
Integrating Vertical and Horizontal Partitioning into
Automated Physical Database Design

Sanjay Agrawal
Microsoft Research

sagrawal@microsoft.com

Vivek Narasayya
Microsoft Research

viveknar@microsoft.com

Beverly Yang*
Stanford University

byang@stanford.edu

ABSTRACT
In addition to indexes and materialized views, horizontal and
vertical partitioning are important aspects of physical design in a
relational database system that significantly impact performance.
Horizontal partitioning also provides manageability; database
administrators often require indexes and their underlying tables
partitioned identically so as to make common operations such as
backup/restore easier. While partitioning is important,
incorporating partitioning makes the problem of automating
physical design much harder since: (a) The choices of partitioning
can strongly interact with choices of indexes and materialized
views. (b) A large new space of physical design alternatives must
be considered. (c) Manageability requirements impose a new
constraint on the problem. In this paper, we present novel
techniques for designing a scalable solution to this integrated
physical design problem that takes both performance and
manageability into account. We have implemented our techniques
and evaluated it on Microsoft SQL Server. Our experiments
highlight: (a) the importance of taking an integrated approach to
automated physical design and (b) the scalability of our
techniques.

1. INTRODUCTION
Horizontal and vertical partitioning are important aspects of
physical database design that have significant impact on
performance and manageability. Horizontal partitioning allows
access methods such as tables, indexes and materialized views to
be partitioned into disjoint sets of rows that are physically stored
and accessed separately. Two common types of horizontal
partitioning are range and hash partitioning. On the other hand,
vertical partitioning allows a table to be partitioned into disjoint
sets of columns. Like indexes and materialized views, both kinds
of partitioning can significantly impact the performance of the
workload i.e., queries and updates that execute against the
database system, by reducing cost of accessing and processing
data.

DBAs today also use horizontal partitioning extensively to make
database servers easier to manage. If the indexes and the
underlying table are partitioned identically i.e. aligned, database

operations such as backup and restore become much easier.
Therefore, there is a need to incorporate manageability while
arriving at the right physical design for databases. Thus, database
administrators (DBAs) in today’s enterprises are faced with the
challenging task of determining the appropriate choice of physical
design consisting of partitioned tables, indexes and materialized
views that (a) optimizes the performance of the SQL queries and
updates and (b) is easier to manage at the same time.

Our goal is to optimize the performance of a database for a given
representative workload, while considering alignment
requirements. While there has been work in the area of
automating physical database design [2,4,17,22,24], we are not
aware of any work that addresses the problem of incorporating
both horizontal and vertical partitioning as well as alignment
requirements in an integrated manner. The novel techniques
presented in this paper are motivated by the key design challenges
that arise with the inclusion of horizontal and vertical partitioning,
and are presented below.

Need for an integrated approach to automating the choice of
physical design: Different aspects of physical design can interact
strongly with one another. Example 1 illustrates the problems of
separating the selection of different physical design choices.

Example 1. Consider the following query on TPC-H 1 GB data.

SELECT L_RETURNFLAG, L_LINESTATUS,
 SUM (L_QUANTITY), COUNT (*)

FROM LINEITEM
WHERE L_SHIPDATE <= ‘1998/12/08’
GROUP BY L_RETURNFLAG, L_LINESTATUS
ORDER BY L_RETURNFLAG, L_LINESTATUS

We compare two approaches for the query above. (1) First select
the best un-partitioned indexes, and in the next step horizontally
partition the resulting indexes. (2) Consider indexes and
horizontal partitioning together. Using the first approach we
obtain as the best index, an index (I1) on columns (l_shipdate,
l_returnflag, l_linestatus, l_quantity) hash partitioned on
(l_returnflag, l_linestatus). Using the second (integrated)
approach, the best index (I2) is (l_returnflag, l_linestatus,
l_shipdate, l_ quantity) range partitioned on (l_shipdate). Note
that the indexes I1 and I2 though defined over the same set of
columns, differ in the ordering of columns as well as in the way
they are partitioned. The execution time of the above query using
I2 is about 30% faster than with I1.

 * Work done when the author was visiting Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD 2004, June 13–18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 …$5.00.

The reason for inferior recommendation using approach (1) is as
follows. When selecting the best un-partitioned index, the
alternative (l_returnflag, l_linestatus, l_shipdate, l_quantity)
which has the column sequence as I2 is considered, but is found to
be much inferior than the index (l_shipdate, l_returnflag,
l_linestatus, l_quantity), where the columns in the index are
ordered on selection and grouping columns of the query
respectively. Thus, the ordering of the columns in the index is
fixed after the first step. In the subsequent step, partitioning the
index on the grouping/ordering columns in the query is found to
be beneficial since this reduces the cost of sorting. However, since
answering the query requires merging the rows from each
partition of I1, this adds to the query execution time. On the other
hand, using approach (2) where indexes and partitioning are
considered together, the superior alternative that range partitions
the index on the column referenced in the range condition (which
limits all the rows required to answer the query to a single
partition) and orders the columns in the index on
grouping/ordering columns (which saves the sort cost as well) is
considered.

As demonstrated by Example 1 above, staging the solution based
on different physical design features can result in poor overall
physical design. Intuitively, the reason for inferior solution using
the first approach is that both indexes and horizontal partitioning
can speed up the same operations in the query (grouping,
selections). By separating the choices we can get locked into a
poor solution in the first step that cannot subsequently be undone.
In this paper, we discuss the interactions among physical design
structures, both within a single query as well as across queries in
the workload that can cause staged solutions to perform poorly.

Need for intelligent pruning of large search space: With the
inclusion of vertical and horizontal partitioning, the space of
possible physical design alternatives that need to be considered
for the given workload significantly increases. For example, each
table can be vertically and horizontally partitioned in many
different ways. Similarly, for each index or materialized view that
we consider, we can have many variations of that structure, each
horizontally partitioned in a different way. The fact that modern
database systems support different ways of horizontal partitioning,
such as range or hash partitioning, only adds to this combinatorial
explosion. We present novel techniques that exploit workload
information to intelligently prune the space of alternatives in a
cost-based manner.

Need for integrating alignment requirements into search: A
key contribution of the paper is to highlight the importance of
incorporating manageability requirements while optimizing the
database physical design for performance. In this paper, we focus
on the alignment aspect of manageability. Indexes are considered
as aligned if these are horizontally partitioned in the same way as
the underlying tables. The challenge of incorporating alignment
mainly arises from the fact that optimizing different queries can
lead to physical design structures on the same table that have
conflicting horizontal partitioning requirements. In this paper, we
present a scheme that achieves alignment in an efficient manner.

In arriving at our solution, we leverage two important ideas from
the architecture discussed in [2]. The approach in [2] restricts the
search for the best physical design for a workload to (a) objects
that are good for at least one query in the workload (done in
Candidate Selection step) and (b) additional objects that are

potentially good for the workload but not necessarily for
individual queries (generated in Merging step). The best physical
design for the entire workload is arrived at by searching over the
set of objects described above (called the Enumeration step). For
evaluating different physical design alternatives, the solution
relies on optimizer estimated costs and what-if extensions that are
available in several commercially available database servers [5,
22]. This allows the system to be robust and scalable; trying out
numerous alternatives during search without physically
implementing these is more efficient and does not disrupt the
database server’s normal mode of operation. Thus the
contributions of this paper can be viewed as novel pruning and
algorithmic techniques that allow the adoption of the broad
architecture in [2] while expanding the scope of physical design to
include horizontal and vertical partitioning as well as alignment
requirements.

We extended Microsoft SQL server with the necessary interfaces
to enable us to experimentally evaluate our techniques. Our
experimental results show: (a) The importance of taking an
integrated approach to the physical design problem (b) the impact
of our pruning techniques on quality and scalability of the
solution. The focus of this paper is on partitioning in a single-
node environment (e.g., on an SMP), which is widely prevalent in
today’s enterprise databases installations [23]. We expect that
some of the techniques described in this paper will also be
important in physical design for multi-node environments for the
same reason, i.e., interactions among different aspects of physical
design.

The rest of the paper is organized as follows. Section 2 formally
defines the integrated physical design problem, and describes the
interactions among physical design structures. Section 3 presents
an overview of the architecture of our solution, and Section 4
describes novel pruning strategies for reducing the space of
alternatives introduced by vertical and horizontal partitioning.
Section 5 shows how we incorporate partitioning during the
Merging step described earlier. Section 6 presents our technique
for handling alignment requirements. We present results of our
experimental evaluation in Section 7, and discuss related work in
Section 8. We conclude in Section 9.

2. BACKGROUND

2.1 Preliminaries
Workload: We model the workload as a set of SQL DML
statements, i.e., SELECT, INSERT, DELETE and UPDATE
statement. It can be obtained using profiling tools that are
available on today’s database systems. Optionally, with each
statement Q in the workload, we associate a weight fQ. For
example, the weight may capture the multiplicity of that statement
in the workload. Note that since the workload captures the
inserts/updates/deletes that happen in the system, the maintenance
and update costs of physical design alternatives get accounted for
by our workload model.

Vertical partitioning of a table T splits it into two or more tables
(which we refer to as sub-tables), each of which contains a subset
of the columns in T. Since many queries access only a small
subset of the columns in a table, vertical partitioning can reduce
the amount of data that needs to be scanned to answer the query.
In this paper, we will assume that each sub-table contains a

disjoint set of columns of T, except for the key columns of T
which are present in each sub-table. The key columns are required
to allow “reconstruction” of an original row in T. Unlike indexes
or materialized views, in most of today’s commercial database
systems there is no native DDL support for defining vertical
partitions of a table. We simulate vertical partitioning by creating
regular tables, one for each sub-table. The queries/updates in the
workload that reference the original table T are rewritten to
execute against the sub-table(s). Thus vertical partitioning as
studied in this paper can be viewed as restricted form of tuning
the logical schema of the database to optimize performance. Note
that other access paths such as indexes and materialized views can
be created over sub-tables to further improve query performance.

Horizontal partitioning affects performance as well as
manageability. In general, any of the following access paths in a
database can be horizontally partitioned: (1) A table (or sub-tables
described above), which may be organized as a heap or clustered
index, (2) A non-clustered index (3) A materialized view. We will
refer to these un-partitioned access paths in this paper as objects.
The horizontal partitioning of an object is specified using a
partitioning method, which maps a given row in an object to a
partition number. All rows of the object with the same partition
number are stored in the same partition. As mentioned earlier, we
focus on the case of single-node partitioning, i.e., all objects are
present on a single machine (possibly an SMP). While multi-node
partitioning can bring benefits of availability that is not possible
with single-node partitioning, as shown in [23] and in this paper,
single-node partitioning significantly impacts performance.

Today’s database systems typically allow two main kinds of
partitioning methods: hash or range. In hash partitioning, the
partition number for a given row is generated by applying a
system defined hash function on all columns in a specified set of
partitioning column(s) of the object. A hash partitioning method
is defined by a tuple (C,n), where C is a set of column types, and
n is the number of partitions. For example, let T be a table (c1 int,
c2 int, c3 float, c4 date). The hash partition method H1 = ({int, int},
10) partitions T into 10 partitions by applying the hash function to
the values of columns {c1, c2} in each row of T.

A range partitioning method is defined by a tuple (c, V), where c
is a column type, and V is an ordered sequence of values from the
domain of c. For example, the range partitioning method R1 =
(date, <’01-01-98’, ‘01-01-02’>) when applied to column c4 on
table T above , partitions T into 3 partitions, one per range defined
by the sequence of dates. The first range is defined by all values ≤
’01-01-98’ and the last range is defined by all values > ‘01-01-
02’. For simplicity of exposition, we define range partitioning
over a single column rather than a set of columns. We also do not
consider other kinds of partitioning methods e.g., hybrid
partitioning (consisting of range partitioning an object, and hash
partition each range), and list partitioning [12].

Definition 1. A physical design structure is defined as an object
and its associated partitioning method. We denote a physical
design structure by (O,P,C) where O is an object (heap, index,
materialized view), P is a partitioning method and C is the
ordered set of columns of O on which P is applied. An un-
partitioned object is denoted as P=φ,C =φ.

Example 2. The physical design structure (lineitem, ({int}, 4),
{l_orderkey}) represents the table lineitem hash partitioned into 4
partitions on column {l_orderkey}.

Note that in Definition 1, the object O itself can be a sub-table
(i.e., a vertical partition of an original table) or an
index/materialized view defined on a sub-table. This allows us to
consider physical design structures that combine the benefits of
vertical and horizontal partitioning.

Definition 2. A configuration is a valid set of physical design
structures, i.e., a set of physical design structures that can be
realized in a database. Some validity constraints that apply to any
given configuration: a table can be vertically partitioned in exactly
one way, a (sub-)table can have at most one clustered index, a
(sub-)table can be horizontally partitioned in exactly one way.

2.2 The Physical Design Problem
Our goal is to choose a configuration, such that the performance
of a given workload is optimized, subject to a constraint on the
total storage allowed for the configuration. Optionally the
configuration may be constrained to be aligned i.e. all indexes are
horizontally partitioned identically to the table on which they are
defined. Given a statement Q in the workload, and given a
configuration P we assume there exists a function Cost (Q, P) that
returns the optimizer estimated cost of statement Q if the physical
design of the database is P. Recently, commercial database
systems support the necessary interfaces to answer such “what-if”
questions without requiring the configuration P to be physically
implemented. Details of such functionality can be found in [5,22],
and are omitted. Figure 1 shows the physical design problem
formulation.

The horizontal partitioning problem has been showed to be
NP hard [18]. We note that other sub-problems, e.g., index
selection, materialized view selection, choosing vertical
partitioning have previously shown to be NP-hard. We omit
details due to lack of space.

2.3 Interactions among Physical Design
Structures
In this section, we present the interactions arising from inclusion
of horizontal and vertical partitioning that justifies the importance
of selecting different physical design features (vertical
partitioning, indexes, materialized views, horizontal partitioning)
in an integrated manner. We believe that any solution to the
physical design problem that ignores these interactions, can
potentially suffer from poor quality recommendations.

Intra-Query interactions capture the impact of different physical
design features on one another at the query processing level.

Intersection of conditions: Consider a query with the WHERE
clause Age < 30 AND Salary > 50K. If neither condition by itself

Given a database D, a workload W, and a storage bound
S, find a configuration P whose storage requirement does
not exceed S, such that ΣQ∈ W fQ. Cost(Q,P) is minimized.
Optionally, P may be constrained to be aligned.

Figure 1. Physical Design Problem.

is very selective e.g. each selects 20% of records, indexing or
partitioning on Age and Salary Column(s) are not very useful.
However if the conjunction of their selectivities is small e.g. 5%,
an index on Salary, range partitioned on the Age column, can
benefit the query significantly. Note that similar interactions can
also occur with two indexes (e.g., index intersection plans).

Join interactions: Two or more structures from different tables can
share a common property than enables a faster join execution
strategy; if these are partitioned identically on their respective join
columns (i.e. are co-located), the query optimizer can select a
plan that joins the corresponding partitions of the respective
structures separately, and then combine the results. Co-located
joins are typically much faster than non co-located joins,
particularly on multi-processor systems, where joins of several
different pairs of partitions can be performed in parallel. Even on
a single processor the total cost of joining several smaller
partitions can be much less than cost of a single large join; when
each partition fits into memory, cost of join can decrease
dramatically. This requires us to explore combinations of
structures from different tables, partitioned identically, so that
they can be used in a co-located join.

Mutually exclusive structures: This interaction is characterized by
the fact that if one structure is chosen, then it eliminates (or makes
redundant) other structures from consideration. For example, if
we horizontally partition table T on column A, then it physically
prohibits the table from being partitioned on any other column(s).
Likewise, we can vertically partition T in exactly one way.

Inter-Query interactions arise from the fact that our goal is to
find the best configuration for workload with certain constraints.

Specificity vs. Generality: Often a structure is only useful for a
specific query, but not useful for any other query in the workload.
A good example of this is a range partitioned table. Unless we are
careful about picking boundary values of the range partitioning,
we can suffer from being overly specific for a few queries, but
poor for over all workload.

Implications of Storage/Update: A structure can be more
beneficial but require more storage or have higher update cost for
the workload than some other structure. This makes the task of
searching for an optimal configuration in a storage-constrained
and/or update intensive environment more difficult. This
interaction suggests that when storage is limited, we expect
structures such as partitioning and clustered indexes (both of
which are non-redundant structures) to be more useful.

3. ARCHITECTURE OF SOLUTION
As mentioned in introduction, we adopt and extend the
architecture described in [2]. For simplicity of exposition, we
retain the terminology used in [2] wherever applicable. The focus
of this paper is on novel techniques (and their evaluation) that
make it possible to adopt this architecture for the physical design
problem presented in Section 2. The issue of alternative
architectures for the physical design problem is not considered in
this paper, and remains an interesting open issue. Figure 2 shows
the overall architecture of our solution. The four key steps in our
architecture are outlined below.

Column-Group Restriction: The combinatorial explosion in the
number of physical design structures that must be considered is a

result of the large number of column-groups (i.e., sets of columns)
that are, in principle, relevant for the workload. This step (which
is the focus of Section 4) is a pre-processing step eliminates from
further consideration a large number of column-groups that can at
best have only a marginal impact on the quality of the final
solution. The output of this step is a set of “interesting” column-
groups (defined in Section 4) for the workload. This step is a
novel extension of previous architectures.

Candidate Selection: The interesting column-groups identified in
the above step form the basis for the physical design structures we
consider, described in Section 4.3. The Candidate Selection step
selects for each query in the workload (i.e., one query at a time), a
set of very good configurations for that query in a cost-based
manner by consulting the query optimizer component of the
database system. A physical design structure that is part of the
selected configurations of one or more queries in the workload is
referred to as a candidate. In our implementation, we use Greedy
(m,k) approached discussed in [2] to realize this task. To recap,
Greedy (m,k) algorithm guarantees an optimal answer when
choosing up to m physical design structures, and subsequently
uses a greedy strategy to add more (up to k) structures. The
collocation aspect of intra-query interactions (see Section 2.3) is
taken into account by selecting a value of m large enough (m is
the number of collocated objects in the query). Note that the
specific algorithm to generate candidates is orthogonal to our
solution as long it accounts for the interactions and returns a set of
candidates for the query.

Merging: If we restrict the final choice of physical design to only
be a subset of the candidates selected by the Candidate Selection
step, we can potentially end up with “over-specialized” physical
design structures that are good for individual queries, but not
good for the overall workload. Specifically, when storage is

Figure 2. Architecture of solution.

DATABASE
SERVER

QUERY
OPTIMIZER

WORKLOAD AND
DATABASE

RECOMMENDATION

COLUMN-GROUP
RESTRICTION

CANDIDATE
SELECTION

MERGING

ENUMERATION

limited or workload is update intensive, this can lead to poor
quality of the final solution. Another reason for sub-optimality
arises from the fact that an object can be partitioned (vertically or
horizontally) in exactly one way, so making a good decision can
be crucial. The goal of this step is to consider new physical design
structures, based on candidates chosen in the Candidate Selection
step, which can benefit multiple queries in the workload. The
Merging step augments the set of candidates with additional
“merged” physical design structures. The idea of merging physical
design structures has been studied in the context of un-partitioned
indexes [6], and materialized views [2]. However in both these
studies, the impact of vertical and horizontal partitioning on
Merging was not considered. As we show in Section 5, Merging
becomes considerably more challenging with the inclusion of both
kinds of partitioning, and requires new algorithmic techniques.

Enumeration: This step takes as input the candidates (including
the merged candidates) and produces the final solution – a
physical database design. The problem of exact search techniques
for the physical design problem (e.g., as in [4,17,22,24]) is
complementary to the focus of this paper. In our implementation,
we use Greedy (m,k) search scheme. However, as we show in
Section 6, with the additional constraint that the physical design
for each table should be aligned, directly using previous
approaches can lead to poor scalability. A contribution of this
paper is describing an algorithm that improves scalability of the
search without significantly compromising quality.

In Section 4, we discuss how we leverage workload to prune the
space of syntactically relevant physical design structures. In
Section 5, we show how we incorporate horizontal and vertical
partitioning during Merging. In Section 6, we discuss how to
handle alignment requirements in an efficient manner during the
Enumeration step.

4. RESTRICTING COLUMN-GROUPS FOR
CANDIDATE SELECTION
A physical design structure is syntactically relevant for the
workload if it could potentially be used to answer one or more
queries in the workload. As shown in several previous papers on
physical database design e.g., [2,4,6], the space of syntactically
relevant indexes and materialized views for a workload can be
very large. We observe that for indexes, the space of syntactically
relevant physical design structures is strongly dependent on the
column-groups, i.e., combinations of columns referenced by
queries the workload. Similarly, with horizontal partitioning,
column-groups present in selections, joins and grouping
conditions [17] of one or more queries need to be considered.
With vertical partitioning, each column-group in a table could be
a sub-table.

Once we include the options of vertical and horizontal
partitioning along with indexes, even generating all syntactically
relevant structures for a query/update (and hence the workload)
can become prohibitively expensive. In Section 4.1, we present an
efficient technique for pruning out a column-group such that any
physical design structures defined on that column-group can only
have limited impact on the overall cost of the workload.

An additional factor that must be considered is that it is much
more expensive for a physical design tool to consider an
alternative vertical partitioning than it is to consider an alternative

index (or horizontal partitioning). The reason is (see Section 2.1.)
simulating a vertical partitioning to the query optimizer requires
creating regular tables, one for each sub-table in the vertical
partition, and rewriting queries/updates in the workload that
reference the original table to execute against the sub-table(s).
Furthermore, sub-tables serve as building blocks over which we
explore the space of horizontally partitioned indexes and
materialized views. Thus, in large or complex workloads, where
many interesting column-groups may exist, it can be beneficial to
be able distinguish the relative merits of column-groups for
vertical partitioning. In Section 4.2, we present a measure for
determining effectiveness of a column-group for vertical
partitioning that can be used by any physical design tool to
filter/rank column-groups.

4.1 Determining Interesting Column-Groups
Intuitively, we consider a column-group as interesting for a
workload W, if a physical design structure defined on that
column-group can impact a significant fraction of the total cost of
W. Based on this intuition, we define a metric CG-Cost(g) for a
given column-group g that captures how interesting that column-
group is for the workload. We define CG-Cost (g) as the fraction
of the cost of all queries in the workload where column-group g is
referenced. The cost of query can either be the observed execution
cost of the query against the current database (if this information
is available) or the cost estimated by the query optimizer. A
column-group g is interesting if CG-Cost(g) ≥ f , where 0 ≤ f ≤ 1
is a pre-determined threshold.

Example 3. Consider a workload of queries/updates Q1, … Q10
that reference table T (A,B,C,D). A cell in the above matrix
contains 1 if the query references that column, 0 otherwise. For
simplicity assume that all queries have cost of 1 unit. Suppose the
specified threshold f = 0.2. Then the interesting column-groups
for the workload are {A}, {B}, {C}, {A,B}, {A,C}, {B,C} and
{A,B,C}with respective CG-Cost of 1.0, 0.3, 0.9, 0.3, 0.9, 0.2,
0.2. For Q3 we only need to consider physical design structures on
the above 7 column-groups rather than the 15 column-groups that
are syntactically relevant for Q3, since {D} and all column-groups
containing D are not interesting.

Note that CG-Cost is monotonic; for column-groups g1 and g2,
g1⊆ g2 ⇒ CG-Cost (g1) ≥ CG-Cost (g2). This is because for all
queries where g2 is referenced, g1 is also referenced, as are all
other subsets of g2. Thus for a column-group to be frequent, all its
subsets must be frequent. We leverage this monotonicity property
of CG-Cost to build the set of all interesting column-groups of a
workload in a scalable manner as shown in Figure 3, by
leveraging existing algorithms for frequent-itemset generation
e.g., as [1], rather than having to enumerate all subsets of columns
referenced in the workload. We note that the above frequent-
itemset approach has been used previously for pruning the space
of materialized views [2]. NumRefColumns (in Step2) is the
maximum number of columns of T referenced in a query, over all
queries in the workload. The parameter to the algorithm is a

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
A 1 1 1 1 1 1 1 1 1 1
B 1 1 1 0 0 0 0 0 0 0
C 0 1 1 1 1 1 1 1 1 1
D 0 0 1 0 0 0 0 0 0 0

threshold f, below which a column-group is not considered
interesting.

In practice, in several large real and synthetic workloads, we have
observed that even relatively small values of f (e.g., 0.02) can
result in dramatic reduction in number of interesting column-
groups (and hence overall running time of the physical design
tool) without significantly affecting the quality of physical design
solutions produced. This is because in practice, we observe
distributions of CG-Cost() that are skewed; there are large number
of column-groups that are referenced by a small number of
inexpensive queries and these get pruned by our scheme. Our
experimental evaluation of the effectiveness of the above
technique is described in Section 7.

Finally, we note that a pathological case for the above pruning
algorithm occurs when CG-COST of (almost) all column-groups
in the workload is below f. In such cases, one possible approach is
to dynamically determine f so that enough column-groups are
retained.

4.2 Measuring Effectiveness of a Column-
Group for Vertical Partitioning
As described earlier, evaluating a vertical partitioning can be an
expensive operation for any physical design tool. We now present
a function that is designed to measure the effectiveness of a
column-group for vertical partitioning. Such a measure can be
used, for example, to filter or rank interesting column-groups
(identified using the technique presented in Section 4.1).
Intuitively, a column-group g is effective for vertical partitioning
if all columns in the group almost always co-occur in the
workload. In other words, there are only a few (or no) queries
where any one of the columns is referenced but the remaining
columns are not.

Definition 5. The VP-CONFIDENCE (or VPC for short) of a
column-group g is defined as:

Υ
gc

cOccurrencecwidthgc

cOccurrencecwidthgc

∈
∑

∑

∈

∈

)(.)(

)().(

where c is a column belonging to column-group g, width(c) is the
average width in bytes of c, and Occurrence(c) is the set of
queries in the workload where c is referenced.

Example 4. In Example 3, for query Q1, the set of columns
referenced is {A,B}. Note that the interesting column-groups that
could be considered for vertical partitioning for Q1 are {A,B} and
{A,B,C} since both these column-groups contain all columns
referenced in Q1. Assume that all columns are of equal width.
Then VPC({A,B}) = 13/20 = 0.65, whereas VPC({A,B,C}) =
22/30 = 0.73. Thus using the VPC measure, we would prefer to
vertically partition it on {A,B,C} than on {A,B}.

We note that VPC is a fraction between 0 and 1. The intuitive
interpretation of VPC(g) is the following: If a vertical partition on
g were defined, VPC(g) is the fraction of the scanned data would
actually be useful in answering queries where one or more
columns in g are referenced. Hence, column-groups with high
VPC are more interesting. If the VPC of a column group g is high
enough (e.g., VPC(g)=.9), then it is unlikely that the optimal
partitioning will place the columns of g into separate sub-tables
otherwise the cost of queries that reference g will significantly
increase due to the cost of joining two or more sub-tables to
retrieve all columns in g. The definition can be extended to
incorporate cost of queries by replacing Occurrence(c) with the
total cost of all queries in Occurrence(c).

4.3 Leveraging Column-Groups for
Generating Physical Design Structures
We use the interesting column-groups (these are ranked by VPC)
to generate relevant physical design structures on a per-query
basis as follows. In the first step, we find vertical partitions per
table. We apply the VPC measure to all interesting column-
groups that contains all the columns referenced in query, and
consider only the top k ranked by VPC. Each vertical
partitioning considered has a sub-table corresponding to one such
column-group. The remaining columns in the table form the
second sub-table of the vertical partition. Note that every vertical
partition generated by the above algorithm consists of exactly two
sub-tables. We also consider the case where the table is not
vertically partitioned. In the next step, for each vertical
partitioning considered above (including the case where the table
is not partitioned), we restrict the space of indexes and respective
horizontal partitioning to the joins/selection/grouping/ordering
conditions in the query where the underlying column-groups are
interesting. For range partitioning, we use the specific values from
the query as boundary points. For hash partitioning, we select
number of partitions such that it is a multiple of number of
processors and each partition fits into memory (we assume
uniform partition sizes). We use the approach outlined in [2] to
determine the materialized views we consider for a query. The
considerations for horizontally partitioning materialized views are
exactly the same as for tables i.e. partition on interesting
joins/selection/grouping column(s) when the view is used to
answer the query. We omit details due to lack of space.

5. INCORPORATING PARTITIONING
DURING MERGING
The Merging step of our solution (described in Section 3)
becomes much more complex when we have partitioning for two
reasons. (1) Merging vertical partitions can become very
expensive as each merged vertical partition potentially requires a
new set of (partitioned) indexes and materialized views to be

1. Let G1 = {g | g is a column-group on table T of
cardinality 1, and column c∈ g is referenced in the
workload and CG-Cost (g) ≥ f}; i = 1

2. While i < T.NumRefColumns and |Gi| > 0
3. i = i + 1; Gi = {}
4. Let G ={ g | g is a column-group on table T of size i,

and ∀ s ⊂ g, |s|=i-1, s∈ Gi-1}
5. For each g ∈ G
6. If CG-Cost (g) ≥ f Then Gi = Gi ∪ {g}
7. End For
8. End While
9. Return (G1 ∪ G2 ∪ … GT.NumRefColumns)

Figure 3. Algorithm for finding interesting column-groups
in the workload for a given table T.

simulated as well. (2) The benefits of collocation have to be
preserved during merging of horizontally partitioned indexes.

Although not the focus of this paper, an important aspect of
generating new merged candidates is defining the space of merged
candidates explored. Given a set of structures, which we refer to
as parent structures, our goal is to generate a set of merged
structures, each of which satisfies the following criteria. First, the
merged structure should be usable in answering all queries where
each parent structure was used. Second, the cost of answering
queries using the merged structure should not be “much higher”
than the cost of answering queries using the parent structures.

For exploring the space of merged structures, we adopt the
algorithm from [2]. To recap, the algorithm iterates over the given
set of candidates as follows. In each iteration, the algorithm
generates all candidates that can be obtained by merging a pair of
candidates. It then picks the best merged structures and replaces
their parent candidates, and repeats this process. Thus the
algorithm returns the “maximal” merged structures that can be
obtained by repeatedly merging pairs of structures. Our focus is
on the problem of how to merge a pair of physical design
structures in the presence of vertical and horizontal partitioning.
We expect that the intuition underlying the techniques we present
would be useful in any scheme that performs merging.

The overall Merging step can be described as follows. First, we
generate interesting vertical partitions of different tables by
merging vertical partitions that are output of Candidate Selection.
Next, for each single vertical partition (including the new merged
ones), we merge all indexes and materialized views that are
relevant for that vertical partition while taking horizontal
partitioning into account. If indexes on the same (sub-) table are
horizontally partitioned on the same column(s), we merge the
respective partitioning methods to arrive at a more generic
partitioning method. We describe these steps in detail below.

5.1 Merging Vertical Partitions
Given the best vertical partitioning for individual queries, the goal
of Merging is to find new vertical partitionings that are useful
across queries in the workload. A vertical partitioning that is best
for one query may significantly degrade the performance of
another query. Merging vertical partitions is a challenging
problem in itself. Since each vertical partition itself is a set of
column-groups (i.e., sub-tables), merging two vertical
partitionings requires us to merge two sets of column-groups.

Example 5. Consider table T(A,B,C,D) from Example 3 and two
vertical partitionings of T, VP1 = {(A, B, C), (D)} and VP2 = {(A,
B), (C, D) }. For the merged vertical partitioning, we could
consider (among other alternatives) {(A, B, C, D)} or {(A, B),
(C), (D)} or {(A, C), (B, D)}.
For the example above, we highlight, in the following table, the
impact of a few different vertical partition alternatives on two
queries Q1 and Q4 from example 3.
For Q1 (references only columns A and B) {(A,B),(C,D)} is the
best among these as no join is needed and no redundant data is
scanned; Q1 is answered using (A,B) only. However the same
vertical partitioning is much worse for Q4 (references only
columns A and C) as now both (A, B) and (C, D) needs to be
scanned and joined to get required columns.

This simple example highlights the fundamental issues when
merging vertical partitions. As a consequence of merging vertical
partitions, some queries can become more expensive due to (a)
more joins that need to be done or (b) more redundant data that
needs to be scanned. Thus, if the vertical partition is the entire
table itself, we have optimal join characteristics but we could
potentially incur a lot of redundant data scan. At the other
extreme, if table is completely partitioned i.e. each column forms
separate partition, we can have lots of joins but no redundant data
scan.

Our algorithm for merging two vertical partitionings of a given
table T is shown in Figure 4. The algorithm measures the impact
of merging on the workload in terms of joins and redundant data
scans. Steps 1-2 defines the exact space of sub-tables that are
explored. We restrict the space of sub-tables over which the
merged vertical partition can be defined to those that can be
generated via union or intersection of sub-tables in the parent
vertical partitionings. The union operation can decrease the
number of joins required (and hence reduce join cost) to answer
one or more queries, while intersection can decrease the amount
of data scanned (and thereby decrease scan cost) in answering a
query. We also require the complement of sub-tables to be present
as the final output must be a valid vertical partition i.e. all the
columns of table must occur in some sub-table. A desirable
property of this approach is that whenever a column-group occurs
in a single sub-table in both parents, it is guaranteed to be in the
same sub-table in the merged vertical partitioning as well. For

Vertical
partitioning

Q1 Q4

{(A,B,C,D)} Joins: No
Extra Data Scan:Yes

Joins: No
Extra Data Scan:Yes

{(A,B),
(C,D)}

Joins: No
Extra Data Scan :No

Joins: Yes
Extra Data Scan:Yes

{(A,C),
(B,D)}

Joins: Yes
Extra Data Scan:Yes

Joins: No
Extra Data Scan:No

{(A),(B),
(C),(D)}

Joins: Yes
Extra Data Scan :No

Joins: Yes
Extra Data Scan:No

Input: Two vertical partitionings VP1 = {t11, t12,…, t1n},
VP2 = {t21, t22, …, t2m} for of a given table T. Ts is the set of
all columns in T.
Function: QUERIES (VP) over a vertical partition VP
returns all queries for which VP was a candidate.
Function: COST (VP,W) returns cost of vertical partition
VP for set of queries W.
Output: A merged vertical partitioning.
1. S = {} // S is a set of sub-tables on T.
2. For i = 1 to n

For j=1 to m
 S = S ∪ {t1i ∪ t2j} ∪ {Ts –(t1i ∪ t2j)}
 S = S ∪ {t1i ∩ t2j} ∪ {Ts –(t1i ∩ t2j)}
End For

 End For
3. W = QUERIES (VP1) ∪ QUERIES (VP2)
4. For all subsets VP of S that form valid vertical

partitioning of T, return the VP with the minimal Cost
() over W.

Figure 4. Merging a pair of vertical partitionings of a table.

example, if the parents are VP1 = {(A,B), (C,D)} and VP2 =
{(A,B,C), (D)}, then we are guaranteed that the column-group
(A,B) will never be split across different sub-tables in the merged
vertical partitioning.

While in principle COST (VP,W) can use the optimizer estimated
cost as described in Section 2, for efficiency, we adopt a simpler
Cost model that is computationally efficient and is designed to
capture the above trade-off in join and scan cost. Thus, we instead
define the COST (VP, W) for a vertical partition VP and
workload W as the sum of scan cost of data and join cost for all
queries q ∈ W. The join cost is modeled as linear function of
individual sub-tables that are joined. Step 3 defines the set of
queries over which we cost the generated vertical partitions to be
candidates of either of the parents. In step 4 we enumerate the
space of valid vertical partitions defined by the sub-tables above
and return the one with the least cost.

Finally, we note that candidate indexes on VP1 and VP2 may also
be candidates on the merged vertical partitioning. The exception
to this is indexes whose columns appear in different sub-tables in
the merged vertical partitioning. In Example 5 above, an index on
columns (C,D) cannot exist in the vertical partitioning
{(A,C),(B,D)} since C and D belong to different sub-tables.

5.2 Merging Horizontally Partitioned
Structures
The inclusion of horizontal partitioning introduces new challenges
during the Merging step. First, it is no longer sufficient to simply
merge the objects (e.g., indexes) themselves, but we also need to
merge the associated partitioning methods of each object. This is
non-trivial since how we merge the objects may depend on the
partitioning methods, and vice-versa. The underlying reason for
this problem is that (as discussed in Section 2.3), the indexing
columns and the partitioning columns can be interchangeably
used. We illustrate this issue with the following example:

Example 6. Consider two structures: I1 is an index on column A
hash partitioned on column B and I2 is an index on column A
hash partitioned on C. If we merge the indexes and the
partitioning methods separately, we would never be able to
generate a structure such as index on (A,B) partitioned on C,
which may be able to effectively replace both I1 and I2.

Second, when merging two partitioning methods, the number of
possible partitioning methods for the merged structure can be
large. Third, when merging two structures, we need to pay
attention to the fact that one (or both) of the partitioned structures
being merged may be used in co-located joins; since if a merged
structure has a different partitioning method than its parent
structure, it may no longer allow a co-located join. We now
discuss our approach for each of these issues.

5.2.1 Merging Index and Partitioning Columns
We will assume that the two structures being merged are I1 = (O1,
P1,C1) and I2 = (O2,P2,C2), as per the notation defined in Section
2.1. Intuitively, there are two key ideas underlying our approach.
First, we exploit the fact that the partitioning columns and the
index columns of the parent structures, i.e., the columns in O1, O2,
and the columns C1 and C2 can be interchangeably used. Second,
we restrict the space considered to those merged structures such

that the benefit of at least one of the parent structures is retained.
This is similar to the idea of index preserving merges described in
[6], with the extension that the partitioning columns may also
need to be preserved in the merged structure. Based on the above
ideas, the space of merged structures we consider is as described
below. We denote a merged structure as I12 = (O12, P12, C12). Also,
we denote columns in an object O as Cols (O).

The partitioning columns of I12, i.e., C12 can be one of the
following: (a) C1 (b) C2 or (c) C1 ∩ C2 (d) Cols (O1) (e) Cols (O2),
(f) Cols (O1) ∩ Cols (O2). Thus in addition to the original
partitioning (resp. indexing) columns, we also consider the
intersection of the partitioning (resp. indexing) columns of I1 and
I2, which is a more “general” partitioning. For example, if a table
T partitioned on (A,B) is used to answer a query on T with a
GROUP BY A,B clause and the table partitioned on (A,C) is used
to answer a different query on T with a GROUP BY A,C clause,
then, T partitioned on (A) can be used to answer both queries
(partial grouping). We observe that C1 ∩ C2 may be empty. In
such cases the merged structure is un-partitioned.

The index columns of a merged structure, i.e., O12 can have as its
leading columns any one of: (a) Cols (O1) in sequence, (b) Cols
(O2) in sequence (c) columns of C1 in order (d) columns of C2 in
order. This ensures that the merged structure will retain the
benefit (either indexing or partitioning benefit) of at least one of
its parents. To the leading columns, we append all remaining
columns from O1, O2, C1 or C2, which are not already part of the
partitioning columns of C12.

Thus our procedure considers all combinations of merged
structures that can be generated from the space of possible C12 and
O12 as defined above. The exact procedure for determining the
partitioning method P12 of the merged structure is described in
Sections 5.2.2. Finally, similar to [2,6] we disallow a merged
structure that is “much larger” in size (defined by a threshold)
than the original candidate structures from which it is derived
since such a merged structure is likely to degrade performance of
queries being served by the original candidate structures.

5.2.2 Merging Partitioning Methods
Merging Range Partitioning Methods: Given a pair of range
partitioning methods P1 = (S, V1), P2 = (S, V2) we wish to find the
best partitioning method P12 = (S, V12) to be used with the merged
object O12. The best partitioning method is one such that the cost
of all queries answered using (O1,P1,C) (denoted by the set R1) as
well as (O2,P2,C) (denoted by the set R2) increases as little as
possible when answered using (O12,P12,C). The naïve approach of
considering all possible partitioning methods P12 that can be
generated by considering any subset of the values in V1 ∪ V2 is
infeasible in practice.

Observe that if we do not partition an index, all queries need to
scan the entire index resulting in high scan cost, but only pay a
small cost in opening/closing the single partition. At the other
extreme, if we partition the index into as many partitions as
number of distinct values, each query is served by scanning the
least amount of data required but may access a large number of
partitions i.e. high cost of opening/closing partitions. Both these
extremes can be sub-optimal. We need to balance the scan and
partition opening/closing costs to arrive at a good compromise.

We now present an efficient algorithm MergeRanges for finding
a merged range partitioning method. We model the cost of
scanning a range partitioned access method, denoted by Cost-
Range, for any range query Q as follows: (1) The cost of scanning
the subset of partitions necessary to answer Q. This cost is
proportional to the total size of all the partitions that must be
scanned. (2) A fixed cost per scanned partition corresponding to
the CPU and I/O overhead of opening and closing the B+-Tree for
that partition. Note that computing Cost-Range is computationally
efficient and does not require calls to the query optimizer. Thus
our problem can be stated as finding a V12 such that ΣQ∈ (R1 ∪ R2)
Cost-Range(Q, (O12, (S,V12),C)) is minimized, where R1 (resp. R2)
is the set of queries for which the input objects are candidates.
MergeRanges is a greedy algorithm that starts with V12, a simple
merging of sequences V1 and V2. In each iteration, the algorithm
merges the next pair of adjacent intervals (from among all pairs)
that reduces Cost-Range the most. The algorithm stops when
merging intervals no longer reduces Cost-Range. Note that
performance of MergeRanges varies quadratically with the
number of boundary points. However in practice, we have
observed the algorithm to perform almost linearly; the data
distribution tends to be skewed causing the algorithm to converge
much faster. MergeRanges does not guarantee an optimal
partitioning; however our experimental evaluation suggests that it
produces good solutions in practice, and is much more efficient
compared to a solution that arrives at an optimal solution by
considering all range partitioning boundary values exhaustively.
We omit experiments and counter examples due to lack of space.

Merging Hash Partitioning Methods: For merging a pair of
objects (O1,P1,C) and (O2,P2,C) where P1 and P2 are hash
partitions on C with number of partitions as n1 and n2
respectively, the number of partitions of the merged object O12 is
determined by number of processors, available memory and
number of distinct values in C.

5.2.3 Co-Location Considerations in Merging
The merging described thus far does not pay attention to merged
structures on other tables – this can result in loss of co-location
(see Section 2.3) for merged candidates. Consider a simple case
where we have 2 candidate indexes I1 and I2 on table T1 that we
wish to merge. Assume that I1 is used in a co-located join with
index I3 on table T2, i.e., both I1 and I3 have the same partitioning
method (say P1). Now I1 and I2 get merged to produce I12 with a
partitioning method P12. Since P12 is potentially different from P1,
the merged index I12 can no longer be used in a co-located join
with I3, thereby greatly reducing its benefit. Thus to preserve the
benefits of co-location, we need to also consider a merged
structure where I12 is partitioned on P1. For each merged structure
O, we consider all partitioning methods of any other structure that
could be used in a co-location join with O. In our experiments
(see Section 7) we show how co-location consideration in
Merging is crucial for good quality solutions.

6. INCORPORATING ALIGNMENT
REQUIREMENTS
As discussed in Section 3, the input to the final search step in our
solution (i.e., the Enumeration step), is the set of candidate
structures that have been found to be best for individual queries in
the workload, or those introduced via the Merging step. In

general, the input structures (for any given table) can be
partitioned differently since different queries in the workload may
be served best by different partitioning requirements. However,
due to manageability reasons we may be required to provide as a
solution, a configuration where all structures on each table are
aligned, i.e., partitioned identically.

We assume that a specific search strategy (Greedy (m, k))
described in Section 3 is used in the Enumeration step. To recap,
Greedy (m,k) algorithm guarantees an optimal answer when
choosing up to m physical design structures, and subsequently
uses a greedy strategy to add more (up to k) structures. The key
challenges in meeting these alignment requirements are outlined
below. For simplicity, let us assume that the structures Ij (j=1, .. n)
horizontally partitioned using partitioning method Pj are input
candidates to Enumeration and all structures are on same table
and are partitioned on same columns, and that each Pj is distinct.
If we use Greedy (m, k) unmodified on the above n structures, we
will end up picking exactly one of the structures Ij above (adding
any more will violate alignment), and thus can lead to a poor
solution. An alternative way to address the alignment issue is to
generate new structures which are the cross product all structures
in I with all partitioning methods in P. These new structures,
along with the n original structures (resulting in a total of n2
structures) are then passed into the Greedy(m,k) algorithm. This
approach, which we refer to as Eager Enumeration, although
will result in a good quality solution, can cause a significant
increase in running time as the number of input structures have
been considerably increased (potentially by a quadratic factor).
Thus, the challenge is to find a solution that is much more
scalable then Eager Enumeration and at the same time does not
significantly compromise the quality.

Our solution leverages the following observation. If we have a
candidate structure C that enters the search step, and we alter only
its partitioning method (to enforce alignment), then the resulting
structure C’ is at most as good in quality as C for any query in the
workload where C was a candidate. Furthermore, for the given
workload, suppose the cost of updating C is no higher than the
cost of updating C’ and the size of C is no larger than the size of
of C’. Then, we note that C’ can be introduced lazily during
Greedy (m,k) without compromising the quality of the final
answer, i.e., we would get the same answer as we would have
obtained using Eager Enumeration. We have observed, that the
above assumptions on update and storage characteristics typically
hold for new structures that need to be generated to enforce
alignment since: (1) the partitioning columns of C and C’ often
are the same (e.g., partitioning on join columns is common) and
(2) differences that arise from specific partitioning method
typically have small impact on update characteristics or size. (e.g.,
changing number of hash partitions does not significantly change
size of structure or cost of updating structure).

Our solution builds on this observation and interleaves generation
of new candidates and configurations with search. We call this
Lazy Enumeration. The pseudo code for lazy enumeration with
respect to the Greedy (m,k) search is described in Figure 5. We
assume that all input structures are on same table and can differ
on partitioning columns and methods. The extensions for different
tables are straightforward and are omitted.

Steps 1-6 of the algorithm describe how we generate the optimal
configuration r of size up to m from the input set of structures
such that all structures in r are aligned. The idea is to get the best
configuration of size up to m without taking alignment into
account. If structures in the best configuration are not aligned,
then only we generate new structures and configurations from
structures in the best configuration that are aligned. In steps 8-10,
we add structures greedily to r one at time to get up to k
structures. If the added structure a causes the alignment to get
violated, we generate a’, a version of a that is aligned with
structures in r, and add a’ to (and remove a from) the set of
structures from which structures are picked greedily.

Note that we introduce a structure with a new partitioning only
when the original structure would have been picked by the search
scheme in the absence of alignment requirement. The savings in
running time from the above algorithm arise due to the greedy
nature of Greedy(m,k), which makes it unnecessary to introduce
many new structures lazily that would otherwise have been
introduced by the Eager Enumeration approach. In Section 7, we
compare the Eager and Lazy Enumeration strategies on different
workloads and show that the latter is much more scalable than
Eager Enumeration without significantly compromising quality.

7. EXPERIMENTS
We have implemented the techniques presented in this paper on a
commercial database server that has necessary server extensions

to simulate indexes/materialized views/partitions. We simulate the
effect of vertically partitioning a table as described in Section 2.1.

Next we present experiments conducted on our prototype
implementation. We show that: (1) Our integrated approach to
physical design is better than an approach that stages the physical
design based on different features. (2) Column-group pruning
(Section 4) is effective in reducing the space of physical design
structures (3) Collation must be considered during Merging and
(4) The Lazy Enumeration technique discussed in Section 6 to
generate aligned indexes performs much better compared to the
eager strategy without compromising quality.

Setup: All experiments were run on a machine with an x86 1GHz
processor with 256 MB RAM and an internal 30GB hard drive
and running a modified version of a commercial relational DBMS.
We use TPC-H database [21] in our experiments. We use notation
TPCH1G to denote TPC-H data of size 1GB and TPCH22 for
TPC-H 22 query benchmark workload.

Importance of Selecting Structures Together: Here we study the
importance of selecting physical design structures together. Figure
6 compares the reduction in quality (difference in optimizer
estimated cost for TPCH22 workload) compared to our approach
that selects vertical partitions, indexes and horizontal partitions in
an integrated manner (TOGETHER). We compare our approach
to (a) IND-ONLY where we select indexes only (no horizontal or
vertical partitioning) and (b) VP->IND->HP where we first
vertically partition the database, then select indexes and
subsequently horizontally partition the objects. We vary the total
available storage from 1.3 GB to 3.5 GB.

Comparing Alternatives To Physical Design

0%

10%

20%

30%

40%

50%

1300 1500 2000 2500 3000 3500

Storage Bound (MB)

%
R

ed
u

ct
io

n
 In

 Q
u

al
it

y

IND-ONLY

VP->IND->HP

First, we observe that at low to moderate storage (1.3GB to
2.0GB), TOGETHER is much superior to IND-ONLY. This is
because unlike indexes (which are redundant structures) both
kinds of partitioning incur very little storage overhead. Second,
VP->IND->HP is inferior across all storage bounds to
TOGETHER. The reason is that the best vertical partitioning
chosen in isolation of indexes ends up precluding several useful
indexes. Likewise, picking indexes without regard to co-location
considerations of horizontal partitioning also results in missing
out good solutions. Note that at large storage bounds (where
importance of partitioning is diminished), TOGETHER is still
better than IND-ONLY (but not by much), and much better than
VP->IND->HP. Results were similar for updates and materialized
views and have been omitted due to lack of space.

Figure 6. Quality vs. Storage of physical design alternatives.

Input: I={Ij | Ij=(Oj,Pj,Cj), 1≤j≤n, Ij is a physical design
structure}, workload W, k and m in Greedy (m,k)
Output: A configuration with least cost for W having all
structures aligned.
1. Let S be the set of all configurations of size up to m

defined over structures in I.
2. Let r be the configuration in S with the minimal cost for

W. If no such configuration exists, return an empty
configuration. If all structures in r are aligned go to 7.

3. Let P be the set of all partitioning methods and columns of
structures in r.

4. Let T be the set of all structures generated by partitioning
structures in r using partitioning methods and columns in
P. Note that T defines a cross product set of (o,p,c) where
(o,*,*) is a structure in r and (p,c) is a partitioning method
and column in P.

5. Let S’ be the set of all configurations defined over
structures in T where each configuration in S’ is aligned
and is of same size as size of r.

6. S = S ∪ S’, S = S − {r}. Go to 2. //Remove r from search
7. Let V = I. // Initialize V to be the same as I
8. If size of r ≥ k, return r. Pick a structure a from V such

that configuration r ∪ {a} has the minimal cost for W. If
no such structure can be picked, return r. If a is aligned
with structures in r, go to 9, else go to 10.

9. V = V − {a}, r = r ∪ {a}. Go to 8. // add a to r
10. V = V − {a}, Let a’ be the structure generated by

partitioning a using (p,c) where structures in r are
partitioned on columns c using partitioning method p. V =
V ∪ { a’}. Go to 8.

Figure 5. Extending Greedy (m,k) for handling alignment

Effectiveness of Column-Group Restriction: We study the
effectiveness of the column-group based pruning (Section 4). We
use two workloads TPCH22 and CS-WKLD and varied the
threshold (f) for pruning from 0.0 (no pruning) to 0.1. CS-WKLD
is a 100 query workload over TPCH1G database consisting of SPJ
queries; the specific tables and selection conditions are selected
uniformly at random from the underlying database. Figure 7
shows the reduction in quality for different values of f for the two
workloads compared to f = 0.0. We observe that using column-
group based pruning with f less than 0.02 has almost no adverse
effect on quality of recommendations. For TPCH22 there was a
2% quality degradation at f = 0.02 compared to f = 0.0. We
observe that the quality degrades rapidly for f > 0.02 for CS-
WKLD because poor locality forces us to throw away many useful
column-groups. Figure 8 shows the decrease in total running time
of tool as f is varied, compared to the time taken for f = 0.0. We
observe that the running time decreases rapidly as f is increased.
For TPCH22, we observe about 20% speedup. This is not
surprising since the space of column-groups is strongly correlated
with the space of physical design that we explore. This experiment
suggests that a value of f around 0.02 gives us about the same
quality as f = 0.0 and in much less running time.

Quality vs. Column-Group Threshold

0%

10%

20%
30%

40%

50%

60%

0.02 0.04 0.06 0.08 0.1

C o lumn-Gro up T hresho ld (f)

%
R

ed
u

ct
io

n
 in

Q

u
al

it
y

TPCH22

CS-WKLD

Running Time vs. Column-Group
Threshold

0%

10%

20%

30%

40%

50%

0.02 0.04 0.06 0.08 0.1
C o lumn-Gro up T hresho ld (f)

%
D

ec
re

as
e

in

R
u

n
n

in
g

 T
im

e

TPCH22

CS-WKLD

Importance of Co-location in Merging: Here we compare our
algorithm for Merging (see Section 5) with a variant of this
algorithm (NOCOL) that does not take co-location into
consideration. We use 4 workloads of 25 queries each on
TPCH1G database – WKLD-COL-n where n is % of queries with
join conditions. We use n = 20, 40, 60 and 80. The specific values
in the filter condition of the queries are generated randomly and
the range lengths are selected with Zipfian distribution [13] (skew
1.0). Figure 9 shows the percentage reduction in quality of
NOCOL of the workloads compared to our Merging scheme. We

observe that as the % of join queries increases (e.g., at n=60),
ignoring co-location causes the quality to drop significantly. The
smaller difference at n=80 is because the overall workload cost
has increased with more join queries causing the relative
difference to become smaller.

Quality vs. Co-location

0%

20%

40%

60%

80%

100%

WKLD-
COL-20

WKLD-
COL-40

WKLD-
COL-60

WKLD-
COL-80

Workload

%
 R

ed
u

ct
io

n
 In

Q

u
al

it
y

Effectiveness of Lazy Enumeration for handling alignment
requirements: Here we compare the Lazy Enumeration technique
that we use to generate aligned indexes to Eager Enumeration,
discussed in Section 6. Table 2 compares the two techniques. We
use TPCH22 workload on TPCH1G database. We also use 200
APB queries on APB database [14] that is about 1.2 GB; the APB
queries are complex decision support queries. We observe that on
TPCH22 Lazy Enumeration performs much better, it is about 90%
faster than Eager Enumeration and the loss in quality is very small
~1%. The reason for this is that Eager Enumeration generates and
evaluates the goodness of lot more indexes compared to the lazy
strategy. In the latter, new candidate indexes are generated on
demand. We observe similar behavior for APB benchmark
queries. This shows that Lazy Enumeration is much more scalable
and almost as good in quality compared to Eager Enumeration.

Table 2. Comparing quality and performance of Eager and
Lazy Enumeration Techniques

Workloads Speed up compared
to Eager Enumeration

Loss in Quality
compared to Eager
Enumeration

TPCH22 90% 1%

APB 50% 0%

8. RELATED WORK
To the best of our knowledge, ours is the first work to take an
integrated approach to the problem of choosing indexes,
materialized views, and partitioning, which are the common
physical design choices in today’s database systems. The problem
of how to automatically recommend partitioning a database across
a set of nodes in shared-nothing parallel database system was
studied in [17,25]. However, the key differences with our work
are: (1) Their work does not explore the interaction between
choice of partitioning and choice of indexes and materialized
views. Thus, they implicitly assume that the two tasks are staged
(i.e., done one after the other). As shown in this paper, in a single-
node environment, such an approach can lead to poor quality of
recommendations. (2) Our work also presents techniques for
recommending appropriate range and hash partitioned objects. In
[24], the problem of determining appropriate partitioning keys for
a table (in a multi-node scenario) as well as indexes is considered.

Figure 7. Variation of Quality with Threshold f

Figure 8. Variation of Running Time with Threshold f

Figure 9. Impact of co-location considerations on merging

Our work is a significant extension of this work in the following
ways: (1) In addition to partitioning of tables, we also consider
partitioning of indexes and materialized views. (2) We also
consider range partitioning. (3) The focus in [24] was on the
search problem (a branch-and-bound strategy). While this is an
important aspect of the problem, we have argued in this paper for
scalable techniques for selecting candidate physical design
structures, which enable the search strategy to scale in practice.
Recently, Zeller and Kemper [23] showed the importance of
horizontal partitioning in a single-node scenario (for a large scale
SAP R/3 installation), which is the focus of this paper. Their
study showed the benefits of single-node partitioning for joins,
and exploiting parallelism of multiple CPUs. The problem of
allocating data fragments (horizontal partitions) of the fact table
using bitmap indices in a data warehouse environment (star
schemas) is studied in [20]. They explore the issues of how to
fragment the fact table, as well as physical allocation to disks
(e.g., degree of declustering, allocation policy).

There have been several papers [7,8,10,14] describing techniques
for vertically partitioning a table for a given workload. Relative to
this body of work, this paper is different in or more of the
following ways. (1) We study the interaction of vertical
partitioning with other physical design features. (2) Our approach
is cost-based and takes into account usage of structures by the
query optimizer. (3) We do not restrict our space to only binary
partitioning (see the Merging step). Our techniques assume
DBMS architectures prevalent in today’s database systems. We
note that recent studies [3,16] have looked into new DBMS
architectures where improved cache performance is possible by
storing data in a column-wise manner. We view this work as
complementary to ours as refinements in the cost model based on
these ideas can lead to better choice of vertical partitioning.

The problem of generating more general candidates based on
merging indexes [6] and materialized views [2] have been studied
earlier. However the problem of merging is significantly more
complex in the presence of partitioning (Section 5). Our
techniques for merging both range and hash partitioned objects as
well as vertical partitioning are novel contributions of this paper.
Finally, we note that there have been several papers (e.g., [9]) on
the problems of index selection and materialized view selection,
the latter mostly in the context of OLAP and Data cube. However,
these studies differ in one or more of the following ways from our
work. (1) They do not take into account the workload. (2) Their
approach is disconnected from query optimizer. (3) Class of
queries considered does not consider the full generality of SQL.

9. CONCLUSION
In this paper, we present techniques that enable a scalable solution
to the integrated physical design problem of indexes, materialized
views, vertical and horizontal partitioning for both performance
and manageability. Our work on horizontal partitioning focuses
on single-node partitioning. In the future we will investigate how
our techniques can be adapted to handle performance and
availability requirements in multi-node partitioning.

10. ACKNOWLEDGMENTS
We thank Lubor Kollar, Arun Marathe, Campbell Fraser and Alex
Boukouvalas in the Microsoft SQL Server team for helping us
with the necessary server extensions. We are grateful to Nico

Bruno, Surajit Chaudhuri, Christian Konig and Zhiyuan Chen for
their valuable discussions and feedback.

11. REFERENCES
[1] Agrawal, R., Ramakrishnan, S. Fast Algorithms for Mining

Association Rules in Large Databases. Proc. of VLDB 1994.
[2] Agrawal, S., Chaudhuri, S., and Narasayya, V. Automated

Selection of Materialized Views and Indexes for SQL
Databases. Proceedings of VLDB 2000.

[3] Ailamaki A., Dewitt D.J., Hill M.D., and Skounakis M.
Weaving Relations for Cache Performance. VLDB 2001.

[4] Chaudhuri, S., Narasayya, V. An Efficient Cost-Driven Index
Selection Tool for Microsoft SQL Server. VLDB 1997.

[5] Chaudhuri, S., and Narasayya, V. AutoAdmin “What-If”
Index Analysis Utitlity. Proc. of ACM SIGMOD 1998.

[6] Chaudhuri, S., and Narasayya, V. Index Merging.
Proceedings of ICDE 1999.

[7] Cornell D.W., Yu P.S. An Effective Approach to Vertical
Partitioning for Physical Design of Relational Databases.
IEEE Transactions on Software Engg, Vol 16, No 2, 1990.

[8] De P., Park J.S., and Pirkul H. An Integrated Model of
Record Segmentation and Access Path Selection for
Databases. Information Systems, Vol 13 No 1, 1988.

[9] Gupta H., Harinarayan V., Rajaramana A., and Ullman J.D.
Index Selection for OLAP. Proc. ICDE 1997.

[10] Navathe S., Ra M. Vertical Partitioning for Database
Design: A Graphical Algorithm. Proc. of SIGMOD 1989.

[11] http://otn.oracle.com/products/oracle9i/index.html.
[12] http://research.microsoft.com/~gray/dbgen/.
[13] http://www.olapcouncil.org/research/bmarkco.htm.
[14] Papadomanolakis, E., and Ailamaki A. AutoPart:

Automating Schema Design for Large Scientific Databases
Using Data Partitioning. CMU Technical Report. CMU-CS-
03-159, July 2003.

[15] Program for TPC-D data generation with Skew.
ftp://ftp.research.microsoft.com/users/viveknar/TPCDSkew/.

[16] Ramamurthy R., Dewitt D.J., and Su Q. A Case for
Fractured Mirrors. Proceedings of VLDB 2002.

[17] Rao, J., Zhang, C., Lohman, G., and Megiddo, N.
Automating Physical Database Design in a Parallel
Database. Proceedings of the ACM SIGMOD 2002.

[18] Sacca D., and Wiederhold G. Database Partitioning in a
Cluster of Processors. ACM TODS,Vol 10,No 1, Mar 1985.

[19] Stohr T., Martens H.., and Rahm E.. Multi-Dimensional
Aware Database Allocation for Parallel Data Warehouses.
Proceedings of VLDB 2000.

[20] TPC Benchmark H. Decision Support. http://www.tpc.org
[21] Valentin, G., Zuliani, M., Zilio, D., and Lohman, G. DB2

Advisor: An Optimizer That is Smart Enough to Recommend
Its Own Indexes. Proceedings of ICDE 2000.

[22] Zeller, B., and Kemper, A. Experience Report. Exploiting
Advanced Database Optimization Features for Large-Scale
SAP R/3 Installations. Proceedings of VLDB 2002.

[23] Zilio, D. Physical Database Design Decision Algorithms and
Concurrent Reoganization for Parallel Database Systems.
PhD Thesis, Dept. of Comp. Sc., Univ. of Toronto, 1998.

[24] Zilio, D., Jhingran, A., Padmanabhan, S. Partitioning Key
Selection for Shared-Nothing Parallel Database System.
IBM Research Report RC 19820. 1994.

	page1: 359
	page2: 360
	page3: 361
	page4: 362
	page5: 363
	page6: 364
	page7: 365
	page8: 366
	page9: 367
	page10: 368
	page11: 369
	page12: 370

