna 93 
`general case: P. Seshadri et al 95: use outerjoin  

S. Sudarshan: Recent Advances in Query Optimization 6

Decorrelation (cont)

aPushing semijoins into decorrelated query
`use selections on correlation variables
⌧select * from R, S 

where R.A = S.A and R.B = (select min(T.B)
from T where T.A=R.A)

⌧don’t evaluate groupby/min on all of T:
⌧ GB T.A, min(T.B) (T SJ T.A=R.A (R      R.A=S.A S)



4

S. Sudarshan: Recent Advances in Query Optimization 7

Magic Rewriting

aRecursive views are now part of SQL-3, 
supported by DB2 and Oracle already

aMagic rewriting pushes semijoins through 
recursive views
`path (X, Y) :- edge (X, Y)

path (X, Y) :- edge (X, Z), path(Z, Y)
Query:  ?path(Pune, Y)                  

aLong history, see survey by Ramakrishnan and 
Ullman

S. Sudarshan: Recent Advances in Query Optimization 8

Predicate Movearound

aIdea:  pull R.A=5 up, infer S.A=5, and
push S.A=5 down into subtree S

aGeneralizes to any constraints
aHistory:  
` Fold/unfold transformation in logic programs
`Aggregate constraints and relevance  RS, VLDB91
`Fold/unfold and constraints  RS, ILPS 92
`for SQL  LMSS, SIGMOD 93

aAggregate constraints

σ R.A=5

R

S

GB A, min(B)

R

S



5

S. Sudarshan: Recent Advances in Query Optimization 9

Volcano Extensible Query 
Optimizer Generator

aGeneral purpose cost based query optimizer, 
based on equivalence rules on algebras
`eg equivalences: join associativity, select push down, 

aggregate push down, etc
`extensible: new operations and equivalences can be 

easily added
`notion of physical properties generalizes “interesting 

sort order” idea of System R
`Developed by Graefe and McKenna 1993

a Follow up to EXODUS, but much more efficient

S. Sudarshan: Recent Advances in Query Optimization 10

Key Ideas in Volcano

aDAG representation of query
`Equivalence node and operation nodes
`Compactly represents set of all evaluation plans
⌧choose one child of each equivalence node, and 

all children of operation nodes
ABC

AB AC BC

A B C



6

S. Sudarshan: Recent Advances in Query Optimization 11

Key Ideas of Volcano (Cont)

aHashing scheme used to efficiently detect 
duplicate expressions 
`gives ID to each equivalence node, hash function of 

operation nodes based on Ids of child equivalence 
nodes

aPhysical algebra also represented by DAG
aBest plan found for each equivalence node 
`use cheapest of child operation nodes
`dynamic programming: cache best plans
`branch and bound pruning used when searching 

S. Sudarshan: Recent Advances in Query Optimization 12

Main Benefits of Volcano

aHighly Extensible
`can handle arbitrary algebraic expressions
`new operators and equivalence rules easy to add
⌧must be careful of search space though

aYet (reasonably) efficient 
`generalizes the dynamic programming idea of 

System-R optimizer
`Optimizations of Pellenkroft et al. [VLDB 97] 

eliminate  redundant derivations for joins

aIdeas are used in MS SQL Server and Tandem



7

S. Sudarshan: Recent Advances in Query Optimization 13

Parametrized Query 
Optimization
aSome parameters to the query may not be 

available at optimization time
`selection constants (e.g. in stored procedures)
`memory size

aIdea:
` come up with a set of plans optimal at different 

points in parameter space, 
`select best when parameters are known at run time

aWork in this area
`Ganguly [VLDB 1998], Ganguly and Krishnamurthy 

[COMAD 95], Ng et al [SIGMOD 92]

S. Sudarshan: Recent Advances in Query Optimization 14

Parametric Query Opt (Cont)

aResults of Ganguly [1998]
`Number of parametrically optimal queries is quite 

small, so idea is practical
`nice algorithms for single parameter case
`extended above to two parameter case, but general 

case is harder

aOptimization for best expected case
(P. Seshadri, PODS 99)



8

S. Sudarshan: Recent Advances in Query Optimization 15

Sampling and Approximate 
Query Answering

aIn databases, sampling originally proposed for 
query size estimation (estimate need not be 
perfect) Li and Naughton [94], Olken [93]

aUsed today for generating quick and dirty (fast 
but approximate) results
`especially for aggregates on large tables

aOnline aggregates (Hellerstein ..)
aGenerating histograms (Ioannidis ..)

S. Sudarshan: Recent Advances in Query Optimization 16

Optimization in OODB/ORDBs

aMajor issues
`Path expressions:
⌧e.g. forall ( p in person) print (p->spouse-

>name)
⌧can convert pointer dereferences to joins
⌧can “assemble objects” in a clever sequence to 

minimize I/O (Graefe 93, Blakeley et al, Open 
OODB optimizer 95)

`Path indices
⌧e.g. forall (p in person suchthat

p->spouse->name = “Rabri”) …



9

S. Sudarshan: Recent Advances in Query Optimization 17

Optimization in ORDBs

`Expensive predicates/functions in selects/projects
⌧e.g. selects based on image manipulation
⌧usual heuristic of “push select predicates to 

lowest possible level’’ does not work
⌧Hack to System R: treat predicates like joins 

• not an issue with Volcano
• also heuristics to limit search space (Hellerstein and 

Naughton (93,94), Chaudhuri et al (93)

S. Sudarshan: Recent Advances in Query Optimization 18

Extended ADTs

aADTs are a simple way to add new types to a 
database.  Used extensively in data 
blades/cartridges/…

aExtended ADTs -- understand some semantics 
of ADT functions, and optimize
`e.g. if Image.smooth().clip(10,10)  is equivalent to 

Image.clip(10,10).smooth choose the one that is 
cheaper to compute

`Predator ORDB supports such optimizations 
(P. Seshadri [1998])



10

S. Sudarshan: Recent Advances in Query Optimization 19

Multi Query Optimization

aIdea:  Given a set of queries to evaluate, exploit 
common subexpressions by materializing and 
sharing them

aProblems:  Many equivalent forms of a query
`Some have CSE, others dont.  E.g.:
⌧R     S     T and  R     P     S  versus
⌧R     S     T     and  R     S     P

aExhaustive algos: Sellis [1988], and others
`try every combination of forms of every query.  
`problem: cost is doubly exponential

S. Sudarshan: Recent Advances in Query Optimization 20

Multi Query Optimization (Cont)

aHeuristics
`Find best plans for each query, look for CSEs in best 

plans
⌧Subramaniam and Venkataraman [SIGMOD98]
⌧Volcano SH [RSSB99]

`When optimizing query i, treat subparts of plans for 
earlier queries as available cheaply
⌧Volcano RU [RSSB99]



11

S. Sudarshan: Recent Advances in Query Optimization 21

Greedy Heuristics for MQO

aGreedy heuristic:
`Repeat
⌧find subexpression which if materialized and 

shared will give most benefit (cheapest plan)
• subproblem: given some subexpressions are  

materialized, find best plans for given queries
• also: update the best plans incrementally as new 

subexpressions are checked for materialization

⌧materialize above subexpression
`Until no further benefits can be got

S. Sudarshan: Recent Advances in Query Optimization 22

Greedy Heuristic (Cont)

aMonotonicity addition to greedy heuristic:
`Benefit of materializing a subexpression cannot 

increase as other subexpressions are materialized
`Assume above, and keep heap of overestimates of 

benefits -- reduces number of benefit recomputations

aPerformance study shows greedy heuristic gives 
very significant benefits on TPCD queries at 
reasonable cost

aVolcano-SH and Volcano-RU are very fast but 
give much less benefits than Greedy



12

S. Sudarshan: Recent Advances in Query Optimization 23

OLAP - Data Cube

aIdea: analysts need to group data in many 
different ways
`eg. Sales(region, product, prodtype, prodstyle, date,

saleamount)
`saleamount is a measure attribute, rest are 

dimension attributes
`groupby every subset of the other attributes 
⌧precompute above to give online response

`Also:  hierarchies on attributes:  date -> weekday, 
date -> month -> quarter -> year

S. Sudarshan: Recent Advances in Query Optimization 24

OLAP Issues

aMOLAP:  cube in memory, multi-dimensional 
array

aROLAP:  cube in DB, represented as a relation
a

  Type       Size      Colour  Amount
Shirt 14 Blue 10
Shirt 20 Blue 25
Shirt ALL Blue 35
Shirt 14 Red 3
Shirt 20 Red 7
Shirt ALL Red 10
Shirt ALL ALL 45
… … … …
ALL ALL ALL 1290



13

S. Sudarshan: Recent Advances in Query Optimization 25

Data Cube Lattice

aCube lattice
` ABC

AB AC   BC

A B C

none

aCan materialize some groupbys, compute others 
on demand

aQuestion:  which groupbys to materialze?
aQuestion:  what indices to create
aQuestion:  how to organize data (chunks, etc)

S. Sudarshan: Recent Advances in Query Optimization 26

Cube: Selecting what to 
materialize

aBasic cube: materializes everyting
aGreedy Algo:  max benefit per unit space 
`benefit computation takes into account what is 

already materialized
`Harinarayanan et al [SIGMOD 96], Gupta [ICDE97], 

Labio et al …

aSmallest Algo
`Deshpande et al [SIGMOD 98]



14

S. Sudarshan: Recent Advances in Query Optimization 27

Materialized Views

aCan materialize (precompute and store) views 
to speed up queries
`Incremental maintenance
⌧when database is updated, propagate updates to 

materialized view
`Deciding when to use materialized views
⌧even if query does not refer to materialized view, 

optimizer can figure out it can be used
`Deciding what to materialize
⌧based on workload, choose best set of views to 

materialize, subject to space constraints

S. Sudarshan: Recent Advances in Query Optimization 28

Incremental View 
Maintenance

aE.g.   R      S
(R  U  ir)      S = R     S  U   ir S
(R  - dr)      S = R     S  - dr S

asimilar techniques for selection, projection 
(must maintain multiplicity counters though) 
and aggregation

aBlakeley et al. [SIGMOD 87], Gupta and Mumick 
survey [DE Bulletin 95].



15

S. Sudarshan: Recent Advances in Query Optimization 29

Continuous Querying

aIdea: define a query, results get updated and 
shown to you dynamically, as base data 
changes

aE.g. applications:  
`network monitoring, stock monitoring
`alerting systems (e.g., new book arrived in library)
⌧better than triggers for this application

aImplementation techniques similar to 
materialized view maintenance

aMaier et al, SIGMOD 98 demo session

S. Sudarshan: Recent Advances in Query Optimization 30

When to Use Materialized 
Views

aLet V = R     S be materialized
aQuery may V, but may still be better to replace 

by view definition.  Eg selection on V
aQuery may use R     S, but may be better to 

replace by V
aJob of query optimizer
`Chaudhuri et al [ICDE95]
`Falls out as special case of multiquery optimization 

algos of RSSB99



16

S. Sudarshan: Recent Advances in Query Optimization 31

Deciding What to 
Materialize

amaintenance cost and query cost
`workload:  
⌧queries and update transactions
⌧weights for each component of workload

aworkload cost depends on what is materialized
aGoal:  find set of views  that gives minimum 

cost if materialized, subject to space constraints
aNote: materializing views can reduce even 

update costs
`indices,  and SQL assertions 

S. Sudarshan: Recent Advances in Query Optimization 32

Deciding What to 
Materialize

aHistory
`Roussopolous [1982]: exhaustive A* algorithm
`Ross, Srivastava and Sudarshan [SIGMOD 96] 

suggest materializing views can reduce update costs, 
give heuristics

`Labio et al. [1997], Gupta [1997], Sellis et al [1997], 
Yang, Karlapalem and Li [1997] give various 
exhaustive/heuristic/greedy algorithms

`Chaudhuri and Narsayya [1998] considers only 
indices, being introduced in SQL server

`Exhaustive algos are all doubly exponential!



17

S. Sudarshan: Recent Advances in Query Optimization 33

Caching of Query Results

aStore results of earlier queries
aMotivation
`speed up access to remote data 
⌧also reduce monetary costs if charge for access

`interactive querying often results in related queries
⌧results of one query can speed up processing of 

another
`caching can be at client side, in middleware, and 

even in a database server itself

S. Sudarshan: Recent Advances in Query Optimization 34

Query Caching (Cont)

aDifferences from page/object caching
`results that are cached are defined by a (possibly 

complex) query
`cost of computing different results is different --- cost 

of fetching a page is same for all pages
`sizes of different results is different --- page size is 

fixed

aOne heuristic:  benefit =  
(recomp-cost * freq-access) / size

`Update frequence must also be taken into account



18

S. Sudarshan: Recent Advances in Query Optimization 35

Query Caching (Cont)

aDifferences from selection of views to 
materialize
`what to cache decided based on recent queries
⌧=> set of cached results changes dynamically
⌧adapts as users change their behaviour

`cached data may not be maintained up-to-date
⌧=> if base data has been updated, query 

optimizer must choose between recomputing 
cached results and incrementally computing 
changes

S. Sudarshan: Recent Advances in Query Optimization 36

Query Caching (Cont)

aPredicate caching (Wiederhold et al 1996) and 
Semantic caching (Dar et al, 1996)
`not tied to query optimizer

a ADMS (Roussopolous, 1994)
`handles SPJ queries, with specific graph structure 

aWATCHMAN (Scheurmann et al, VLDB96)
`makes caching decisions based on cost, frequency of 

usage and size
`reuses cached results only if exactly same query 

repeats



19

S. Sudarshan: Recent Advances in Query Optimization 37

Query Caching (Cont)

aDynamat (Roussopolous et al, SIGMOD 99)
`considers caching of data cube queries
`not general purpose unlike ADMS, but handles 

update costs better

aWeb caching is somewhat similar
`cached pages differ in size, and in access cost (e.g., 

local pages can be accessed faster)

S. Sudarshan: Recent Advances in Query Optimization 38

Data Warehouses

aCharacteristics:
`Very large
`typical schema:  very large fact table, small 

dimension tables
`typical query: aggregate on join of fact table and 

dimension tables

aCan exploit above characteristics for optimizing 
queries
`e.g., join dimension tables (even if cross product), 

build in memory index, scan fact table, probe index. 
Summarize if required and output



20

S. Sudarshan: Recent Advances in Query Optimization 39

Data Warehouses (Cont)

aSynchronized scans
`multiple queries can share a scan of fact table
⌧slow some queries down so others catch up

aBit map indices
`for selections on low cardinality attributes
`e.g.:   M   10011100011001

F   01100011100110

`idea: and-ing of bit maps is very efficient, use on 
bitmaps to filter to relevant tuples,  retrieve them

`Quass and O’Neill [Sigmod 1997], various DB 
products  (DB2, Informix, …)

S. Sudarshan: Recent Advances in Query Optimization 40

Virtual 
Warehouses/Databases

aData sources are numerous and distributed
`may be accessible only via html 
⌧=> wrappers needed
⌧Stanform TSIMMIS project, Junglee, and others 

have built wrappers.
`may support only limited number of access types 

through forms interfaces
`site descriptions:  describe what data is contained at 

a site Levy et al [1995].  
⌧Query sent only to relevant sites.



21

S. Sudarshan: Recent Advances in Query Optimization 41

Virtual Warehouses and 
Databases (Cont)

aProvide user with view of a single database, 
which can be queried

aUnderlying system must find best/good way of 
evaluating query

S. Sudarshan: Recent Advances in Query Optimization 42

Parallel Databases

aSearch space is extremely large in general
`How to partition data
`How to partition operations

aTwo basic approaches
`Each operation is parallelized across all nodes
`Get best sequential plan, then parallelize
⌧scheduling issues 
⌧pipelining issues



22

S. Sudarshan: Recent Advances in Query Optimization 43

New Applications

aQuerying semistructured data
`XML
`Querying on the web 
⌧WebSQL, WebOQL, ..  (Mendelzon.., Shmueli.., 

Laks..)
`Formal query languages for semi-structureed data
⌧Buneman et al

S. Sudarshan: Recent Advances in Query Optimization 44

Conclusions

aQuery optimization has come a long way in the 
last 5/6 years

aStill an area of active research
`lots of work on selection of materialized views, and 

caching late
`Driving forces:  Object relational DBS, Web, 

increasingly complex DSS queries, Data mining
`query optimizers are still very expensive in space and 

time.  Better approximation algorithms could help a 
lot.


