
Integrating Vertical and Horizontal Partitioning into 
Automated Physical Database Design 

Sanjay Agrawal 
Microsoft Research 

sagrawal@microsoft.com 

Vivek Narasayya 
Microsoft Research 

viveknar@microsoft.com 

Beverly Yang* 
Stanford University 

byang@stanford.edu 
 
 

ABSTRACT 
In addition to indexes and materialized views, horizontal and 
vertical partitioning are important aspects of physical design in a 
relational database system that significantly impact performance. 
Horizontal partitioning also provides manageability; database 
administrators often require indexes and their underlying tables 
partitioned identically so as to make common operations such as 
backup/restore easier. While partitioning is important, 
incorporating partitioning makes the problem of automating 
physical design much harder since: (a) The choices of partitioning 
can strongly interact with choices of indexes and materialized 
views. (b) A large new space of physical design alternatives must 
be considered. (c) Manageability requirements impose a new 
constraint on the problem.  In this paper, we present novel 
techniques for designing a scalable solution to this integrated 
physical design problem that takes both performance and 
manageability into account. We have implemented our techniques 
and evaluated it on Microsoft SQL Server. Our experiments 
highlight: (a) the importance of taking an integrated approach to 
automated physical design and (b) the scalability of our 
techniques. 

1. INTRODUCTION 
Horizontal and vertical partitioning are important aspects of 
physical database design that have significant impact on 
performance and manageability. Horizontal partitioning allows 
access methods such as tables, indexes and materialized views to 
be partitioned into disjoint sets of rows that are physically stored 
and accessed separately. Two common types of horizontal 
partitioning are range and hash partitioning. On the other hand, 
vertical partitioning allows a table to be partitioned into disjoint 
sets of columns. Like indexes and materialized views, both kinds 
of partitioning can significantly impact the performance of the 
workload i.e., queries and updates that execute against the 
database system, by reducing cost of accessing and processing 
data.  

DBAs today also use horizontal partitioning extensively to make 
database servers easier to manage. If the indexes and the 
underlying table are partitioned identically i.e. aligned, database 

operations such as backup and restore become much easier. 
Therefore, there is a need to incorporate manageability while 
arriving at the right physical design for databases. Thus, database 
administrators (DBAs) in today’s enterprises are faced with the 
challenging task of determining the appropriate choice of physical 
design consisting of partitioned tables, indexes and materialized 
views that (a) optimizes the performance of the SQL queries and 
updates and (b) is easier to manage at the same time. 

Our goal is to optimize the performance of a database for a given 
representative workload, while considering alignment 
requirements. While there has been work in the area of 
automating physical database design [2,4,17,22,24], we are not 
aware of any work that addresses the problem of incorporating 
both horizontal and vertical partitioning as well as alignment 
requirements in an integrated manner. The novel techniques 
presented in this paper are motivated by the key design challenges 
that arise with the inclusion of horizontal and vertical partitioning, 
and are presented below. 

Need for an integrated approach to automating the choice of 
physical design: Different aspects of physical design can interact 
strongly with one another. Example 1 illustrates the problems of 
separating the selection of different physical design choices.   

Example 1. Consider the following query on TPC-H 1 GB data.  

SELECT L_RETURNFLAG,          L_LINESTATUS,  
       SUM (L_QUANTITY), COUNT (*)  

FROM    LINEITEM  
WHERE L_SHIPDATE <= ‘1998/12/08’ 
GROUP BY L_RETURNFLAG, L_LINESTATUS  
ORDER BY L_RETURNFLAG, L_LINESTATUS  

We compare two approaches for the query above. (1) First select 
the best un-partitioned indexes, and in the next step horizontally 
partition the resulting indexes. (2) Consider indexes and 
horizontal partitioning together. Using the first approach we 
obtain as the best index, an index (I1) on columns (l_shipdate, 
l_returnflag, l_linestatus, l_quantity) hash partitioned on 
(l_returnflag, l_linestatus). Using the second (integrated) 
approach, the best index (I2) is (l_returnflag, l_linestatus, 
l_shipdate, l_ quantity) range partitioned on (l_shipdate). Note 
that the indexes I1 and I2 though defined over the same set of 
columns, differ in the ordering of columns as  well as in the way 
they are partitioned. The execution time of the above query using 
I2 is about 30% faster than with I1. 
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The reason for inferior recommendation using approach (1) is as 
follows. When selecting the best un-partitioned index, the 
alternative (l_returnflag, l_linestatus, l_shipdate, l_quantity)  
which has the column sequence as I2 is considered, but is found to 
be much inferior than the index (l_shipdate, l_returnflag, 
l_linestatus, l_quantity), where the columns in the index are 
ordered on selection and grouping columns of the query 
respectively. Thus, the ordering of the columns in the index is 
fixed after the first step. In the subsequent step, partitioning the 
index on the grouping/ordering columns in the query is found to 
be beneficial since this reduces the cost of sorting. However, since 
answering the query requires merging the rows from each 
partition of I1, this adds to the query execution time. On the other 
hand, using approach (2) where indexes and partitioning are 
considered together, the superior alternative that range partitions 
the index on the column referenced in the range condition (which 
limits all the rows required to answer the query to a single 
partition) and orders the columns in the index on 
grouping/ordering columns (which saves the sort cost as well) is 
considered.  

As demonstrated by Example 1 above, staging the solution based 
on different physical design features can result in poor overall 
physical design. Intuitively, the reason for inferior solution using 
the first approach is that both indexes and horizontal partitioning 
can speed up the same operations in the query (grouping, 
selections). By separating the choices we can get locked into a 
poor solution in the first step that cannot subsequently be undone. 
In this paper, we discuss the interactions among physical design 
structures, both within a single query as well as across queries in 
the workload that can cause staged solutions to perform poorly. 

Need for intelligent pruning of large search space: With the 
inclusion of vertical and horizontal partitioning, the space of 
possible physical design alternatives that need to be considered 
for the given workload significantly increases. For example, each 
table can be vertically and horizontally partitioned in many 
different ways. Similarly, for each index or materialized view that 
we consider, we can have many variations of that structure, each 
horizontally partitioned in a different way. The fact that modern 
database systems support different ways of horizontal partitioning, 
such as range or hash partitioning, only adds to this combinatorial 
explosion. We present novel techniques that exploit workload 
information to intelligently prune the space of alternatives in a 
cost-based manner. 

Need for integrating alignment requirements into search: A 
key contribution of the paper is to highlight the importance of 
incorporating manageability requirements while optimizing the 
database physical design for performance. In this paper, we focus 
on the alignment aspect of manageability. Indexes are considered 
as aligned if these are horizontally partitioned in the same way as 
the underlying tables. The challenge of incorporating alignment 
mainly arises from the fact that optimizing different queries can 
lead to physical design structures on the same table that have 
conflicting horizontal partitioning requirements. In this paper, we 
present a scheme that achieves alignment in an efficient manner. 

In arriving at our solution, we leverage two important ideas from 
the architecture discussed in [2]. The approach in [2] restricts the 
search for the best physical design for a workload to (a) objects 
that are good for at least one query in the workload (done in 
Candidate Selection step)  and (b) additional objects that are 

potentially  good for the workload but not necessarily for 
individual queries (generated in Merging step). The best physical 
design for the entire workload is arrived at by searching over the 
set of objects described above (called the Enumeration step).  For 
evaluating different physical design alternatives, the solution 
relies on optimizer estimated costs and what-if extensions that are 
available in several commercially available database servers [5, 
22]. This allows the system to be robust and scalable; trying out 
numerous alternatives during search without physically 
implementing these is more efficient and does not disrupt the 
database server’s normal mode of operation. Thus the 
contributions of this paper can be viewed as novel pruning and 
algorithmic techniques that allow the adoption of the broad 
architecture in [2] while expanding the scope of physical design to 
include horizontal and vertical partitioning as well as alignment 
requirements.  

We extended Microsoft SQL server with the necessary interfaces 
to enable us to experimentally evaluate our techniques. Our 
experimental results show: (a) The importance of taking an 
integrated approach to the physical design problem (b) the impact 
of our pruning techniques on quality and scalability of the 
solution. The focus of this paper is on partitioning in a single-
node environment (e.g., on an SMP), which is widely prevalent in 
today’s enterprise databases installations [23]. We expect that 
some of the techniques described in this paper will also be 
important in physical design for multi-node environments for the 
same reason, i.e., interactions among different aspects of physical 
design. 

The rest of the paper is organized as follows. Section 2 formally 
defines the integrated physical design problem, and describes the 
interactions among physical design structures. Section 3 presents 
an overview of the architecture of our solution, and Section 4 
describes novel pruning strategies for reducing the space of 
alternatives introduced by vertical and horizontal partitioning. 
Section 5 shows how we incorporate partitioning during the 
Merging step described earlier. Section 6 presents our technique 
for handling alignment requirements. We present results of our 
experimental evaluation in Section 7, and discuss related work in 
Section 8. We conclude in Section 9. 

2. BACKGROUND  

2.1 Preliminaries 
Workload: We model the workload as a set of SQL DML 
statements, i.e., SELECT, INSERT, DELETE and UPDATE 
statement. It can be obtained using profiling tools that are 
available on today’s database systems. Optionally, with each 
statement Q in the workload, we associate a weight fQ. For 
example, the weight may capture the multiplicity of that statement 
in the workload.  Note that since the workload captures the 
inserts/updates/deletes that happen in the system, the maintenance 
and update costs of physical design alternatives get accounted for 
by our workload model. 

Vertical partitioning of a table T splits it into two or more tables 
(which we refer to as sub-tables), each of which contains a subset 
of the columns in T. Since many queries access only a small 
subset of the columns in a table, vertical partitioning can reduce 
the amount of data that needs to be scanned to answer the query. 
In this paper, we will assume that each sub-table contains a 



disjoint set of columns of T, except for the key columns of T 
which are present in each sub-table. The key columns are required 
to allow “reconstruction” of an original row in T. Unlike indexes 
or materialized views, in most of today’s commercial database 
systems there is no native DDL support for defining vertical 
partitions of a table. We simulate vertical partitioning by creating 
regular tables, one for each sub-table. The queries/updates in the 
workload that reference the original table T are rewritten to 
execute against the sub-table(s). Thus vertical partitioning as 
studied in this paper can be viewed as restricted form of tuning 
the logical schema of the database to optimize performance. Note 
that other access paths such as indexes and materialized views can 
be created over sub-tables to further improve query performance.  

Horizontal partitioning affects performance as well as 
manageability. In general, any of the following access paths in a 
database can be horizontally partitioned: (1) A table (or sub-tables 
described above), which may be organized as a heap or clustered 
index, (2) A non-clustered index (3) A materialized view. We will 
refer to these un-partitioned access paths in this paper as objects. 
The horizontal partitioning of an object is specified using a 
partitioning method, which maps a given row in an object to a 
partition number. All rows of the object with the same partition 
number are stored in the same partition. As mentioned earlier, we 
focus on the case of single-node partitioning, i.e., all objects are 
present on a single machine (possibly an SMP). While multi-node 
partitioning can bring benefits of availability that is not possible 
with single-node partitioning, as shown in [23] and in this paper, 
single-node partitioning significantly impacts performance.  

Today’s database systems typically allow two main kinds of 
partitioning methods: hash or range. In hash partitioning, the 
partition number for a given row is generated by applying a 
system defined hash function on all columns in a specified set of 
partitioning column(s) of the object. A hash partitioning method 
is defined by a tuple (C,n), where C is a set of column types, and 
n is the number of partitions. For example, let T be a table (c1 int, 
c2 int, c3 float, c4 date). The hash partition method H1 = ({int, int}, 
10) partitions T into 10 partitions by applying the hash function to 
the values of columns {c1, c2} in each row of T.  

A range partitioning method is defined by a tuple (c, V), where c 
is a column type, and V is an ordered sequence of values from the 
domain of c. For example, the range partitioning method R1 = 
(date, <’01-01-98’, ‘01-01-02’>) when applied to column c4 on 
table T above , partitions T into 3 partitions, one per range defined 
by the sequence of dates. The first range is defined by all values ≤ 
’01-01-98’ and the last range is defined by all values > ‘01-01-
02’. For simplicity of exposition, we define range partitioning 
over a single column rather than a set of columns. We also do not 
consider other kinds of partitioning methods e.g., hybrid 
partitioning (consisting of range partitioning an object, and hash 
partition each range), and list partitioning [12].  

Definition 1. A physical design structure is defined as an object 
and its associated partitioning method. We denote a physical 
design structure by (O,P,C) where O is an object (heap, index, 
materialized view), P is a partitioning method and C is the 
ordered set of columns of O on which P is applied. An un-
partitioned object is denoted as P=φ,C =φ. 

Example 2. The physical design structure (lineitem, ({int}, 4), 
{l_orderkey}) represents the table lineitem hash partitioned into 4 
partitions on column {l_orderkey}.  

Note that in Definition 1, the object O itself can be a sub-table 
(i.e., a vertical partition of an original table) or an 
index/materialized view defined on a sub-table. This allows us to 
consider physical design structures that combine the benefits of 
vertical and horizontal partitioning.   

Definition 2.  A configuration is a valid set of physical design 
structures, i.e., a set of physical design structures that can be 
realized in a database. Some validity constraints that apply to any 
given configuration: a table can be vertically partitioned in exactly 
one way, a (sub-)table can have at most one clustered index, a 
(sub-)table can be horizontally partitioned in exactly one way.  

2.2 The Physical Design Problem 
Our goal is to choose a configuration, such that the performance 
of a given workload is optimized, subject to a constraint on the 
total storage allowed for the configuration. Optionally the 
configuration may be constrained to be aligned i.e. all indexes are 
horizontally partitioned identically to the table on which they are 
defined. Given a statement Q in the workload, and given a 
configuration P we assume there exists a function Cost (Q, P) that 
returns the optimizer estimated cost of statement Q if the physical 
design of the database is P. Recently, commercial database 
systems support the necessary interfaces to answer such “what-if” 
questions without requiring the configuration P to be physically 
implemented. Details of such functionality can be found in [5,22], 
and are omitted. Figure 1 shows the physical design problem 
formulation. 

 
The horizontal partitioning problem has been showed to be 
NP hard [18]. We note that other sub-problems, e.g., index 
selection, materialized view selection, choosing vertical 
partitioning have previously shown to be NP-hard. We omit 
details due to lack of space. 

2.3 Interactions among Physical Design 
Structures 
In this section, we present the interactions arising from inclusion 
of horizontal and vertical partitioning that justifies the importance 
of selecting different physical design features (vertical 
partitioning, indexes, materialized views, horizontal partitioning) 
in an integrated manner. We believe that any solution to the 
physical design problem that ignores these interactions, can 
potentially suffer from poor quality recommendations.  

Intra-Query interactions capture the impact of different physical 
design features on one another at the query processing level. 

Intersection of conditions: Consider a query with the WHERE 
clause Age < 30 AND Salary > 50K. If neither condition by itself 

Given a database D, a workload W, and a storage bound 
S, find a configuration P whose storage requirement does 
not exceed S, such that ΣQ∈ W fQ. Cost(Q,P) is minimized. 
Optionally, P may be constrained to be aligned. 

Figure 1. Physical Design Problem. 



is very selective e.g. each selects 20% of records, indexing or 
partitioning on Age and Salary Column(s) are not very useful. 
However if the conjunction of their selectivities is small e.g. 5%, 
an index on Salary, range partitioned on the Age column, can 
benefit the query significantly. Note that similar interactions can 
also occur with two indexes (e.g., index intersection plans).  

Join interactions: Two or more structures from different tables can 
share a common property than enables a faster join execution 
strategy; if these are partitioned identically on their respective join 
columns (i.e. are co-located), the query optimizer can select a 
plan that joins the corresponding partitions of the respective 
structures separately, and then combine the results. Co-located 
joins are typically much faster than non co-located joins, 
particularly on multi-processor systems, where joins of several 
different pairs of partitions can be performed in parallel. Even on 
a single processor the total cost of joining several smaller 
partitions can be much less than cost of a single large join; when 
each partition fits into memory, cost of join can decrease 
dramatically. This requires us to explore combinations of 
structures from different tables, partitioned identically, so that 
they can be used in a co-located join.  

Mutually exclusive structures: This interaction is characterized by 
the fact that if one structure is chosen, then it eliminates (or makes 
redundant) other structures from consideration. For example, if 
we horizontally partition table T on column A, then it physically 
prohibits the table from being partitioned on any other column(s). 
Likewise, we can vertically partition T in exactly one way.  

Inter-Query interactions arise from the fact that our goal is to 
find the best configuration for workload with certain constraints. 

Specificity vs. Generality: Often a structure is only useful for a 
specific query, but not useful for any other query in the workload. 
A good example of this is a range partitioned table. Unless we are 
careful about picking boundary values of the range partitioning, 
we can suffer from being overly specific for a few queries, but 
poor for over all workload.  

Implications of Storage/Update: A structure can be more 
beneficial but require more storage or have higher update cost for 
the workload than some other structure. This makes the task of 
searching for an optimal configuration in a storage-constrained 
and/or update intensive environment more difficult. This 
interaction suggests that when storage is limited, we expect 
structures such as partitioning and clustered indexes (both of 
which are non-redundant structures) to be more useful.  

3. ARCHITECTURE OF SOLUTION 
As mentioned in introduction, we adopt and extend the 
architecture described in [2]. For simplicity of exposition, we 
retain the terminology used in [2] wherever applicable. The focus 
of this paper is on novel techniques (and their evaluation) that 
make it possible to adopt this architecture for the physical design 
problem presented in Section 2. The issue of alternative 
architectures for the physical design problem is not considered in 
this paper, and remains an interesting open issue. Figure 2 shows 
the overall architecture of our solution.  The four key steps in our 
architecture are outlined below. 

Column-Group Restriction: The combinatorial explosion in the 
number of physical design structures that must be considered is a 

result of the large number of column-groups (i.e., sets of columns) 
that are, in principle, relevant for the workload. This step (which 
is the focus of Section 4) is a pre-processing step eliminates from 
further consideration a large number of column-groups that can at 
best have only a marginal impact on the quality of the final 
solution. The output of this step is a set of “interesting” column-
groups (defined in Section 4) for the workload. This step is a 
novel extension of previous architectures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Candidate Selection: The interesting column-groups identified in 
the above step form the basis for the physical design structures we 
consider, described in Section 4.3. The Candidate Selection step 
selects for each query in the workload (i.e., one query at a time), a 
set of very good configurations for that query in a cost-based 
manner by consulting the query optimizer component of the 
database system. A physical design structure that is part of the 
selected configurations of one or more queries in the workload is 
referred to as a candidate. In our implementation, we use Greedy 
(m,k) approached discussed in [2] to realize this task. To recap, 
Greedy (m,k) algorithm guarantees an optimal answer when 
choosing up to m physical design structures, and subsequently 
uses a greedy strategy to add more (up to k) structures. The  
collocation aspect of intra-query interactions (see Section 2.3)  is 
taken into account by selecting a value of m large enough ( m is 
the number of collocated objects in the query). Note that the 
specific algorithm to generate candidates is orthogonal to our 
solution as long it accounts for the interactions and returns a set of 
candidates for the query.  

Merging: If we restrict the final choice of physical design to only 
be a subset of the candidates selected by the Candidate Selection 
step, we can potentially end up with “over-specialized” physical 
design structures that are good for individual queries, but not 
good for the overall workload. Specifically, when storage is 

Figure 2. Architecture of solution. 
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limited or workload is update intensive, this can lead to poor 
quality of the final solution. Another reason for sub-optimality 
arises from the fact that an object can be partitioned (vertically or 
horizontally) in exactly one way, so making a good decision can 
be crucial. The goal of this step is to consider new physical design 
structures, based on candidates chosen in the Candidate Selection 
step, which can benefit multiple queries in the workload. The 
Merging step augments the set of candidates with additional 
“merged” physical design structures. The idea of merging physical 
design structures has been studied in the context of un-partitioned 
indexes [6], and materialized views [2]. However in both these 
studies, the impact of vertical and horizontal partitioning on 
Merging was not considered. As we show in Section 5, Merging 
becomes considerably more challenging with the inclusion of both 
kinds of partitioning, and requires new algorithmic techniques.  

Enumeration: This step takes as input the candidates (including 
the merged candidates) and produces the final solution – a 
physical database design. The problem of exact search techniques 
for the physical design problem (e.g., as in [4,17,22,24]) is 
complementary to the focus of this paper. In our implementation, 
we use Greedy (m,k)  search scheme. However, as we show in 
Section 6, with the additional constraint that the physical design 
for each table should be aligned, directly using previous 
approaches can lead to poor scalability. A contribution of this 
paper is describing an algorithm that improves scalability of the 
search without significantly compromising quality. 

In Section 4, we discuss how we leverage workload to prune the 
space of syntactically relevant physical design structures. In 
Section 5, we show how we incorporate horizontal and vertical 
partitioning during Merging. In Section 6, we discuss how to 
handle alignment requirements in an efficient manner during the 
Enumeration step.  

4. RESTRICTING COLUMN-GROUPS FOR 
CANDIDATE SELECTION  
A physical design structure is syntactically relevant for the 
workload if it could potentially be used to answer one or more 
queries in the workload. As shown in several previous papers on 
physical database design e.g., [2,4,6], the space of syntactically 
relevant indexes and materialized views for a workload can be 
very large. We observe that for indexes, the space of syntactically 
relevant physical design structures is strongly dependent on the 
column-groups, i.e., combinations of columns referenced by 
queries the workload. Similarly, with horizontal partitioning, 
column-groups present in selections, joins and grouping 
conditions [17] of one or more queries need to be considered. 
With vertical partitioning, each column-group in a table could be 
a sub-table.  

Once we include the options of vertical and horizontal 
partitioning along with indexes, even generating all syntactically 
relevant structures for a query/update (and hence the workload) 
can become prohibitively expensive. In Section 4.1, we present an 
efficient technique for pruning out a column-group such that any 
physical design structures defined on that column-group can only 
have limited impact on the overall cost of the workload.  

An additional factor that must be considered is that it is much 
more expensive for a physical design tool to consider an 
alternative vertical partitioning than it is to consider an alternative 

index (or horizontal partitioning). The reason is (see Section 2.1.) 
simulating a vertical partitioning to the query optimizer requires 
creating regular tables, one for each sub-table in the vertical 
partition, and rewriting queries/updates in the workload that 
reference the original table to execute against the sub-table(s). 
Furthermore, sub-tables serve as building blocks over which we 
explore the space of horizontally partitioned indexes and 
materialized views. Thus, in large or complex workloads, where 
many interesting column-groups may exist, it can be beneficial to 
be able distinguish the relative merits of column-groups for 
vertical partitioning. In Section 4.2, we present a measure for 
determining effectiveness of a column-group for vertical 
partitioning that can be used by any physical design tool to 
filter/rank column-groups.  

4.1 Determining Interesting Column-Groups  
Intuitively, we consider a column-group as interesting for a 
workload W, if a physical design structure defined on that 
column-group can impact a significant fraction of the total cost of 
W. Based on this intuition, we define a metric CG-Cost(g) for a 
given column-group g that captures how interesting that column-
group is for the workload. We define CG-Cost (g) as the fraction 
of the cost of all queries in the workload where column-group g is 
referenced. The cost of query can either be the observed execution 
cost of the query against the current database (if this information 
is available) or the cost estimated by the query optimizer. A 
column-group g is interesting if CG-Cost(g) ≥ f , where 0 ≤ f ≤ 1 
is a pre-determined threshold.  

Example 3. Consider a workload of queries/updates Q1, … Q10 
that reference table T (A,B,C,D). A cell in the above matrix 
contains 1 if the query references that column, 0 otherwise. For 
simplicity assume that all queries have cost of 1 unit. Suppose the 
specified threshold f = 0.2.  Then the interesting column-groups 
for the workload are {A}, {B}, {C}, {A,B}, {A,C}, {B,C} and 
{A,B,C}with respective CG-Cost of 1.0, 0.3, 0.9, 0.3, 0.9, 0.2, 
0.2. For Q3 we only need to consider physical design structures on 
the above 7 column-groups rather than the 15 column-groups that 
are syntactically relevant for Q3, since {D} and all column-groups 
containing D are not interesting. 

Note that CG-Cost is monotonic; for column-groups g1 and g2, 
g1⊆  g2 ⇒ CG-Cost (g1) ≥ CG-Cost (g2). This is because for all 
queries where g2 is referenced, g1 is also referenced, as are all 
other subsets of g2. Thus for a column-group to be frequent, all its 
subsets must be frequent.  We leverage this monotonicity property 
of CG-Cost to build the set of all interesting column-groups of a 
workload in a scalable manner as shown in Figure 3, by 
leveraging existing algorithms for frequent-itemset generation 
e.g., as [1], rather than having to enumerate all subsets of columns 
referenced in the workload. We note that the above frequent-
itemset approach has been used previously for pruning the space 
of materialized views [2]. NumRefColumns (in Step2) is the 
maximum number of columns of T referenced in a query, over all 
queries in the workload. The parameter to the algorithm is a 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 
A 1 1 1 1 1 1 1 1 1 1 
B 1 1 1 0 0 0 0 0 0 0 
C 0 1 1 1 1 1 1 1 1 1 
D 0 0 1 0 0 0 0 0 0 0 



threshold f, below which a column-group is not considered 
interesting. 

In practice, in several large real and synthetic workloads, we have 
observed that even relatively small values of f (e.g., 0.02) can 
result in dramatic reduction in number of interesting column-
groups (and hence overall running time of the physical design 
tool) without significantly affecting the quality of physical design 
solutions produced. This is because in practice, we observe  
distributions of CG-Cost() that are skewed; there are large number 
of column-groups that are referenced by a small number of 
inexpensive queries and these get pruned by our scheme. Our 
experimental evaluation of the effectiveness of the above 
technique is described in Section 7.  

 

 

 

 

 

 

 

 

 

 

Finally, we note that a pathological case for the above pruning 
algorithm occurs when CG-COST of (almost) all column-groups 
in the workload is below f. In such cases, one possible approach is 
to dynamically determine f so that enough column-groups are 
retained. 

4.2 Measuring Effectiveness of a Column-
Group for Vertical Partitioning  
As described earlier, evaluating a vertical partitioning can be an 
expensive operation for any physical design tool. We now present 
a function that is designed to measure the effectiveness of a 
column-group for vertical partitioning. Such a measure can be 
used, for example, to filter or rank interesting column-groups 
(identified using the technique presented in Section 4.1). 
Intuitively, a column-group g is effective for vertical partitioning 
if all columns in the group almost always co-occur in the 
workload.  In other words, there are only a few (or no) queries 
where any one of the columns is referenced but the remaining 
columns are not.  

Definition 5.  The VP-CONFIDENCE (or VPC for short) of a 
column-group g is defined as: 
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where c is a column belonging to column-group g, width(c) is the 
average width in bytes of c, and Occurrence(c) is the set of 
queries in the workload where c is referenced. 

Example 4. In Example 3, for query Q1, the set of columns 
referenced is {A,B}. Note that the interesting column-groups that 
could be considered for vertical partitioning for Q1 are {A,B} and 
{A,B,C} since both these column-groups contain all columns 
referenced in Q1. Assume that all columns are of equal width. 
Then VPC({A,B}) = 13/20 = 0.65, whereas VPC({A,B,C}) = 
22/30 = 0.73. Thus using the VPC measure, we would prefer to 
vertically partition it on {A,B,C} than on {A,B}.  

We note that VPC is a fraction between 0 and 1. The intuitive 
interpretation of VPC(g) is the following: If a vertical partition on 
g were defined, VPC(g) is the fraction of the scanned data would 
actually be useful in answering queries where one or more 
columns in g are referenced. Hence, column-groups with high 
VPC are more interesting.  If the VPC of a column group g is high 
enough (e.g., VPC(g)=.9), then it is unlikely that the optimal 
partitioning will place the columns of g into separate sub-tables  
otherwise the cost of queries that reference g will significantly 
increase due to the cost of joining two or more sub-tables to 
retrieve all columns in g.  The definition can be extended to 
incorporate cost of queries by replacing Occurrence(c) with the 
total cost of all queries in Occurrence(c).  

4.3 Leveraging Column-Groups for 
Generating Physical Design Structures 
We use the interesting column-groups (these are ranked by VPC) 
to generate relevant physical design structures on a per-query 
basis as follows. In the first step, we find vertical partitions per 
table. We apply the VPC measure to all interesting column-
groups that contains all the columns referenced in query, and 
consider only the top k ranked by VPC.  Each vertical 
partitioning considered has a sub-table corresponding to one such 
column-group. The remaining columns in the table form the 
second sub-table of the vertical partition. Note that every vertical 
partition generated by the above algorithm consists of exactly two 
sub-tables. We also consider the case where the table is not 
vertically partitioned. In the next step, for each vertical 
partitioning considered above (including the case where the table 
is not partitioned), we restrict the space of indexes and respective 
horizontal partitioning to the joins/selection/grouping/ordering 
conditions in the query where the underlying column-groups are 
interesting. For range partitioning, we use the specific values from 
the query as boundary points. For hash partitioning, we select 
number of partitions such that it is a multiple of number of 
processors and each partition fits into memory (we assume 
uniform partition sizes). We use the approach outlined in [2] to 
determine the materialized views we consider for a query. The 
considerations for horizontally partitioning materialized views are 
exactly the same as for tables i.e. partition on interesting 
joins/selection/grouping column(s) when the view is used to 
answer the query. We omit details due to lack of space. 

5. INCORPORATING PARTITIONING 
DURING MERGING 
The Merging step of our solution (described in Section 3) 
becomes much more complex when we have partitioning for two 
reasons. (1) Merging vertical partitions can become very 
expensive as each merged vertical partition potentially requires a 
new set of (partitioned) indexes and materialized views to be 

1. Let G1 = {g | g is a column-group on table T of 
cardinality 1, and column c∈ g is referenced in the 
workload and  CG-Cost (g) ≥  f}; i = 1 

2. While i < T.NumRefColumns and |Gi| > 0 
3.   i = i + 1; Gi = {} 
4.   Let G ={ g | g is a column-group on table T of size i, 

and ∀ s ⊂  g, |s|=i-1, s∈ Gi-1} 
5.    For each g ∈  G 
6.      If CG-Cost (g) ≥ f Then Gi = Gi ∪  {g}  
7.    End For 
8. End While 
9. Return (G1 ∪  G2 ∪  … GT.NumRefColumns) 

Figure 3. Algorithm for finding interesting column-groups 
in the workload for a given table T. 



simulated as well. (2) The benefits of collocation have to be 
preserved during merging of horizontally partitioned indexes. 

Although not the focus of this paper, an important aspect of 
generating new merged candidates is defining the space of merged 
candidates explored. Given a set of structures, which we refer to 
as parent structures, our goal is to generate a set of merged 
structures, each of which satisfies the following criteria. First, the 
merged structure should be usable in answering all queries where 
each parent structure was used. Second, the cost of answering 
queries using the merged structure should not be “much higher” 
than the cost of answering queries using the parent structures.   

For exploring the space of merged structures, we adopt the 
algorithm from [2]. To recap, the algorithm iterates over the given 
set of candidates as follows. In each iteration, the algorithm 
generates all candidates that can be obtained by merging a pair of 
candidates. It then picks the best merged structures and replaces 
their parent candidates, and repeats this process. Thus the 
algorithm returns the “maximal” merged structures that can be 
obtained by repeatedly merging pairs of structures.  Our focus is 
on the problem of how to merge a pair of physical design 
structures in the presence of vertical and horizontal partitioning. 
We expect that the intuition underlying the techniques we present 
would be useful in any scheme that performs merging.   

The overall Merging step can be described as follows. First, we 
generate interesting vertical partitions of different tables by 
merging vertical partitions that are output of Candidate Selection. 
Next, for each single vertical partition (including the new merged 
ones), we merge all indexes and materialized views that are 
relevant for that vertical partition while taking horizontal 
partitioning into account. If indexes on the same (sub-) table are 
horizontally partitioned on the same column(s), we merge the 
respective partitioning methods to arrive at a more generic 
partitioning method. We describe these steps in detail below. 

5.1 Merging Vertical Partitions 
Given the best vertical partitioning for individual queries, the goal 
of Merging is to find new vertical partitionings that are useful 
across queries in the workload. A vertical partitioning that is best 
for one query may significantly degrade the performance of 
another query.  Merging vertical partitions is a challenging 
problem in itself. Since each vertical partition itself is a set of 
column-groups (i.e., sub-tables), merging two vertical 
partitionings requires us to merge two sets of column-groups.   

Example 5. Consider table T(A,B,C,D) from Example 3 and two 
vertical partitionings of T, VP1 = {(A, B, C), (D)} and VP2 = {(A, 
B), (C, D) }. For the merged vertical partitioning, we could 
consider (among other alternatives) {(A, B, C, D)} or {(A, B), 
(C), (D)} or {(A, C), (B, D)}.  
For the example above, we highlight, in the following table, the 
impact of a few different vertical partition alternatives on two 
queries Q1 and Q4 from example 3. 
For Q1 (references only columns A and B) {(A,B),(C,D)} is the 
best among these as no join is needed and no redundant data is 
scanned; Q1 is answered using (A,B) only. However the same 
vertical partitioning is much worse for Q4 (references only 
columns A and C) as now both (A, B) and (C, D) needs to be 
scanned and joined to get required columns. 

This simple example highlights the fundamental issues when 
merging vertical partitions. As a consequence of merging vertical 
partitions, some queries can become more expensive due to (a) 
more joins that need to be done or (b) more redundant data that 
needs to be scanned. Thus, if the vertical partition is the entire 
table itself, we have optimal join characteristics but we could 
potentially incur a lot of redundant data scan. At the other 
extreme, if table is completely partitioned i.e. each column forms 
separate partition, we can have lots of joins but no redundant data 
scan. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our algorithm for merging two vertical partitionings of a given 
table T is shown in Figure 4. The algorithm measures the impact 
of merging on the workload in terms of joins and redundant data 
scans. Steps 1-2 defines the exact space of sub-tables that are 
explored. We restrict the space of sub-tables over which the 
merged vertical partition can be defined to those that can be 
generated via union or intersection of sub-tables in the parent 
vertical partitionings. The union operation can decrease the 
number of joins required (and hence reduce join cost) to answer 
one or more queries, while intersection can decrease the amount 
of data scanned (and thereby decrease scan cost) in answering a 
query. We also require the complement of sub-tables to be present 
as the final output must be a valid vertical partition i.e. all the 
columns of table must occur in some sub-table. A desirable 
property of this approach is that whenever a column-group occurs 
in a single sub-table in both parents, it is guaranteed to be in the 
same sub-table in the merged vertical partitioning as well. For 

Vertical 
partitioning 

Q1 Q4 

{(A,B,C,D)} Joins: No 
Extra Data Scan:Yes 

Joins: No 
Extra Data Scan:Yes 

{(A,B), 
(C,D)} 

Joins: No 
Extra Data Scan :No 

Joins: Yes 
Extra Data Scan:Yes 

{(A,C), 
(B,D)} 

Joins: Yes 
Extra Data Scan:Yes 

Joins: No 
Extra Data Scan:No 

{(A),(B), 
(C),(D)} 

Joins: Yes 
Extra Data  Scan :No 

Joins: Yes 
Extra Data Scan:No 

Input: Two vertical partitionings VP1 = {t11, t12,…, t1n}, 
VP2 = {t21, t22, …, t2m} for of a given table T. Ts is the set of 
all columns in T. 
Function: QUERIES (VP) over a vertical partition VP 
returns all queries for which VP was a candidate. 
Function: COST (VP,W) returns cost of vertical partition 
VP for set of queries W. 
Output: A merged vertical partitioning. 
1. S = {} // S is a set of sub-tables on T. 
2. For i = 1 to n 

For j=1 to m 
 S = S   ∪  {t1i  ∪  t2j} ∪  {Ts –(t1i  ∪  t2j)} 
 S = S   ∪  {t1i  ∩ t2j} ∪  {Ts –(t1i  ∩ t2j)} 
End For 

        End For 
3. W = QUERIES (VP1) ∪  QUERIES (VP2) 
4. For all subsets VP of S that form valid vertical 

partitioning of T, return the VP with the minimal Cost 
() over W. 

Figure 4. Merging a pair of vertical partitionings of a table. 



example, if the parents are VP1 = {(A,B), (C,D)} and VP2 = 
{(A,B,C), (D)}, then we are guaranteed that the column-group 
(A,B) will never be split across different sub-tables in the merged 
vertical partitioning.  

While in principle COST (VP,W) can use the optimizer estimated 
cost as described in Section 2, for efficiency, we adopt a simpler 
Cost model that is computationally efficient and is designed to 
capture the above trade-off in join and scan cost. Thus, we instead 
define the COST (VP, W) for a vertical partition VP and 
workload W as the sum of scan cost of data and join cost for all 
queries q ∈ W. The join cost is modeled as linear function of 
individual sub-tables that are joined. Step 3 defines the set of 
queries over which we cost the generated vertical partitions to be 
candidates of either of the parents. In step 4 we enumerate the 
space of valid vertical partitions defined by the sub-tables above 
and return the one with the least cost. 

Finally, we note that candidate indexes on VP1 and VP2 may also 
be candidates on the merged vertical partitioning. The exception 
to this is indexes whose columns appear in different sub-tables in 
the merged vertical partitioning. In Example 5 above, an index on 
columns (C,D) cannot exist in the vertical partitioning 
{(A,C),(B,D)} since C and D belong to different sub-tables. 

5.2 Merging Horizontally Partitioned 
Structures 
The inclusion of horizontal partitioning introduces new challenges 
during the Merging step. First, it is no longer sufficient to simply 
merge the objects (e.g., indexes) themselves, but we also need to 
merge the associated partitioning methods of each object. This is 
non-trivial since how we merge the objects may depend on the 
partitioning methods, and vice-versa. The underlying reason for 
this problem is that (as discussed in Section 2.3), the indexing 
columns and the partitioning columns can be interchangeably 
used. We illustrate this issue with the following example: 

Example 6. Consider two structures: I1 is an index on column A 
hash partitioned on column B and I2 is an index on column A 
hash partitioned on C. If we merge the indexes and the 
partitioning methods separately, we would never be able to 
generate a structure such as index on (A,B) partitioned on C, 
which may be able to effectively replace both I1 and I2.  

Second, when merging two partitioning methods, the number of 
possible partitioning methods for the merged structure can be 
large. Third, when merging two structures, we need to pay 
attention to the fact that one (or both) of the partitioned structures 
being merged may be used in co-located joins; since if a merged 
structure has a different partitioning method than its parent 
structure, it may no longer allow a co-located join. We now 
discuss our approach for each of these issues. 

5.2.1 Merging Index and Partitioning Columns 
We will assume that the two structures being merged are I1 = (O1, 
P1,C1) and I2 = (O2,P2,C2), as per the notation defined in Section 
2.1. Intuitively, there are two key ideas underlying our approach. 
First, we exploit the fact that the partitioning columns and the 
index columns of the parent structures, i.e., the columns in O1, O2, 
and the columns C1 and C2 can be interchangeably used. Second, 
we restrict the space considered to those merged structures such 

that the benefit of at least one of the parent structures is retained. 
This is similar to the idea of index preserving merges described in 
[6], with the extension that the partitioning columns may also 
need to be preserved in the merged structure. Based on the above 
ideas, the space of merged structures we consider is as described 
below. We denote a merged structure as I12 = (O12, P12, C12). Also, 
we denote columns in an object O as Cols (O). 

The partitioning columns of I12, i.e., C12 can be one of the 
following: (a) C1 (b) C2 or (c) C1 ∩ C2 (d) Cols (O1) (e) Cols (O2), 
(f) Cols (O1) ∩ Cols (O2). Thus in addition to the original 
partitioning (resp. indexing) columns, we also consider the 
intersection of the partitioning (resp. indexing) columns of I1 and 
I2, which is a more “general” partitioning. For example, if a table 
T partitioned on (A,B) is used to answer a query on T with a 
GROUP BY A,B clause and the table partitioned on (A,C) is used 
to answer a different query on T with a GROUP BY A,C clause, 
then, T partitioned on (A) can be used to answer both queries 
(partial grouping). We observe that C1 ∩ C2 may be empty. In 
such cases the merged structure is un-partitioned. 

The index columns of a merged structure, i.e., O12 can have as its 
leading columns any one of: (a) Cols (O1) in sequence, (b) Cols 
(O2) in sequence (c) columns of C1 in order (d) columns of C2 in 
order. This ensures that the merged structure will retain the 
benefit (either indexing or partitioning benefit) of at least one of 
its parents. To the leading columns, we append all remaining 
columns from O1, O2, C1 or C2, which are not already part of the 
partitioning columns of C12.  

Thus our procedure considers all combinations of merged 
structures that can be generated from the space of possible C12 and 
O12 as defined above. The exact procedure for determining the 
partitioning method P12 of the merged structure is described in 
Sections 5.2.2. Finally, similar to [2,6] we disallow a merged 
structure that is “much larger” in size (defined by a threshold) 
than the original candidate structures from which it is derived 
since such a merged structure is likely to degrade performance of 
queries being served by the original candidate structures. 

5.2.2 Merging Partitioning Methods 
Merging Range Partitioning Methods: Given a pair of range 
partitioning methods P1 = (S, V1), P2 = (S, V2) we wish to find the 
best partitioning method P12 = (S, V12) to be used with the merged 
object O12. The best partitioning method is one such that the cost 
of all queries answered using (O1,P1,C) (denoted by the set R1) as 
well as (O2,P2,C) (denoted by the set R2) increases as little as 
possible when answered using (O12,P12,C). The naïve approach of 
considering all possible partitioning methods P12 that can be 
generated by considering any subset of the values in V1 ∪  V2 is 
infeasible in practice.  

Observe that if we do not partition an index, all queries need to 
scan the entire index resulting in high scan cost, but only pay a 
small cost in opening/closing the single partition. At the other 
extreme, if we partition the index into as many partitions as 
number of distinct values, each query is served by scanning the 
least amount of data required but may access a large number of 
partitions i.e. high cost of opening/closing partitions. Both these 
extremes can be sub-optimal. We need to balance the scan and 
partition opening/closing costs to arrive at a good compromise.  



We now present an efficient algorithm MergeRanges for finding 
a merged range partitioning method. We model the cost of 
scanning a range partitioned access method, denoted by Cost-
Range, for any range query Q as follows: (1) The cost of scanning 
the subset of partitions necessary to answer Q. This cost is 
proportional to the total size of all the partitions that must be 
scanned. (2) A fixed cost per scanned partition corresponding to 
the CPU and I/O overhead of opening and closing the B+-Tree for 
that partition. Note that computing Cost-Range is computationally 
efficient and does not require calls to the query optimizer. Thus 
our problem can be stated as finding a V12 such that ΣQ∈  (R1 ∪  R2) 
Cost-Range(Q, (O12, (S,V12),C)) is minimized, where R1 (resp. R2) 
is the set of queries for which the input objects are candidates. 
MergeRanges is a greedy algorithm that starts with V12, a simple 
merging of sequences V1 and V2. In each iteration, the algorithm 
merges the next pair of adjacent intervals (from among all pairs) 
that reduces Cost-Range the most. The algorithm stops when 
merging intervals no longer reduces Cost-Range. Note that 
performance of MergeRanges varies quadratically with the 
number of boundary points. However in practice, we have 
observed the algorithm to perform almost linearly; the data 
distribution tends to be skewed causing the algorithm to converge 
much faster. MergeRanges does not guarantee an optimal 
partitioning; however our experimental evaluation suggests that it 
produces good solutions in practice, and is much more efficient 
compared to a solution that arrives at an optimal solution by 
considering all range partitioning boundary values exhaustively. 
We omit experiments and counter examples due to lack of space. 

Merging Hash Partitioning Methods: For merging a pair of 
objects  (O1,P1,C) and  (O2,P2,C) where P1 and  P2 are hash 
partitions on C with number of partitions as n1 and  n2 
respectively, the number of partitions of the merged object O12 is 
determined by number of processors, available memory and 
number of distinct values in C. 

5.2.3 Co-Location Considerations in Merging 
The merging described thus far does not pay attention to merged 
structures on other tables – this can result in loss of co-location 
(see Section 2.3) for merged candidates. Consider a simple case 
where we have 2 candidate indexes I1 and I2 on table T1 that we 
wish to merge.  Assume that I1 is used in a co-located join with 
index I3 on table T2, i.e., both I1 and I3 have the same partitioning 
method (say P1). Now I1 and I2 get merged to produce I12 with a 
partitioning method P12. Since P12 is potentially different from P1, 
the merged index I12 can no longer be used in a co-located join 
with I3, thereby greatly reducing its benefit. Thus to preserve the 
benefits of co-location, we need to also consider a merged 
structure where I12 is partitioned on P1. For each merged structure 
O, we consider all partitioning methods of any other structure that 
could be used in a co-location join with O. In our experiments 
(see Section 7) we show how co-location consideration in 
Merging is crucial for good quality solutions. 

6. INCORPORATING ALIGNMENT 
REQUIREMENTS 
As discussed in Section 3, the input to the final search step in our 
solution (i.e., the Enumeration step), is the set of candidate 
structures that have been found to be best for individual queries in 
the workload, or those introduced via the Merging step. In 

general, the input structures (for any given table) can be 
partitioned differently since different queries in the workload may 
be served best by different partitioning requirements. However, 
due to manageability reasons we may be required to provide as a 
solution, a configuration where all structures on each table are 
aligned, i.e., partitioned identically.  

We assume that a specific search strategy (Greedy (m, k)) 
described in Section 3 is used in the Enumeration step. To recap, 
Greedy (m,k) algorithm guarantees an optimal answer when 
choosing up to m physical design structures, and subsequently 
uses a greedy strategy to add more (up to k) structures. The key 
challenges in meeting these alignment requirements are outlined 
below. For simplicity, let us assume that the structures Ij (j=1, .. n) 
horizontally partitioned using partitioning method Pj  are input 
candidates to Enumeration and all structures are on same table 
and are partitioned on same columns, and that each Pj is distinct. 
If we use Greedy (m, k) unmodified on the above n structures, we 
will end up picking exactly one of the structures Ij above (adding 
any more will violate alignment), and thus can lead to a poor 
solution. An alternative way to address the alignment issue is to 
generate new structures which are the cross product all structures 
in I with all partitioning methods in P. These new structures, 
along with the n original structures (resulting in a total of n2 
structures) are then passed into the Greedy(m,k)  algorithm. This 
approach, which we refer to as Eager Enumeration, although 
will result in a good quality solution, can cause a significant 
increase in running time as the number of input structures have 
been considerably increased (potentially by a quadratic factor). 
Thus, the challenge is to find a solution that is much more 
scalable then Eager Enumeration and at the same time does not 
significantly compromise the quality.  

Our solution leverages the following observation. If we have a 
candidate structure C that enters the search step, and we alter only 
its partitioning method (to enforce alignment), then the resulting 
structure C’ is at most as good in quality as C for any query in the 
workload where C was a candidate. Furthermore, for the given 
workload, suppose the cost of updating C is no higher than the 
cost of updating C’ and the size of C is no larger than the size of 
of C’. Then, we note that C’ can be introduced lazily during 
Greedy (m,k) without compromising the quality of the final 
answer, i.e., we would get the same answer as we would have 
obtained using Eager Enumeration. We have observed, that the 
above assumptions on update and storage characteristics typically 
hold for new structures that need to be generated to enforce 
alignment since: (1) the partitioning columns of C and C’ often 
are the same (e.g., partitioning on join columns is common) and 
(2) differences that arise from specific partitioning method 
typically have small impact on update characteristics or size. (e.g., 
changing number of hash partitions does not significantly change 
size of structure or cost of updating structure).  

Our solution builds on this observation and interleaves generation 
of new candidates and configurations with search. We call this 
Lazy Enumeration. The pseudo code for lazy enumeration with 
respect to the Greedy (m,k)  search is described in Figure 5. We 
assume that all input structures are on same table and can differ 
on partitioning columns and methods. The extensions for different 
tables are straightforward and are omitted. 



Steps 1-6 of the algorithm describe how we generate the optimal 
configuration r of size up to m from the input set of structures 
such that all structures in r are aligned.  The idea is to get the best 
configuration of size up to m without taking alignment into 
account. If structures in the best configuration are not aligned, 
then only we generate new structures and configurations from 
structures in the best configuration that are aligned.  In steps 8-10, 
we add structures greedily to r one at time to get up to k 
structures. If the added structure a causes the alignment to get 
violated, we generate a’, a version of a that is aligned with 
structures in r, and add a’ to (and remove a from) the set of 
structures from which structures are picked greedily.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that we introduce a structure with a new partitioning only 
when the original structure would have been picked by the search 
scheme in the absence of alignment requirement. The savings in 
running time from the above algorithm arise due to the greedy 
nature of Greedy(m,k), which makes it unnecessary to introduce 
many new structures lazily that would otherwise have been 
introduced by the Eager Enumeration approach. In Section 7, we 
compare the Eager and Lazy Enumeration strategies on different 
workloads and show that the latter is much more scalable than 
Eager Enumeration without significantly compromising quality.   

7. EXPERIMENTS 
We have implemented the techniques presented in this paper on a 
commercial database server that has necessary server extensions 

to simulate indexes/materialized views/partitions. We simulate the 
effect of vertically partitioning a table as described in Section 2.1. 

Next we present experiments conducted on our prototype 
implementation. We show that: (1) Our integrated approach to 
physical design is better than an approach that stages the physical 
design based on different features. (2) Column-group pruning 
(Section 4) is effective in reducing the space of physical design 
structures (3) Collation must be considered during Merging and 
(4) The Lazy Enumeration technique discussed in Section 6 to 
generate aligned indexes performs much better compared to the 
eager strategy without compromising quality. 

Setup: All experiments were run on a machine with an x86 1GHz 
processor with 256 MB RAM and an internal 30GB hard drive 
and running a modified version of a commercial relational DBMS. 
We use TPC-H database [21] in our experiments. We use notation 
TPCH1G to denote TPC-H data of size 1GB and TPCH22 for 
TPC-H 22 query benchmark workload. 

Importance of Selecting Structures Together: Here we study the 
importance of selecting physical design structures together. Figure 
6 compares the reduction in quality (difference in optimizer 
estimated cost for TPCH22 workload) compared to our approach 
that selects vertical partitions, indexes and horizontal partitions in 
an integrated manner (TOGETHER). We compare our approach 
to (a) IND-ONLY where we select indexes only (no horizontal or 
vertical partitioning) and (b) VP->IND->HP where we first 
vertically partition the database, then select indexes and 
subsequently horizontally partition the objects. We vary the total 
available storage from 1.3 GB to 3.5 GB.  

Comparing Alternatives To Physical Design 
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First, we observe that at low to moderate storage (1.3GB to 
2.0GB), TOGETHER is much superior to IND-ONLY. This is 
because unlike indexes (which are redundant structures) both 
kinds of partitioning incur very little storage overhead. Second, 
VP->IND->HP is inferior across all storage bounds to 
TOGETHER. The reason is that the best vertical partitioning 
chosen in isolation of indexes ends up precluding several useful 
indexes. Likewise, picking indexes without regard to co-location 
considerations of horizontal partitioning also results in missing 
out good solutions. Note that at large storage bounds (where 
importance of partitioning is diminished), TOGETHER is still 
better than IND-ONLY (but not by much), and much better than 
VP->IND->HP. Results were similar for updates and materialized 
views and have been omitted due to lack of space. 

Figure 6. Quality vs. Storage of physical design alternatives. 

Input: I={Ij | Ij=(Oj,Pj,Cj), 1≤j≤n, Ij is a physical design 
structure}, workload W, k and m in Greedy (m,k)  
Output: A configuration with least cost for W having all 
structures aligned. 
1. Let S be the set of all configurations of size up to m 

defined over structures in I. 
2. Let r be the configuration in S with the minimal cost for 

W. If no such configuration exists, return an empty 
configuration. If all structures in r are aligned go to 7.  

3. Let P be the set of all partitioning methods and columns of 
structures in r. 

4. Let T be the set of all structures generated by partitioning 
structures in r using partitioning methods and columns in 
P. Note that T defines a cross product set of (o,p,c) where 
(o,*,*) is a structure in r and (p,c) is a partitioning method 
and column in P. 

5. Let S’ be the set of all configurations defined over 
structures in T where each configuration in S’ is aligned 
and is of same size as size of r. 

6. S = S  ∪  S’, S = S − {r}. Go to 2. //Remove r from search  
7. Let V = I. // Initialize V to be the same as I 
8. If size of r ≥ k, return r. Pick a structure a from V such 

that configuration r  ∪  {a} has the minimal cost for W. If 
no such structure can be picked, return r. If a is aligned 
with structures  in r, go to 9, else go to 10. 

9. V = V − {a}, r = r  ∪  {a}. Go to 8. // add a to r 
10. V = V − {a}, Let a’ be the structure generated by 

partitioning a using (p,c) where structures in r are 
partitioned on columns c using partitioning method p. V = 
V  ∪  { a’}. Go to 8. 

 

Figure 5. Extending Greedy (m,k) for handling alignment  



Effectiveness of Column-Group Restriction: We study the 
effectiveness of the column-group based pruning (Section 4). We 
use two workloads TPCH22 and CS-WKLD and varied the 
threshold (f) for pruning from 0.0 (no pruning) to 0.1. CS-WKLD 
is a 100 query workload over TPCH1G database consisting of SPJ 
queries; the specific tables and selection conditions are selected 
uniformly at random from the underlying database. Figure 7 
shows the reduction in quality for different values of f for the two 
workloads compared to f = 0.0. We observe that using column-
group based pruning with f less than 0.02 has almost no adverse 
effect on quality of recommendations. For TPCH22 there was a 
2% quality degradation at f = 0.02 compared to f = 0.0. We 
observe that the quality degrades rapidly for f > 0.02 for CS-
WKLD because poor locality forces us to throw away many useful 
column-groups. Figure 8 shows the decrease in total running time 
of tool as f is varied, compared to the time taken for f = 0.0. We 
observe that the running time decreases rapidly as f is increased. 
For TPCH22, we observe about 20% speedup. This is not 
surprising since the space of column-groups is strongly correlated 
with the space of physical design that we explore. This experiment 
suggests that a value of f around 0.02 gives us about the same 
quality as f = 0.0 and in much less running time. 
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Importance of Co-location in Merging: Here we compare our 
algorithm for Merging (see Section 5) with a variant of this 
algorithm (NOCOL) that does not take co-location into 
consideration. We use 4 workloads of 25 queries each on 
TPCH1G database – WKLD-COL-n where n is % of queries with 
join conditions. We use n = 20, 40, 60 and 80. The specific values 
in the filter condition of the queries are generated randomly and 
the range lengths are selected with Zipfian distribution [13] (skew 
1.0). Figure 9 shows the percentage reduction in quality of 
NOCOL of the workloads compared to our Merging scheme. We 

observe that as the % of join queries increases (e.g., at n=60), 
ignoring co-location causes the quality to drop significantly. The 
smaller difference at n=80 is because the overall workload cost 
has increased with more join queries causing the relative 
difference to become smaller. 
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Effectiveness of Lazy Enumeration for handling alignment 
requirements: Here we compare the Lazy Enumeration technique 
that we use to generate aligned indexes to Eager Enumeration, 
discussed in Section 6. Table 2 compares the two techniques. We 
use TPCH22 workload on TPCH1G database. We also use 200 
APB queries on APB database [14] that is about 1.2 GB; the APB 
queries are complex decision support queries.  We observe that on 
TPCH22 Lazy Enumeration performs much better, it is about 90% 
faster than Eager Enumeration and the loss in quality is very small 
~1%. The reason for this is that Eager Enumeration generates and 
evaluates the goodness of lot more indexes compared to the lazy 
strategy. In the latter, new candidate indexes are generated on 
demand. We observe similar behavior for APB benchmark 
queries. This shows that Lazy Enumeration is much more scalable 
and almost as good in quality compared to Eager Enumeration. 

Table 2. Comparing quality and performance of Eager and 
Lazy Enumeration Techniques 

Workloads Speed up compared 
to Eager Enumeration 

Loss in Quality 
compared to Eager 
Enumeration 

TPCH22 90% 1% 

APB 50% 0% 

8. RELATED WORK 
To the best of our knowledge, ours is the first work to take an 
integrated approach to the problem of choosing indexes, 
materialized views, and partitioning, which are the common 
physical design choices in today’s database systems. The problem 
of how to automatically recommend partitioning a database across 
a set of nodes in shared-nothing parallel database system was 
studied in [17,25]. However, the key differences with our work 
are: (1) Their work does not explore the interaction between 
choice of partitioning and choice of indexes and materialized 
views. Thus, they implicitly assume that the two tasks are staged 
(i.e., done one after the other). As shown in this paper, in a single-
node environment, such an approach can lead to poor quality of 
recommendations. (2) Our work also presents techniques for 
recommending appropriate range and hash partitioned objects. In 
[24], the problem of determining appropriate partitioning keys for 
a table (in a multi-node scenario) as well as indexes is considered. 

Figure 7. Variation of Quality with Threshold f 

Figure 8. Variation of Running Time with Threshold f 

Figure 9. Impact of co-location considerations on merging 



Our work is a significant extension of this work in the following 
ways: (1) In addition to partitioning of tables, we also consider 
partitioning of indexes and materialized views. (2) We also 
consider range partitioning.  (3) The focus in [24] was on the 
search problem (a branch-and-bound strategy). While this is an 
important aspect of the problem, we have argued in this paper for 
scalable techniques for selecting candidate physical design 
structures, which enable the search strategy to scale in practice. 
Recently, Zeller and Kemper [23] showed the importance of 
horizontal partitioning in a single-node scenario (for a large scale 
SAP R/3 installation), which is the focus of this paper. Their 
study showed the benefits of single-node partitioning for joins, 
and exploiting parallelism of multiple CPUs. The problem of 
allocating data fragments (horizontal partitions) of the fact table 
using bitmap indices in a data warehouse environment (star 
schemas) is studied in [20]. They explore the issues of how to 
fragment the fact table, as well as physical allocation to disks 
(e.g., degree of declustering, allocation policy).   

There have been several papers [7,8,10,14] describing techniques 
for vertically partitioning a table for a given workload. Relative to 
this body of work, this paper is different in or more of the 
following ways. (1) We study the interaction of vertical 
partitioning with other physical design features. (2) Our approach 
is cost-based and takes into account usage of structures by the 
query optimizer. (3) We do not restrict our space to only binary 
partitioning (see the Merging step). Our techniques assume 
DBMS architectures prevalent in today’s database systems. We 
note that recent studies [3,16] have looked into new DBMS 
architectures where improved cache performance is possible by 
storing data in a column-wise manner. We view this work as 
complementary to ours as refinements in the cost model based on 
these ideas can lead to better choice of vertical partitioning.   

The problem of generating more general candidates based on 
merging indexes [6] and materialized views [2] have been studied 
earlier. However the problem of merging is significantly more 
complex in the presence of partitioning (Section 5).  Our 
techniques for merging both range and hash partitioned objects as 
well as vertical partitioning are novel contributions of this paper.  
Finally, we note that there have been several papers (e.g., [9]) on 
the problems of index selection and materialized view selection, 
the latter mostly in the context of OLAP and Data cube. However, 
these studies differ in one or more of the following ways from our 
work. (1) They do not take into account the workload. (2) Their 
approach is disconnected from query optimizer. (3) Class of 
queries considered does not consider the full generality of SQL. 

9. CONCLUSION 
In this paper, we present techniques that enable a scalable solution 
to the integrated physical design problem of indexes, materialized 
views, vertical and horizontal partitioning for both performance 
and manageability. Our work on horizontal partitioning focuses 
on single-node partitioning. In the future we will investigate how 
our techniques can be adapted to handle performance and 
availability requirements in multi-node partitioning.   
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